Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
PeerJ ; 12: e17710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006014

RESUMEN

As the most widely distributed scavenger birds on the Qinghai-Tibetan Plateau, Himalayan vultures (Gyps himalayensis) feed on the carcasses of various wild and domestic animals, facing the dual selection pressure of pathogens and antibiotics and are suitable biological sentinel species for monitoring antibiotic resistance genes (ARGs). This study used metagenomic sequencing to comparatively investigate the ARGs and mobile genetic elements (MGEs) of wild and captive Himalayan vultures. Overall, the resistome of Himalayan vultures contained 414 ARG subtypes resistant to 20 ARG types, with abundances ranging from 0.01 to 1,493.60 ppm. The most abundant resistance type was beta-lactam (175 subtypes), followed by multidrug resistance genes with 68 subtypes. Decreases in the abundance of macrolide-lincosamide-streptogramin (MLS) resistance genes were observed in the wild group compared with the zoo group. A total of 75 genera (five phyla) of bacteria were predicted to be the hosts of ARGs in Himalayan vultures, and the clinical (102 ARGs) and high-risk ARGs (35 Rank I and 56 Rank II ARGs) were also analyzed. Among these ARGs, twenty-two clinical ARGs, nine Rank I ARG subtypes, sixteen Rank II ARG subtypes were found to differ significantly between the two groups. Five types of MGEs (128 subtypes) were found in Himalayan vultures. Plasmids (62 subtypes) and transposases (44 subtypes) were found to be the main MGE types. Efflux pump and antibiotic deactivation were the main resistance mechanisms of ARGs in Himalayan vultures. Decreases in the abundance of cellular protection were identified in wild Himalayan vultures compared with the captive Himalayan vultures. Procrustes analysis and the co-occurrence networks analysis revealed different patterns of correlations among gut microbes, ARGs, and MGEs in wild and captive Himalayan vultures. This study is the first step in describing the characterization of the ARGs in the gut of Himalayan vultures and highlights the need to pay more attention to scavenging birds.


Asunto(s)
Animales Salvajes , Secuencias Repetitivas Esparcidas , Animales , Animales Salvajes/microbiología , Secuencias Repetitivas Esparcidas/genética , Falconiformes/microbiología , Falconiformes/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , China , Bacterias/genética , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Animales de Zoológico/microbiología , Aves/microbiología , Aves/genética
2.
Nat Commun ; 15(1): 5728, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977688

RESUMEN

Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.


Asunto(s)
Ascomicetos , Variaciones en el Número de Copia de ADN , Genoma Fúngico , Triticum , Triticum/genética , Triticum/microbiología , Variaciones en el Número de Copia de ADN/genética , Ascomicetos/genética , Genoma Fúngico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Adaptación Fisiológica/genética , Secuencias Repetitivas Esparcidas/genética , Elementos Transponibles de ADN/genética
3.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015336

RESUMEN

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Asunto(s)
Antibacterianos , Cromosomas Bacterianos , Infecciones por Klebsiella , Klebsiella pneumoniae , Plásmidos , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Plásmidos/genética , beta-Lactamasas/genética , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Humanos , Pruebas de Sensibilidad Microbiana , Secuencias Repetitivas Esparcidas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
BMC Microbiol ; 24(1): 225, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926687

RESUMEN

BACKGROUND: The incidence of hospital-acquired infections in extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) has been increasing worldwide and is frequently associated with an increase in mortality and morbidity rates. The aim of this study was to characterize clinical XDR-PA isolates recovered during six months at three different hospitals in Egypt. RESULTS: Seventy hospital-acquired clinical isolates of P. aeruginosa were classified into multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR), according to their antimicrobial resistance profile. In addition, the possession of genes associated with mobile genetic elements and genes encoding antimicrobial resistance determinants among isolates were detected using polymerase chain reaction. As a result, a significant percentage of the isolates (75.7%) were XDR, while 18.5% were MDR, however only 5.7% of the isolates were non-MDR. The phenotypic detection of carbapenemases, extended-spectrum ß-lactamases (ESBLs) and metallo ß-lactamase (MBL) enzymes showed that 73.6% of XDR-PA isolates were carbapenemases producers, whereas 75.5% and 88.7% of XDR-PA isolates produced ESBLs and MBL respectively. In addition, PCR screening showed that oxa gene was the most frequently detected gene of carbapenemases (91.4%), while aac(6')-lb gene was mostly detected (84.3%) among the screened aminoglycosides-resistance genes. Furthermore, the molecular detection of the colistin resistance gene showed that 12.9% of isolates harbored mcr-1 gene. Concerning mobile genetic element markers (intI, traA, tnp513, and merA), intI was the highest detected gene as it was amplified in 67 isolates (95.7%). Finally, phylogenetic and molecular typing of the isolates via ERIC-PCR analysis revealed 10 different ERIC fingerprints. CONCLUSION: The present study revealed a high prevalence of XDR-PA in hospital settings which were resistant to a variety of antibiotics due to several mechanisms. In addition, 98% of the XDR-PA clinical isolates contained at least one gene associated with movable genetic elements, which could have aided the evolution of these XDR-PA strains. To reduce spread of drug resistance, judicious use of antimicrobial agents and strict infection control measures are therefore essential.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamasas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Humanos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Egipto/epidemiología , beta-Lactamasas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Hospitales/estadística & datos numéricos , Secuencias Repetitivas Esparcidas/genética , Reacción en Cadena de la Polimerasa
6.
Methods Mol Biol ; 2813: 19-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888768

RESUMEN

Genomics has revolutionized how we characterize and monitor infectious diseases for public health. The surveillance and characterization of Salmonella has improved drastically within the past decade. In this chapter, we discuss the prerequisites for good bacterial genomics studies and make note of advantages and disadvantages of this research approach. We discuss methods for outbreak detection and the evolutionary and epidemiological characterization of Salmonella spp. We provide an outline for determining the sequence type and serotype of isolates, building a core genome phylogenetic tree, and detecting antimicrobial resistance genes, virulence factors, and mobile genetic elements. These methods can be used to study other pathogenic bacterial species.


Asunto(s)
Genoma Bacteriano , Genómica , Epidemiología Molecular , Filogenia , Infecciones por Salmonella , Salmonella , Salmonella/genética , Humanos , Genómica/métodos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/epidemiología , Epidemiología Molecular/métodos , Factores de Virulencia/genética , Brotes de Enfermedades , Farmacorresistencia Bacteriana/genética , Secuencias Repetitivas Esparcidas/genética
7.
Microbiome ; 12(1): 107, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877573

RESUMEN

BACKGROUND: Aquaculture is an important food source worldwide. The extensive use of antibiotics in intensive large-scale farms has resulted in resistance development. Non-intensive aquaculture is another aquatic feeding model that is conducive to ecological protection and closely related to the natural environment. However, the transmission of resistomes in non-intensive aquaculture has not been well characterized. Moreover, the influence of aquaculture resistomes on human health needs to be further understood. Here, metagenomic approach was employed to identify the mobility of aquaculture resistomes and estimate the potential risks to human health. RESULTS: The results demonstrated that antibiotic resistance genes (ARGs) were widely present in non-intensive aquaculture systems and the multidrug type was most abundant accounting for 34%. ARGs of non-intensive aquaculture environments were mainly shaped by microbial communities accounting for 51%. Seventy-seven genera and 36 mobile genetic elements (MGEs) were significantly associated with 23 ARG types (p < 0.05) according to network analysis. Six ARGs were defined as core ARGs (top 3% most abundant with occurrence frequency > 80%) which occupied 40% of ARG abundance in fish gut samples. Seventy-one ARG-carrying contigs were identified and 75% of them carried MGEs simultaneously. The qacEdelta1 and sul1 formed a stable combination and were detected simultaneously in aquaculture environments and humans. Additionally, 475 high-quality metagenomic-assembled genomes (MAGs) were recovered and 81 MAGs carried ARGs. The multidrug and bacitracin resistance genes were the most abundant ARG types carried by MAGs. Strikingly, Fusobacterium_A (opportunistic human pathogen) carrying ARGs and MGEs were identified in both the aquaculture system and human guts, which indicated the potential risks of ARG transfer. CONCLUSIONS: The mobility and pathogenicity of aquaculture resistomes were explored by a metagenomic approach. Given the observed co-occurrence of resistomes between the aquaculture environment and human, more stringent regulation of resistomes in non-intensive aquaculture systems may be required. Video Abstract.


Asunto(s)
Antibacterianos , Acuicultura , Metagenómica , Humanos , Metagenómica/métodos , Antibacterianos/farmacología , Animales , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Metagenoma , Peces/microbiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Secuencias Repetitivas Esparcidas/genética
8.
J Microorg Control ; 29(2): 55-65, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880617

RESUMEN

Cupriavidus metallidurans strain PD11 isolated from laboratory waste drainage can use C1 compounds, such as dichloromethane (DCM) and methanol, as a sole carbon and energy source. However, strain CH34 (a type-strain) cannot grow in the medium supplemented with DCM. In the present study, we aimed to unravel the genetic elements underlying the utilization of C1 compounds by strain PD11. The genome subtraction approach indicated that only strain PD11 had several genes highly homologous to those of Herminiimonas arsenicoxydans strain ULPAs1. Moreover, a series of polymerase chain reaction (PCR) to detect the orthologs of H. arsenicoxydans genes and the comparative study of the genomes of three strains revealed that the 87.9 kb DNA fragment corresponding to HEAR1959 to HEAR2054 might be horizontally transferred to strain PD11. The 87.9 kb DNA fragment identified was found to contain three genes whose products were putatively involved in the metabolism of formaldehyde, a common intermediate of DCM and methanol. In addition, reverse transcription PCR analysis showed that all three genes were significantly expressed when strain PD11 was cultivated in the presence of DCM or methanol. These findings suggest that strain PD11 can effectively utilize the C1 compounds because of transfer of the mobile genetic elements from other bacterial species, for instance, from H. arsenicoxydans.


Asunto(s)
Cupriavidus , Secuencias Repetitivas Esparcidas , Metanol , Cloruro de Metileno , Metanol/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Cupriavidus/efectos de los fármacos , Cloruro de Metileno/metabolismo , Secuencias Repetitivas Esparcidas/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Genoma Bacteriano/genética , Transferencia de Gen Horizontal
9.
Sci Rep ; 14(1): 13056, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844487

RESUMEN

Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.


Asunto(s)
Secuencias Repetitivas Esparcidas , Rumen , Animales , Bovinos , Rumen/microbiología , Secuencias Repetitivas Esparcidas/genética , Metagenómica/métodos , Metagenoma , Microbiota/genética , Microbioma Gastrointestinal/genética , Bacterias/genética , Bacterias/clasificación , Genoma Bacteriano , Filogenia
10.
Methods Mol Biol ; 2815: 79-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884912

RESUMEN

Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.


Asunto(s)
Conjugación Genética , Secuencias Repetitivas Esparcidas , Secuencias Repetitivas Esparcidas/genética , Transferencia de Gen Horizontal , Streptococcus suis/genética , Streptococcus suis/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Reacción en Cadena de la Polimerasa/métodos , Genes Bacterianos
11.
Front Cell Infect Microbiol ; 14: 1368923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694516

RESUMEN

Introduction: Diagnosing Mycoplasma faucium poses challenges, and it's unclear if its rare isolation is due to infrequent occurrence or its fastidious nutritional requirements. Methods: This study analyzes the complete genome sequence of M. faucium, obtained directly from the pus of a sternum infection in a lung transplant patient using metagenomic sequencing. Results: Genome analysis revealed limited therapeutic options for the M. faucium infection, primarily susceptibility to tetracyclines. Three classes of mobile genetic elements were identified: two new insertion sequences, a new prophage (phiUMCG-1), and a species-specific variant of a mycoplasma integrative and conjugative element (MICE). Additionally, a Type I Restriction-Modification system was identified, featuring 5'-terminally truncated hsdS pseudogenes with overlapping repeats, indicating the potential for forming alternative hsdS variants through recombination. Conclusion: This study represents the first-ever acquisition of a complete circularized bacterial genome directly from a patient sample obtained from invasive infection of a primary sterile site using culture-independent, PCR-free clinical metagenomics.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Mycoplasma , Humanos , Metagenómica/métodos , Mycoplasma/genética , Mycoplasma/aislamiento & purificación , Mycoplasma/clasificación , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/diagnóstico , Secuenciación Completa del Genoma/métodos , Trasplante de Pulmón , Profagos/genética , Secuencias Repetitivas Esparcidas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
12.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705209

RESUMEN

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Nasofaringe , Recombinasas , Animales , Bovinos , Nasofaringe/microbiología , Recombinasas/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Secuencias Repetitivas Esparcidas/genética , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/diagnóstico , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Complejo Respiratorio Bovino/microbiología , Conjugación Genética , Sensibilidad y Especificidad , Mannheimia haemolytica/genética , Mannheimia haemolytica/aislamiento & purificación , Pasteurellaceae/genética , Pasteurellaceae/aislamiento & purificación
13.
Nat Commun ; 15(1): 4555, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811529

RESUMEN

Bacterial pathogens carrying multidrug resistance (MDR) plasmids are a major threat to human health. The acquisition of antibiotic resistance genes (ARGs) in plasmids is often facilitated by mobile genetic elements that copy or translocate ARGs between DNA molecules. The agglomeration of mobile elements in plasmids generates resistance islands comprising multiple ARGs. However, whether the emergence of resistance islands is restricted to specific MDR plasmid lineages remains understudied. Here we show that the agglomeration of ARGs in resistance islands is biased towards specific large plasmid lineages. Analyzing 6784 plasmids in 2441 Escherichia, Salmonella, and Klebsiella isolates, we quantify that 84% of the ARGs in MDR plasmids are found in resistance islands. We furthermore observe rapid evolution of ARG combinations in resistance islands. Most regions identified as resistance islands are shared among closely related plasmids but rarely among distantly related plasmids. Our results suggest the presence of barriers for the dissemination of ARGs between plasmid lineages, which are related to plasmid genetic properties, host range and the plasmid evolutionary history. The agglomeration of ARGs in plasmids is attributed to the workings of mobile genetic elements that operate within the framework of existing plasmid lineages.


Asunto(s)
Antibacterianos , Evolución Molecular , Plásmidos , Salmonella , Plásmidos/genética , Salmonella/genética , Salmonella/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella/genética , Islas Genómicas/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Secuencias Repetitivas Esparcidas/genética
14.
J Antimicrob Chemother ; 79(6): 1303-1308, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38564255

RESUMEN

BACKGROUND: Staphylococcus pseudintermedius is a common opportunistic pathogen of companion dogs and an occasional human pathogen. Treatment is hampered by antimicrobial resistance including methicillin resistance encoded by mecA within the mobile genetic element SCCmec. OBJECTIVES: SCCmec elements are diverse, especially in non-Staphyloccocus aureus staphylococci, and novel variants are likely to be present in S. pseudintermedius. The aim was to characterize the SCCmec elements found in four canine clinical isolates of S. pseudintermedius. MATERIAL AND METHODS: Isolates were whole-genome sequenced and SCCmec elements were assembled, annotated and compared to known SCCmec types. RESULTS AND DISCUSSION: Two novel SSCmec are present in these isolates. SCCmec7017-61515 is characterized by a novel combination of a Class A mec gene complex and a type 5 ccr previously only described in composite SCCmec elements. The other three isolates share a novel composite SCCmec with features of SCCmec types IV and VI. CONCLUSIONS: S. pseudintermedius is a reservoir of novel SSCmec elements that has implications for understanding antimicrobial resistant in veterinary and human medicine.


Asunto(s)
Cromosomas Bacterianos , Enfermedades de los Perros , Resistencia a la Meticilina , Infecciones Estafilocócicas , Staphylococcus , Secuenciación Completa del Genoma , Resistencia a la Meticilina/genética , Staphylococcus/genética , Staphylococcus/efectos de los fármacos , Staphylococcus/clasificación , Staphylococcus/aislamiento & purificación , Animales , Perros , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Enfermedades de los Perros/microbiología , Cromosomas Bacterianos/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Genoma Bacteriano , Variación Genética , Secuencias Repetitivas Esparcidas/genética
15.
Environ Microbiol ; 26(4): e16630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38643972

RESUMEN

Horizontal gene transfer (HGT) is a fundamental process in prokaryotic evolution, contributing significantly to diversification and adaptation. HGT is typically facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages, which often impose fitness costs on their hosts. However, a considerable number of bacterial genes are involved in defence mechanisms that limit the propagation of MGEs, suggesting they may actively restrict HGT. In our study, we investigated whether defence systems limit HGT by examining the relationship between the HGT rate and the presence of 73 defence systems across 12 bacterial species. We discovered that only six defence systems, three of which were different CRISPR-Cas subtypes, were associated with a reduced gene gain rate at the species evolution scale. Hosts of these defence systems tend to have a smaller pangenome size and fewer phage-related genes compared to genomes without these systems. This suggests that these defence mechanisms inhibit HGT by limiting prophage integration. We hypothesize that the restriction of HGT by defence systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and the fitness effect of HGT in bacterial populations.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Transferencia de Gen Horizontal/genética , Bacterias/clasificación , Bacterias/genética , Secuencias Repetitivas Esparcidas/genética , Sistemas CRISPR-Cas/genética , Lisogenia/genética , Especificidad de la Especie , Evolución Molecular
16.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658529

RESUMEN

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Asunto(s)
Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Streptococcus pyogenes/clasificación , Infecciones Estreptocócicas/transmisión , Infecciones Estreptocócicas/microbiología , Humanos , Streptococcus/genética , Streptococcus/aislamiento & purificación , Secuencias Repetitivas Esparcidas/genética , Australia , Genoma Bacteriano/genética , Femenino , Masculino , Niño , Composición Familiar , Adulto , Preescolar , Adolescente , Estudios Longitudinales , Farmacorresistencia Bacteriana/genética , Adulto Joven
17.
PLoS One ; 19(4): e0301642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683832

RESUMEN

Horizontal gene transfer (HGT) is a well-documented strategy used by bacteria to enhance their adaptability to challenging environmental conditions. Through HGT, a group of conserved genetic elements known as mobile genetic elements (MGEs) is disseminated within bacterial communities. MGEs offer numerous advantages to the host, increasing its fitness by acquiring new functions that help bacteria contend with adverse conditions, including exposure to heavy metal and antibiotics. This study explores MGEs within microbial communities along the Yucatan coast using a metatranscriptomics approach. Prior to this research, nothing was known about the coastal Yucatan's microbial environmental mobilome and HGT processes between these bacterial communities. This study reveals a positive correlation between MGEs and antibiotic resistance genes (ARGs) along the Yucatan coast, with higher MGEs abundance in more contaminated sites. The Proteobacteria and Firmicutes groups exhibited the highest number of MGEs. It's important to highlight that the most abundant classes of MGEs might not be the ones most strongly linked to ARGs, as observed for the recombination/repair class. This work presents the first geographical distribution of the environmental mobilome in Yucatan Peninsula mangroves.


Asunto(s)
Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Microbiota , Secuencias Repetitivas Esparcidas/genética , Microbiota/genética , México , Bacterias/genética , Bacterias/clasificación , Proteobacteria/genética
18.
Nature ; 624(7992): 602-610, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093003

RESUMEN

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.


Asunto(s)
Aborigenas Australianos e Isleños del Estrecho de Torres , Genoma Humano , Variación Estructural del Genoma , Humanos , Alelos , Australia/etnología , Aborigenas Australianos e Isleños del Estrecho de Torres/genética , Conjuntos de Datos como Asunto , Variaciones en el Número de Copia de ADN/genética , Sitios Genéticos/genética , Genética Médica , Variación Estructural del Genoma/genética , Genómica , Mutación INDEL/genética , Secuencias Repetitivas Esparcidas/genética , Repeticiones de Microsatélite/genética , Genoma Humano/genética
19.
PLoS One ; 18(10): e0293169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37856515

RESUMEN

We are facing an ever-growing threat from increasing antimicrobial resistance (AMR) in bacteria. To mitigate this, we need a better understanding of the global spread of antimicrobial resistance genes (ARGs). ARGs are often spread among bacteria by horizontal gene transfer facilitated by mobile genetic elements (MGE). Here we use a dataset consisting of 677 metagenomic sequenced sewage samples from 97 countries or regions to study how MGEs are geographically distributed and how they disseminate ARGs worldwide. The ARGs, MGEs, and bacterial abundance were calculated by reference-based read mapping. We found systematic differences in the abundance of MGEs and ARGs, where some elements were prevalent on all continents while others had higher abundance in separate geographic areas. Different MGEs tended to be localized to temperate or tropical climate zones, while different ARGs tended to separate according to continents. This suggests that the climate is an important factor influencing the local flora of MGEs. MGEs were also found to be more geographically confined than ARGs. We identified several integrated MGEs whose abundance correlated with the abundance of ARGs and bacterial genera, indicating the ability to mobilize and disseminate these genes. Some MGEs seemed to be more able to mobilize ARGs and spread to more bacterial species. The host ranges of MGEs seemed to differ between elements, where most were associated with bacteria of the same family. We believe that our method could be used to investigate the population dynamics of MGEs in complex bacterial populations.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Secuencias Repetitivas Esparcidas/genética
20.
J Biomed Sci ; 30(1): 73, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626377

RESUMEN

BACKGROUND: Certain clonal complexes (CCs) of Klebsiella pneumoniae such as CC147 (ST147 and ST392) are major drivers of blaNDM dissemination across the world. ST147 has repeatedly reported from our geographical region, but its population dynamics and evolutionary trajectories need to be further studied. METHODS: Comparative genomic analysis of 51 carbapenem-nonsusceptible strains as well as three hypervirulent K. pneumoniae (hvKp) recovered during 16-months of surveillance was performed using various bioinformatics tools. We investigated the genetic proximity of our ST147 strains with publicly available corresponding genomes deposited globally and from neighbor countries in our geographic region. RESULTS: While IncL/M plasmid harboring blaOXA-48 was distributed among divergent clones, blaNDM-1 was circulated by twenty of the 25 CC147 dominant clone and were mostly recovered from the ICU. The NDM-1 core structure was bracketed by a single isoform of mobile genetic elements (MGEs) [ΔISKpn26-NDM-TnAs3-ΔIS3000-Tn5403] and was located on Col440I plasmid in 68.7% of ST392. However, various arrangements of MGEs including MITESen1/MITESen1 composite transposon or combination of MITESen1/ISSen4/IS903B/IS5/ISEhe3 on IncFIb (pB171) were identified in ST147. It seems that ST392 circulated blaNDM-1 in 2018 before being gradually replaced by ST147 from the middle to the end of sample collection in 2019. ST147 strains possessed the highest number of resistance markers and showed high genetic similarity with four public genomes that harbored blaNDM-1 on the same replicon type. Mainly, there was a convergence between clusters and isolated neighboring countries in the minimum-spanning tree. A conserved arrangement of resistance markers/MGEs was linked to methyltransferase armA which was embedded in class 1 integron in 8 isolates of ST147/ST48 high-risk clones. CONCLUSION: Our findings highlight the dynamic nature of blaNDM-1 transmission among K. pneumoniae in Iran that occurs both clonally and horizontally via various combinations of MGEs. This is the first analysis of Iranian ST147/NDM + clone in the global context.


Asunto(s)
Carbapenémicos , Klebsiella pneumoniae , Irán , Klebsiella pneumoniae/genética , Carbapenémicos/farmacología , Genómica , Secuencias Repetitivas Esparcidas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA