Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.011
Filtrar
1.
PLoS One ; 19(9): e0304466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231179

RESUMEN

To analyse the effect of nutrient management on the growth, physiology, energy utilization, production and quality of black gram, a field trial on black gram was conducted at eastern Indian Gangetic alluvium during the autumn of 2020 and 2021. Treatments were two soil applications of cobalt (Co) and foliar spray of potassium (K) and boron (B) in five combinations. All treatments were arranged in a split-plot design and repeated three times. Two soil applications of cobalt (Co) were assigned in the main plots and foliar spray of potassium (K) and boron (B) in five combinations were assigned in sub-plots. Applications of Co in soil and foliar K+B facilitated significantly higher (p≤0.05) values for aerial dry matter (ADM), leaf area index (LAI), nodules per plant, total chlorophyll, net photosynthetic rate and nitrate reductase content in both 2020 and 2021, with a greater realization of photosynthetically active radiation interception, and use efficiency (IPAR and PARUE respectively), seed yield, seed nutrients and protein contents. Differences in LAI exhibited positive and linear correlation with IPAR explaining more than 60% variations in different growth stages. The innovative combination of soil Co (beneficial nutrient) application at 4 kg ha-1 combined with foliar 1.25% K (macronutrient) + 0.2% B (micronutrient) spray is a potential agronomic management schedule for the farmers to sustain optimum production of autumn black gram through substantial upgradation of growth, physiology, energy utilization, production and quality in Indian subtropics.


Asunto(s)
Fotosíntesis , Potasio , Estaciones del Año , Suelo , Vigna , Potasio/metabolismo , Potasio/análisis , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Suelo/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Boro/metabolismo , Cobalto , Nutrientes/metabolismo , Clorofila/metabolismo , Fertilizantes , India , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/efectos de la radiación
2.
Plant Mol Biol ; 114(5): 107, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333431

RESUMEN

Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.


Asunto(s)
Cucumis sativus , Rayos gamma , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas , Plantones , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/genética , Cucumis sativus/efectos de la radiación , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Radioisótopos de Cobalto , Relación Dosis-Respuesta en la Radiación , Ácidos Indolacéticos/metabolismo , Clorofila/metabolismo , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/genética , Perfilación de la Expresión Génica
3.
J Toxicol Environ Health A ; 87(24): 989-998, 2024 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-39302011

RESUMEN

Aluminum (Al) may be beneficial to crops, but in excess becomes detrimental to the germination and initial development of seedlings. The main determining indicators are the type of crop and exposure duration. The aim of this study was to examine the influence of Al and of UV-C light on the germination and initial growth of white oats. Seeds were sown on germitest paper in a solution of 100, 200, 300, 400, or 500 mg/L of aluminum chloride and kept in a germination chamber at 20°C for a 12-hr photoperiod. Germination and seedling growth parameters were determined after 5 and 10 days. The seeds were also exposed to two doses of UV-C (0.85 and 3.42 kJ m-2) under aluminum chloride stress (200 mg/L). Data demonstrated that treatment with aluminum chloride significantly decrease in germination at 200 mg/L and total seedling length at 100 mg/L. Exposure of seeds to UV-C light under excess Al (200 mg/L) did not show a significant effect on germination and growth compared to control (non-irradiated). Results indicated that exposure to high concentration of Al in the medium adversely altered germination and initial growth of white oat seedlings. Although UV-C light alone was not detrimental to the germination process, treatment with UV-C light also failed to mitigate the toxic effects of Al.


Asunto(s)
Aluminio , Avena , Germinación , Plantones , Semillas , Rayos Ultravioleta , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Avena/crecimiento & desarrollo , Avena/efectos de los fármacos , Avena/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Semillas/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Aluminio/toxicidad , Cloruro de Aluminio/toxicidad
4.
Plant Cell Physiol ; 65(9): 1461-1473, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39092550

RESUMEN

Perilla [Perilla frutescens (L.) var frutescens] is a traditional oil crop in Asia, recognized for its seeds abundant in α-linolenic acid (18:3), a key omega-3 fatty acid known for its health benefits. Despite the known nutritional value, the reason behind the higher 18:3 content in tetraploid perilla seeds remained unexplored. Gamma irradiation yielded mutants with altered seed fatty acid composition. Among the mutants, DY-46-5 showed a 27% increase in 18:2 due to the 4-bp deletion of PfrFAD3b, and NC-65-12 displayed a 16% increase in 18:2 due to the loss of function of PfrFAD3a through a large deletion. Knocking out both copies of FATTY ACID DESATURASE3 (PfrFAD3a and PfrFAD3b) simultaneously using CRISPR/Cas9 resulted in an increase in 18:2 by up to 75% and a decrease in 18:3 to as low as 0.3% in seeds, emphasizing the pivotal roles of both genes in 18:3 synthesis in tetraploid perilla. Furthermore, diploid Perilla citriodora, the progenitor of cultivated tetraploid perilla, harbors only PfrFAD3b, with a fatty acid analysis revealing lower 18:3 levels than tetraploid perilla. In conclusion, the enhanced 18:3 content in cultivated tetraploid perilla seeds can be attributed to the acquisition of two FAD3 copies through hybridization with wild-type diploid perilla.


Asunto(s)
Sistemas CRISPR-Cas , Ácido Graso Desaturasas , Rayos gamma , Ácido Linoleico , Semillas , Tetraploidía , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Semillas/genética , Semillas/efectos de la radiación , Semillas/metabolismo , Ácido Linoleico/metabolismo , Perilla/genética , Perilla/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Plant Biol ; 24(1): 758, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112960

RESUMEN

Constant-frequency ultrasonic treatment helped to improve seed germination. However, variable-frequency ultrasonic treatment on maize seed germination were rarely reported. In this study, maize seeds were exposed to 20-40 kHz ultrasonic for 40 s. The germination percentage and radicle length of maize seeds increased by 10.4% and 230.5%. Ultrasonic treatment also significantly increased the acid protease, α-amylase, and ß-amylase contents by 96.4%, 73.8%, and 49.1%, respectively. Transcriptome analysis showed that 11,475 differentially expressed genes (DEGs) were found in the ultrasonic treatment and control groups, including 5,695 upregulated and 5,780 downregulated. Metabolic pathways and transcription factors (TFs) were significantly enriched among DEGs after ultrasonic treatment. This included metabolism and genetic information processing, that is, ribosome, proteasome, and pyruvate metabolism, sesquiterpenoid, triterpenoid, and phenylpropanoid biosynthesis, and oxidative phosphorylation, as well as transcription factors in the NAC, MYB, bHLH, WRKY, AP2, bZIP, and ARF families. Variable-frequency ultrasonic treatment increased auxin, gibberellin, and salicylic acid by 5.5%, 37.3%, and 28.9%, respectively. Abscisic acid significantly decreased by 33.2%. The related DEGs were upregulated and downregulated to varying degrees. Seed germination under the abiotic stress conditions of salt stress (NaCl solution), drought (PEG solution), and waterlogging (water-saturated sand bed) under ultrasonic treatment were promoted, radicle length was significantly increased by 30.2%, 30.5%, and 27.3%, respectively; and germination percentage by 14.8%, 20.1%, and 21.6%, respectively. These findings provide new insight into the mechanisms through ultrasonic to promote maize seed germination.


Asunto(s)
Germinación , Semillas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Germinación/efectos de la radiación , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Ondas Ultrasónicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Sci Food Agric ; 104(14): 9023-9034, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38979987

RESUMEN

BACKGROUND: This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS: The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION: These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Germinación , Hordeum , Fenoles , Semillas , Ácido gamma-Aminobutírico , Hordeum/química , Hordeum/crecimiento & desarrollo , Antioxidantes/análisis , Antioxidantes/química , Ácido gamma-Aminobutírico/análisis , Fenoles/análisis , Fenoles/química , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Ultrasonido/métodos , Ondas Ultrasónicas
7.
Appl Radiat Isot ; 212: 111423, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38981165

RESUMEN

The dose effect of radiation has long been a topic of concern, but the molecular mechanism behind it is still unclear. In this study, dried pea seeds were irradiated with 252Cf fission neutron source. Through analyzing the transcriptome and proteome of M1 generation pea (Pisum sativum L.) leaves, we studied the molecular rule and mechanism of neutron dose effect. Our results showed three important rules of global gene expression in the studied dose range. The rule closely related to the neutron absorbed dose at the transcription and translation levels is: the greater the difference in neutron absorbed dose between two radiation treatment groups, the greater the difference in differential expression between the two groups and the control group. We also obtained important sensitive metabolic pathways of neutron radiation, as well as related key genes. Furthermore, the overall molecular regulation mechanism of dose effect was revealed based on the main functional items obtained. Our research results can be applied to appropriate radiation dose estimation and agricultural production practice.


Asunto(s)
Neutrones , Pisum sativum , Pisum sativum/efectos de la radiación , Pisum sativum/genética , Relación Dosis-Respuesta en la Radiación , Transcriptoma/efectos de la radiación , Dosis de Radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Semillas/efectos de la radiación , Proteoma/efectos de la radiación , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación
8.
Life Sci Space Res (Amst) ; 42: 47-52, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067990

RESUMEN

The long-term cultivation of higher plants in space plays a substantial role in investigating the effects of microgravity on plant growth and development, acquiring valuable insights for developing a self-sustaining space life supporting system. The completion of the Chinese Space Station (CSS) provides us with a new permanent space experimental platform for long-term plant research in space. Biological Culture Module (GBCM), which was installed in the Wentian experimental Module of the CSS, was constructed with the objective of growing Arabidopsis thaliana and rice plants a full life cycle in space. The techniques of LED light control, gas regulation and water recovery have been developed for GBCM in which dry seeds of Arabidopsis and rice were set in root module of four culture chambers (CCs) and launched with Wentian module on July 24, 2022. These seeds were watered and germinated from July 28 and grew new seeds until November 26 within a duration of 120 days. To this end, both Arabidopsis and rice plants completed a full life cycle in microgravity on the CSS. As we know, this is the first space experiment achieving rice complete life cycle from seed-to-seed in space. This result demonstrates the possibility to cultivate the important food crop rice throughout its entire life cycle under the spaceflight environment and the technologies of GBCM have effectively supported the success of long-term plant culture experiments in space. These results can serve as invaluable references for constructing more expansive and intricate space plant cultivation systems in the future.


Asunto(s)
Arabidopsis , Oryza , Semillas , Vuelo Espacial , Ingravidez , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , China , Germinación , Pueblos del Este de Asia
9.
Ecotoxicol Environ Saf ; 282: 116731, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029219

RESUMEN

The prevalence of inorganic pollutants in the environment, including heavy metals (HMs), necessitates a sustainable and cost-effective solution to mitigate their impacts on the environment and living organisms. The present research aimed to assess the phytoextraction capability of spinach (Spinach oleracea L.), under the combined effects of ascorbic acid (AA) and microwave (MW) irradiation amendments, cultivated using surgical processing wastewater. In a preliminary study, spinach seeds were exposed to MW radiations at 2.45 GHz for different durations (15, 30, 45, 60, and 90 seconds). Maximum germination was observed after the 30 seconds of radiation exposure. Healthy spinach seeds treated with MW radiations for 30 s were cultivated in the sand for two weeks, after which juvenile plants were transferred to a hydroponic system. Surgical industry wastewater in different concentrations (25 %, 50 %, 75 %, 100 %) and AA (10 mM) were provided to both MW-treated and untreated plants. The results revealed that MW-treatment significantly enhanced the plant growth, biomass, antioxidant enzyme activities and photosynthetic pigments, while untreated plants exhibited increased reactive oxygen species (ROS) and electrolyte leakage (EL) compared with their controls. The addition of AA to both MW-treated and untreated plants improved their antioxidative defense capacity under HMs-induced stress. MW-treated spinach plants, under AA application, demonstrated relatively higher concentrations and accumulation of HMs including lead (Pb), cadmium (Cd) and nickel (Ni). Specifically, MW-treated plants with AA amendment showed a significant increase in Pb concentration by 188 % in leaves, Cd by 98 %, and Ni by 102 % in roots. Additionally, the accumulation of Ni increased by 174 % in leaves, Cd by 168 % in roots, and Pb by 185 % in the stem of spinach plant tissues compared to MW-untreated plants. These findings suggested that combining AA with MW irradiation of seeds could be a beneficial strategy for increasing the phytoextraction of HMs from wastewater and improving overall plant health undergoing HMs stress.


Asunto(s)
Ácido Ascórbico , Biodegradación Ambiental , Metales Pesados , Microondas , Semillas , Spinacia oleracea , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/efectos de la radiación , Spinacia oleracea/crecimiento & desarrollo , Ácido Ascórbico/metabolismo , Semillas/efectos de la radiación , Semillas/efectos de los fármacos , Aguas Residuales/química , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Contaminantes Químicos del Agua , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Residuos Industriales
10.
Free Radic Biol Med ; 222: 371-385, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901500

RESUMEN

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.


Asunto(s)
Germinación , Homeostasis , Hordeum , Microondas , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Plantones , Semillas , Hordeum/crecimiento & desarrollo , Hordeum/efectos de la radiación , Hordeum/metabolismo , Hordeum/genética , Germinación/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Homeostasis/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Clorofila/metabolismo
11.
Plant Physiol Biochem ; 212: 108771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820913

RESUMEN

DNA damage response (DDR), a complex network of cellular pathways that cooperate to sense and repair DNA lesions, is regulated by several mechanisms, including microRNAs. As small, single-stranded RNA molecules, miRNAs post-transcriptionally regulate their target genes by mRNA cleavage or translation inhibition. Knowledge regarding miRNAs influence on DDR-associated genes is still scanty in plants. In this work, an in silico analysis was performed to identify putative miRNAs that could target DDR sensors, signal transducers and effector genes in wheat. Selected putative miRNA-gene pairs were tested in an experimental system where seeds from two wheat mutant lines were irradiated with 50 Gy and 300 Gy gamma(γ)-rays. To evaluate the effect of the treatments on wheat germination, phenotypic and molecular (DNA damage, ROS accumulation, gene/miRNA expression profile) analyses have been carried out. The results showed that in dry seeds ROS accumulated immediately after irradiation and decayed soon after while the negative impact on seedling growth was supported by enhanced accumulation of DNA damage. When a qRT-PCR analysis was performed, the selected miRNAs and DDR-related genes were differentially modulated by the γ-rays treatments in a dose-, time- and genotype-dependent manner. A significant negative correlation was observed between the expression of tae-miR5086 and the RAD50 gene, involved in double-strand break sensing and homologous recombination repair, one of the main processes that repairs DNA breaks induced by γ-rays. The results hereby reported can be relevant for wheat breeding programs and screening of the radiation response and tolerance of novel wheat varieties.


Asunto(s)
Rayos gamma , Regulación de la Expresión Génica de las Plantas , Germinación , MicroARNs , Semillas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/efectos de la radiación , Triticum/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Germinación/efectos de la radiación , Germinación/genética , Semillas/genética , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Daño del ADN/genética , ARN de Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Genes de Plantas
12.
Int J Radiat Biol ; 100(7): 1051-1071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38805607

RESUMEN

HYPOTHESIS: Because reactive oxygen species are involved in the regulation of biological rhythms, we hypothesized that intra-annual variability of seed progeny quality at low doses of ionizing radiation (LDIRs) would differ from that of background plants. MATERIALS AND METHODS: We conducted 12 consecutive experiments using the roll culture method by germinating seeds (monthly for 3 weeks) of six herbaceous plant species (Bromus inermis, Geum aleppicum, Plantago major, Rumex confertus, Silene latifolia, and Taraxacum officinale) growing under conditions of chronic radiation in the East Ural Radioactive Trace (EURT). We assessed physiological (seed viability and abnormality frequency) and biochemical (low-molecular-weight antioxidants, LMWAs) parameters of seedlings. RESULTS: Total absorbed dose rates of maternal plants (TADRplants) and seed embryos (TADRseeds) in the EURT exceeded background levels by 1-3 and 1-2 orders of magnitude, respectively. Nonlinear dependencies on TADR were mainly characteristic of physiological and biochemical parameters. For most populations of the studied species (B. inermis, G. aleppicum, R. confertus, and S. latifolia), seedling survival and root length decreased in the autumn-winter period, while the frequency of abnormal seedlings increased. The content of LMWAs could be ranked as R. confertus > B. inermis > G. aleppicum > S. latifolia, in good agreement with the presence of anthocyanin pigmentation in the plants. The lowest synthesis of antioxidants in seedlings was observed in winter. A high LMWA content promoted growth and reduced the frequency of abnormal seedlings. CONCLUSIONS: These results underscore a multistage nature of the impact of LDIRs on intra-annual biological rhythms in plants. High heterogeneity in reference group 'wild grasses' and diversity of their radiobiological effects should help to develop methods of radiation protection for natural ecosystems and facilitate approaches used by the International Commission on Radiological Protection.HighlightsAbsorbed dose rates for six plant species in the East Ural Radioactive Trace (EURT) area range from 0.11 to 73.89 µGy h-s (plants) and 0.11 to 6.88 µGy h-s (seed embryos).Intra-annual rhythms of physiological and biochemical parameters in the EURT zone differ from those in background seedlings.Plants in the EURT area exhibit a wide range of trait variability, asynchrony of the manifestation of the effects, nonlinear dose-response relations, and hormesis.A high content of low-molecular-weight antioxidants (LMWAs) is associated with low frequency of developmental abnormalities and high viability of seed progeny.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Semillas , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Antioxidantes/metabolismo , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Germinación/efectos de la radiación
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731985

RESUMEN

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Asunto(s)
Oryza , Proantocianidinas , Rayos Ultravioleta , Proantocianidinas/metabolismo , Oryza/efectos de la radiación , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Grano Comestible/efectos de la radiación , Grano Comestible/metabolismo , Fenotipo
14.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791234

RESUMEN

As a physical mutagen, carbon ion beam (CIB) irradiation can induce high-frequency mutation, which is user-friendly and environment-friendly in plant breeding. In this study, we resequenced eight mutant lines which were screened out from the progeny of the CIB-irradiated dehulled rice seeds. Among these mutants, CIB induced 135,535 variations, which include single base substitutions (SBSs), and small insertion and deletion (InDels). SBSs are the most abundant mutation, and account for 88% of all variations. Single base conversion is the main type of SBS, and the average ratio of transition and transversion is 1.29, and more than half of the InDels are short-segmented mutation (1-2 bp). A total of 69.2% of the SBSs and InDels induced by CIBs occurred in intergenic regions on the genome. Surprisingly, the average mutation frequency in our study is 9.8 × 10-5/bp and much higher than that of the previous studies, which may result from the relatively high irradiation dosage and the dehulling of seeds for irradiation. By analyzing the mutation of every 1 Mb in the genome of each mutant strain, we found some unusual high-frequency (HF) mutation regions, where SBSs and InDels colocalized. This study revealed the mutation mechanism of dehulled rice seeds by CIB irradiation on the genome level, which will enrich our understanding of the mutation mechanism of CIB radiation and improve mutagenesis efficiency.


Asunto(s)
Genoma de Planta , Mutación , Oryza , Semillas , Oryza/genética , Oryza/efectos de la radiación , Semillas/genética , Semillas/efectos de la radiación , Carbono , Mutación INDEL , Iones Pesados
15.
Methods Mol Biol ; 2788: 243-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656518

RESUMEN

Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.


Asunto(s)
Rayos gamma , Mutagénesis , Oryza , Semillas , Oryza/genética , Oryza/efectos de la radiación , Oryza/crecimiento & desarrollo , Mutagénesis/efectos de la radiación , Semillas/genética , Semillas/efectos de la radiación , Semillas/crecimiento & desarrollo , Regeneración/genética , Técnicas de Embriogénesis Somática de Plantas/métodos
16.
Methods Mol Biol ; 2788: 375-395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656526

RESUMEN

Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.


Asunto(s)
Germinación , Campos Magnéticos , Desarrollo de la Planta , Semillas , Germinación/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Plantas/metabolismo
17.
J Food Sci ; 89(5): 2557-2566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578119

RESUMEN

Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.


Asunto(s)
Antioxidantes , Germinación , Lens (Planta) , Valor Nutritivo , Fenoles , Ácido Fítico , Semillas , Rayos Ultravioleta , Lens (Planta)/química , Lens (Planta)/efectos de la radiación , Germinación/efectos de la radiación , Antioxidantes/análisis , Antioxidantes/farmacología , Ácido Fítico/análisis , Semillas/química , Semillas/efectos de la radiación , Fenoles/análisis , Manipulación de Alimentos/métodos , Harina/análisis , Ultrasonido/métodos
18.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38660981

RESUMEN

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Asunto(s)
Avena , Germinación , Semillas , Rayos Ultravioleta , Avena/efectos de los fármacos , Avena/efectos de la radiación , Avena/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Estrés Salino/efectos de los fármacos , Plantones/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cloruro de Sodio
19.
Int J Radiat Biol ; 100(6): 922-933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38530837

RESUMEN

PURPOSE: Ionizing radiation is a harsh environmental factor that could induce plant senescence. We hypothesized that radiation-related senescence remodels proteome, particularly by triggering the accumulation of prion-like proteins in plant tissues. The object of this study, pea (Pisum sativum L.), is an agriculturally important legume. Research on the functional importance of amyloidogenic proteins was never performed on this species. MATERIALS AND METHODS: Pea seeds were irradiated in the dose range 5-50 Gy of X-rays. Afterward, Fourier-transform infrared spectroscopy (FTIR) was used to investigate changes in the secondary structure of proteins in germinated 3-day-old seedlings. Specifically, we evaluated the ratio between the amide I and II peaks. Next, we performed protein staining with Congo red to compare the presence of amyloids in the samples. In parallel, we profiled the detergent-resistant proteome fraction by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS). Differentially accumulated proteins were functionally analyzed in MapMan software, and the PLAAC tool was used to predict putative prion-like proteins. RESULTS: We showed a reduced germination rate but higher plant height and faster appearance of reproductive organs in the irradiated at dose of 50 Gy group compared with the control; furthermore, we demonstrated more ß-sheets and amyloid aggregates in the roots of stressed plants. We detected 531 proteins in detergent-resistant fraction extracted from roots, and 45 were annotated as putative prion-like proteins. Notably, 29 proteins were significantly differentially abundant between the irradiated and the control groups. These proteins belong to several functional categories: amino acid metabolism, carbohydrate metabolism, cytoskeleton organization, regulatory processes, protein biosynthesis, and RNA processing. Thus, the discovery proteomics provided deep data on novel aspects of plant stress biology. CONCLUSION: Our data hinted that protein accumulation stimulated seedlings' growth as well as accelerated ontogenesis and, eventually, senescence, primarily through translation and RNA processing. The increased abundance of primary metabolism-related proteins indicates more intensive metabolic processes triggered in germinating pea seeds upon X-ray exposure. The functional role of detected putative amyloidogenic proteins should be validated in overexpression or knockout follow-up studies.


Asunto(s)
Pisum sativum , Pisum sativum/efectos de la radiación , Pisum sativum/metabolismo , Pisum sativum/crecimiento & desarrollo , Germinación/efectos de la radiación , Proteínas de Plantas/metabolismo , Radiación Ionizante , Amiloide/metabolismo , Amiloide/efectos de la radiación , Proteoma/efectos de la radiación , Proteoma/metabolismo , Semillas/efectos de la radiación , Semillas/metabolismo , Semillas/crecimiento & desarrollo
20.
Plant Reprod ; 37(3): 355-363, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38332356

RESUMEN

KEY MESSAGE: In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.


Asunto(s)
Endospermo , Polen , Semillas , Endospermo/efectos de la radiación , Endospermo/genética , Polen/efectos de la radiación , Semillas/efectos de la radiación , Iones Pesados , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA