Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Environ Sci (China) ; 147: 179-188, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003038

RESUMEN

Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil. Phytoremediation of contaminated soil is an environmental and sustainable technology, and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals. However, the effects of high concentrations of multiple heavy metals (HCMHMs) on plants and native soil microorganisms remain uncertain. Thus, further clarification of the mechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required. Using the plant Sedum alfredii (S. alfredii) to restore HCMHM-contaminated soil, we further explored the mechanism of S. alfredii and native soil microorganisms in the remediation of HCMHM soils. The results showed that (i) S. alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil, which is conducive to the effect of plants on heavy metals. In addition, it can also enrich the absorbed heavy metals in its roots and leaves; (ii) native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes, such as trpE, trpG, bjaI, rpfF, ACSL, and yidC, and promote the expression of the pathway that converts serine to cysteine, then synthesize substances to chelate heavy metals. In addition, we speculated that genes such as K19703, K07891, K09711, K19703, K07891, and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals. The results provide scientific basis for S. alfredii to remediate heavy metals contaminated soils, and confirm the potential of phytoremediation of HCMHM contaminated soil.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Sedum , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Sedum/metabolismo , Metales Pesados/análisis , Rizosfera , Suelo/química
2.
Chemosphere ; 366: 143464, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39368497

RESUMEN

Co-contamination of soil by multiple heavy metals is a significant global challenge. An effective strategy to address this issue involves using hyperaccumulators such as Sedum alfredii (S. alfredii). The efficiency of phytoremediation can be improved by supplementing with plant growth-promoting bacteria (PGPB). However, bacteria resources of PGPB resistant to multi-heavy metal contamination are still lacking. This study focused nine different strains of Bacillus and screened for resistance to heavy metals including cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb). A superior strain, Bacillus subtilis PY79 (B. subtilis), showed tolerance for all tested metals. Inoculation with B. subtilis in the rhizosphere of S. alfredii increased the accumulation of Cd, Zn, Cu, and Pb by 88.02%, 58.99%, 90.22%, and 54.97% in the plant shoots after 30 days respectively. B. subtilis application lowered the pH of the rhizosphere soil, thereby increasing the bioavailability of nutrients and heavy metals. Furthermore, B. subtilis helped S. alfredii recruit PGPB and heavy metal-resistant bacteria such as Edaphobacter, Niastella, and Chitinophaga, enhancing the growth and phytoremediation efficiency. Moreover, inoculation with B. subtilis not only upregulated genes of the ABC, HMA, ZIP, and MTP families involved in the translocation and detoxification of heavy metals but also increased the secretion of antioxidants within the cells. These findings indicate that B. subtilis enhances the tolerance, uptake, and translocation of heavy metals in S. alfredii, offering valuable insights for the phytoremediation of multi-metal-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Rizosfera , Sedum , Contaminantes del Suelo , Sedum/metabolismo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Bacillus/metabolismo , Microbiología del Suelo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Cadmio/metabolismo
3.
J Sci Food Agric ; 104(15): 9706-9718, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39109748

RESUMEN

BACKGROUND: An issue of pressing concern is the manganese contamination in farmland soils adjacent to industrial areas. To address this, intercropping hyperaccumulator plants with crops emerges as a sustainable approach to ensuring food security. This study aims to investigate the influence of intercropping Sedum alfredii with maize or soybean on their growth and the dynamics of manganese accumulation through field experiments. RESULTS: The results showed that compared with monoculture, the Sedum alfredii-maize intercropping system exhibited a land equivalent ratio (LER) of 1.89, signifying a 71.13% augmentation in bioaccumulation amount (BCA). Additionally, it led to a significant reduction in manganese content in various organs, ranging from 17.05% to 25.50%. However, the Sedum alfredii-soybean intercropping system demonstrated a LER of 1.94, accompanied by a 66.11% increase in BCA, but did not significantly reduce the manganese content in the roots, stems, and pods of soybeans. Furthermore, manganese accumulation in maize and soybean grains was primarily attributed to the aboveground translocation of manganese. The intercropping effect on blocking manganese absorption of maize during growth and maturity is primarily attributed to the earlier manganese accumulation in intercropped maize by 2.63 to 4.35 days, and a reduction of 21.95% in the maximum manganese accumulation rate. CONCLUSIONS: The study found that manganese accumulation dynamics vary significantly depending on the crop family. Intercropping Sedum alfredii with maize enhances land-use efficiency and reduces manganese uptake by crops, making it a promising strategy for remediating manganese-contaminated farmland near industrial areas. © 2024 Society of Chemical Industry.


Asunto(s)
Productos Agrícolas , Glycine max , Manganeso , Raíces de Plantas , Sedum , Contaminantes del Suelo , Suelo , Zea mays , Manganeso/metabolismo , Manganeso/análisis , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/química , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/química , Productos Agrícolas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Suelo/química , Sedum/metabolismo , Sedum/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos , Bioacumulación , Transporte Biológico
4.
Environ Sci Technol ; 58(33): 14726-14739, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116417

RESUMEN

Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.


Asunto(s)
Cadmio , Microbiota , Rizosfera , Sedum , Contaminantes del Suelo , Azufre , Cadmio/metabolismo , Sedum/metabolismo , Contaminantes del Suelo/metabolismo , Azufre/metabolismo , Basidiomycota , Suelo/química , Biodegradación Ambiental , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
5.
Sci Rep ; 14(1): 18035, 2024 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098964

RESUMEN

To increase the efficiency of phytoremediation to clean up heavy metals in soil, assisted with alternating current (AC) electric field technology is a promising choice. Our experiments utilized the hyperaccumulator Sedum alfredii Hance and the fast-growing, high-biomass willow (Salix sp.). We investigated the efficiency of AC field combined with S. alfredii-willow intercropping for removing Cd from soils with different pH values. In the AC electric field treatment with S. alfredii-willow intercropping, the available Cd content in acidic soil increased by 50.00% compared to the control, and in alkaline soil, the increase was 100.00%. Furthermore, AC electric field promoted Cd uptake by plants in both acidic and alkaline soils, with Cd accumulation in the aboveground increased by 20.52% (P < 0.05) and 11.73%, respectively. In conclusion, the integration of AC electric fields with phytoremediation demonstrates significant favorable effectiveness.


Asunto(s)
Biodegradación Ambiental , Cadmio , Electricidad , Sedum , Contaminantes del Suelo , Suelo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Concentración de Iones de Hidrógeno , Sedum/metabolismo , Sedum/crecimiento & desarrollo , Suelo/química , Salix/metabolismo
6.
Sci Total Environ ; 951: 175336, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134265

RESUMEN

Phytoremediation coupled with agroproduction (PCA) model contributes to sustainable agriculture and environmental management. This study investigated the impact of continuous cropping early/late season rice (RR) and Sedum alfredii-rice rotation (SR) on soil physical and chemical properties, as well as their relationships with soil microbial community. In 2022, SR treatment significantly increased pH value and organic matter content by 7 % and 17 %, respectively, compared to the levels in 2020, while RR treatment showed no change. RR treatment resulted in a significant decrease in soil concentrations of Ca, Mg, and K by 18.42 %, 29.01 %, and 7.77 %, respectively. Furthermore, SR treatment saw reductions of 29.62 % in total Cd and 38.30 % in DTPA extractable Cd in the soil. Over the two years, both treatments notably influenced the diversity, structure, and network of the rhizosphere bacterial and fungal communities, which are crucial for nutrient cycling and plant health. Notably, SR treatment exhibited a more complex network compared to RR, suggesting a greater impact on the interconnected systems. Therefore, these findings highlight the potential of Sedum rotation system to rehabilitate contaminated soils while supporting agricultural practices, which is essential for food security and environmental sustainability. This research direction holds promise for future exploration and application in the fields of phytoremediation and agroecology.


Asunto(s)
Agricultura , Biodegradación Ambiental , Oryza , Sedum , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Sedum/metabolismo , Suelo/química , Agricultura/métodos , Contaminantes del Suelo/análisis , Microbiota , Rizosfera
7.
Ecotoxicol Environ Saf ; 283: 116870, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137467

RESUMEN

The biogeochemical processes of sulfur and heavy metals in the environment are closely related to each other. We investigated the influence of sulfur addition on hyperaccumulator Sedum alfredii Hance growth, cadmium (Cd) accumulation, soil Cd bioavailability, soil bacterial communities and plant transcriptome responses. The results showed that an appropriate rate of sulfur addition (1.0 or 2.5 g/kg) enhanced the growth of Sedum alfredii Hance plants as well as their accumulation of Cd. A high rate of sulfur addition (5.0 or 10.0 g/kg) causes toxicity to Sedum alfredii Hance plants. The application of an appropriate amount of sulfur to the soil increased the abundance of sulfur-oxidizing bacteria such as Sulfuriferula and Thiobacillus; acid-fast bacillus such as Alicyclobacillus; and cadmium-tolerant bacteria such as Bacillus and Rhodanobacter. This led to a decrease in pH and an increase in bioavailable Cd in the soil. RNA sequencing revealed that the addition of sulfur to soils led to the up regulation of most of the differentially expressed genes (DEGs) involved in "photosynthesis" and "photosynthesis, light reaction" in Sedum alfredii Hance leaves. Moreover, the "plant hormone signal transduction" pathway was significantly enriched with sulfur addition. Sulfur assimilation in Sedum alfredii Hance plants may promote photosynthesis and hormone synthesis, leading to Cd tolerance in these plants. Our study revealed that sulfur fertilization enhanced the efficiency of Cd phytoremediation in Sedum alfredii Hance plants.


Asunto(s)
Cadmio , Sedum , Contaminantes del Suelo , Azufre , Sedum/metabolismo , Sedum/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Azufre/metabolismo , Microbiología del Suelo , Fertilizantes , Biodegradación Ambiental , Suelo/química , Fotosíntesis/efectos de los fármacos
8.
Sci Total Environ ; 947: 174585, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986688

RESUMEN

The focus on phytoremediation in soil cadmium (Cd) remediation is driven by its cost-effectiveness and eco-friendliness. Selecting suitable hyperaccumulators and optimizing their growth conditions are key to enhance the efficiency of heavy metal absorption and accumulation. Our research has concentrated on the role of salicylic acid (SA) and jasmonic acid (JA) in facilitating Cd phytoextraction by "Sedum alfredii (S. alfredii)" through improved soil-microbe interactions. Results showed that SA or JA significantly boosted the growth, stress resistance, and Cd extraction efficiency in S. alfredii. Moreover, these phytohormones enhanced the chemical and biochemical attributes of the rhizosphere soil, such as pH and enzyme activity, affecting soil-root interactions. High-throughput sequencing analysis has shown that Patescibacteria and Umbelopsis enhanced S. alfredii's growth and Cd extraction by modifying the bioavailability and the chemical conditions of Cd in soil. Structural Equation Model analysis further verified that phytohormones significantly enhanced the interaction between S. alfredii, soil, and microbes, leading to a marked increase in Cd accumulation in the plant. These discoveries emphasized the pivotal role of phytohormones in modulating the hyperaccumulators' response to environmental stress and offered significant scientific support for further enhancing the potential of hyperaccumulators in ecological restoration technologies using phytohormones.


Asunto(s)
Biodegradación Ambiental , Cadmio , Ciclopentanos , Oxilipinas , Rizosfera , Ácido Salicílico , Sedum , Microbiología del Suelo , Contaminantes del Suelo , Cadmio/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Contaminantes del Suelo/metabolismo , Sedum/metabolismo , Ciclopentanos/metabolismo , Microbiota , Reguladores del Crecimiento de las Plantas/metabolismo
9.
Ecotoxicol Environ Saf ; 282: 116704, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996646

RESUMEN

Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In this study, a novel spectral approach assisted with multi-task deep learning was proposed to streamline accumulating ecotype screening, heavy metal stress discrimination, and heavy metals quantification in plants. The significant Cd/Zn co-hyperaccumulator Sedum alfredii and its non-accumulating ecotype were stressed by Cd, Zn, and Pb. Spectral images of leaves were rapidly acquired by hyperspectral imaging. The self-designed deep learning architecture was composed of a shallow network (ENet) for accumulating ecotype identification, and a multi-task network (HMNet) for heavy metal stress type and accumulation prediction simultaneously. To further assess the robustness of the networks, they were compared with conventional machine learning models (i.e., partial least squares (PLS) and support vector machine (SVM)) on a series of evaluation metrics of classification, multi-label classification, and regression. S. alfredii with heavy metals accumulation capability was identified by ENet with 100 % accuracy. HMNet reduced overfitting and outperformed machine learning models with the average exact match ratio (EMR) of heavy metal stress discrimination increased by 7.46 %, and residual prediction deviations (RPD) of heavy metal concentrations prediction increased by 53.59 %. The method succeeded in rapidly and accurately discriminating heavy metal stress with EMRs over 91 % and accuracies over 96 %, and in predicting heavy metals accumulation with an average RPD of 3.29 for Zn, 2.57 for Cd, and 2.53 for Pb, indicating the satisfactory practicability and potential for sensing heavy metals accumulation. This study provides a relatively novel spectral method to facilitate hyperaccumulator screening and heavy metals accumulation prediction in the phytoremediation process.


Asunto(s)
Biodegradación Ambiental , Aprendizaje Profundo , Metales Pesados , Sedum , Contaminantes del Suelo , Sedum/efectos de los fármacos , Sedum/metabolismo , Metales Pesados/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Imágenes Hiperespectrales/métodos , Hojas de la Planta/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Zinc/metabolismo , Zinc/análisis , Máquina de Vectores de Soporte
10.
Ecotoxicol Environ Saf ; 282: 116715, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002378

RESUMEN

Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50 mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71 mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42 %, 19.72 %, and 6.76 %, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66 %, 17.91 %, 10.60 % and 17.88 %, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06 mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.


Asunto(s)
Biodegradación Ambiental , Cadmio , Frutas , Contaminantes del Suelo , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Frutas/metabolismo , Sedum/metabolismo , Suelo/química , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Agricultura/métodos
11.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719039

RESUMEN

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Reguladores del Crecimiento de las Plantas , Pseudomonas fluorescens , Sedum , Contaminantes del Suelo , Suelo , Sedum/metabolismo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Suelo/química , Pseudomonas fluorescens/metabolismo , Microbiología del Suelo
12.
Chemosphere ; 360: 142417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797210

RESUMEN

Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.


Asunto(s)
Cadmio , Fotosíntesis , Sedum , Silicio , Contaminantes del Suelo , Sedum/efectos de los fármacos , Sedum/metabolismo , Sedum/genética , Cadmio/toxicidad , Cadmio/metabolismo , Silicio/farmacología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biomasa
13.
J Hazard Mater ; 472: 134551, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743979

RESUMEN

Most hyperaccumulators cannot maintain vigorous growth throughout the year, which may result in a low phytoextraction efficiency for a few months. In the present study, rotation of two hyperaccumulators is proposed to address this issue. An 18-month field experiment was conducted to evaluate the phytoextraction efficiency of Cd by the monoculture and rotation of Celosia argentea and Sedum plumbizincicola. The results showed that rotation increased amount of extracted Cd increased by 2.3 and 1.6 times compared with monoculture of C. argentea and S. plumbizincicola. In rotation system, the biomass of S. plumbizincicola and Cd accumulation in C. argentea increased by 54.4% and 40.7%, respectively. Rotation reduced fallow time and increased harvesting frequency, thereby enhancing Cd phytoextraction. Planting C. argentea significantly decreased soil pathogenic microbes and increased the abundances of plant growth-promoting rhizobacteria (PGPR) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes, which may be beneficial for the growth of S. plumbizincicola. Planting S. plumbizincicola increased the abundance of sulfur oxidization (SOX) system genes and decreased soil pH (p < 0.05), thereby increasing the Cd uptake by C. argentea. These findings indicated that rotation of C. argentea and S. plumbizincicola is a promising method for promoting Cd phytoextraction.


Asunto(s)
Biodegradación Ambiental , Cadmio , Celosia , Sedum , Contaminantes del Suelo , Cadmio/metabolismo , Sedum/metabolismo , Sedum/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Celosia/metabolismo , Microbiología del Suelo , Agricultura , Biomasa
14.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739960

RESUMEN

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Asunto(s)
Biodegradación Ambiental , Cadmio , Proteínas de Plantas , Sedum , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética
15.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729407

RESUMEN

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Asunto(s)
Cadmio , Ácido Salicílico , Sedum , Contaminantes del Suelo , Transcriptoma , Cadmio/toxicidad , Ácido Salicílico/metabolismo , Sedum/efectos de los fármacos , Sedum/metabolismo , Sedum/genética , Sedum/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Transcriptoma/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos
16.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564870

RESUMEN

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Asunto(s)
Sedum , Contaminantes del Suelo , Zinc/metabolismo , Cadmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte Iónico , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
17.
Sci Total Environ ; 914: 169939, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211868

RESUMEN

Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 µmol/L. The results determined that a concentration of 1 µmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 µmol/L JA under 300 µmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.


Asunto(s)
Ciclopentanos , Oxilipinas , Sedum , Contaminantes del Suelo , Cadmio/análisis , Sedum/metabolismo , Antioxidantes/metabolismo , Perfilación de la Expresión Génica , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Raíces de Plantas/metabolismo
18.
Environ Pollut ; 343: 123289, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176638

RESUMEN

The Cd tolerance protein SaCTP3, which responds to Cd stress, was identified in Sedum alfredii; however, how to improve the efficiency of phytoremediation of Cd-contaminated soil using the CTP gene remains unknown. In this study, the phytoremediation potential of SaCTP3 of Sedum alfredii was identified. In the yeast Cd-sensitive strain Δycf1 overexpressing SaCTP3, the accumulation of Cd was higher than that in the Δycf1 strain overexpressing an empty vector. Transgenic sorghum plants overexpression SaCTP3 were further constructed to verify the function of SaCTP3. Compared to wild-type plants, the SaCTP3-overexpressing lines exhibited higher Cd accumulation under 500 µM Cd conditions. The average Cd content inSaCTP3-overexpressing plants is more than four times higher than that of WT plants. This was accompanied by an enhanced ability to scavenge ROS, as evidenced by the significantly increased activities of peroxidase, catalase, and superoxide dismutase in response to Cd stress. Pot experiments further demonstrated that SaCTP3 overexpression resulted in improved soil Cd scavenging and photosynthetic abilities. After 20 days of growth, the average Cd content in the soil planted with SaCTP3-overexpressing sorghum decreased by 19.4%, while the residual Cd content in the soil planted with wild-type plants was only reduced by 5.4%. This study elucidated the role of SaCTP3 from S.alfredii, highlighting its potential utility in genetically modifying sorghum for the effective phytoremediation of Cd.


Asunto(s)
Sedum , Contaminantes del Suelo , Sorghum , Cadmio/análisis , Sedum/genética , Sedum/metabolismo , Sorghum/genética , Expresión Génica Ectópica , Plantas Modificadas Genéticamente/metabolismo , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo
19.
Sci Total Environ ; 912: 168828, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029975

RESUMEN

Sedum plumbizincicola is a promising hyperaccumulator for heavy metal phytoremediation. It grows in heavy metal polluted soil and stores specific endophyte resources with heavy metal tolerance or growth promotion characteristics. In this study, the endophyte communities of S. plumbizincicola, growing naturally in the field (two former mining locations and one natural location) were investigated, and their structure and function were comparatively studied. The bioaccumulation and translocation characteristics of cadmium (Cd) and selenium (Se) in S. plumbizincicola were also evaluated. The results showed that the heavy metal pollution reduced the richness and diversity of endophyte communities. Soil pH and Cd concentration could be the key factors affecting the composition of the endophyte community. Co-occurrence network analysis identified that 22 keystone taxa belonging to Actinobacteriota, Firmicutes, Myxococcota and Proteobacteria were positively correlated with Cd bioaccumulation and translocation. The predicted endophyte metabolic pathways were enriched in physiological metabolism, immune system, and genetic Information processing. These findings may help to understand how endophytes assist host plants to enhance their adaptability to harsh environments, and provide a basis for further exploration of plant-endophyte interactions and improvement in phytoremediation efficiency.


Asunto(s)
Metales Pesados , Sedum , Contaminantes del Suelo , Cadmio/análisis , Suelo , Sedum/metabolismo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Biodegradación Ambiental , Bacterias/metabolismo , Concentración de Iones de Hidrógeno
20.
Environ Geochem Health ; 45(11): 8317-8336, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37597084

RESUMEN

The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.


Asunto(s)
Arsénico , Crassulaceae , Sedum , Contaminantes del Suelo , Arsénico/toxicidad , Sedum/metabolismo , Sedum/microbiología , Crassulaceae/metabolismo , Fosfatos , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Cadmio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA