Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Viruses ; 16(3)2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543829

RESUMEN

Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.


Asunto(s)
Citosina/análogos & derivados , Herpesviridae , Herpesvirus Suido 1 , Organofosfonatos , Seudorrabia , Enfermedades de los Porcinos , Humanos , Animales , Ratones , Porcinos , Herpesvirus Suido 1/genética , Seudorrabia/patología , Replicación Viral , Proliferación Celular , Enfermedades de los Porcinos/patología
2.
BMC Vet Res ; 20(1): 9, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172819

RESUMEN

BACKGROUND: The only natural hosts of Pseudorabies virus (PRV) are members of the family Suidae (Sus scrofa scrofa). In mammals, the infection is usually fatal and typically causes serious neurologic disease. This study describes four Aujeszky's disease cases in free-ranging Italian wolves (Canis lupus italicus). In Italy, the wolf is a strictly protected species and is in demographic expansion. CASE PRESENTATION: Three wolves (Wolf A, B, and C) were found in a regional park in Northern Italy, and one (Wolf D) was found in Central Italy. Wolf A and D were alive at the time of the finding and exhibited a fatal infection with epileptic seizures and dyspnoea, dying after a few hours. Wolf B presented scratching lesions under the chin and a detachment of the right earlobe, whilst Wolf C was partially eaten. The wolves showed hepatic congestion, diffuse enteritis, moderate pericardial effusion, severe bilateral pneumonia, and diffuse hyperaemia in the brain. The diagnostic examinations included virological analyses and detection of toxic molecules able to cause serious neurological signs. All four wolves tested positive for pseudorabies virus (PrV). The analysed sequences were placed in Italian clade 1, which is divided into two subclades, "a" and "b". The sequences of Wolf A, B, and C were closely related to other Italian sequences in the subclade b, originally obtained from wild boars and hunting dogs. The sequence from Wolf D was located within the same clade and was closely related to the French hunting dog sequences belonging to group 4. CONCLUSION: Results showed the presence of PrV strains currently circulating in wild boars and free-ranging Italian wolves. The genetic characterisation of the PrV UL44 sequences from the four wolves confirmed the close relationship with the sequences from wild boars and hunting dogs. This fact supports a possible epidemiological link with the high PrV presence in wild boars and the possibility of infection in wolves through consumption of infected wild boar carcasses or indirect transmission. To the best of our knowledge, this study is the first detection of Pseudorabies virus in free-ranging Italian wolves in northern and central Italy.


Asunto(s)
Enfermedades de los Perros , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Lobos , Perros , Animales , Porcinos , Herpesvirus Suido 1/genética , Seudorrabia/diagnóstico , Seudorrabia/epidemiología , Seudorrabia/patología , Italia/epidemiología , Sus scrofa
3.
Microbiol Spectr ; 12(1): e0301023, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991362

RESUMEN

IMPORTANCE: Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Animales , Humanos , Herpesvirus Suido 1/metabolismo , Seudorrabia/tratamiento farmacológico , Seudorrabia/patología , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico
4.
Vector Borne Zoonotic Dis ; 22(7): 391-396, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35736787

RESUMEN

Background: Pseudorabies virus (PRV) is a common pathogen found in pigs. The pathogenicity of PRV in humans is under researched and there are few confirmed cases of PRV infections in humans, which has led to a lack of clinical consensus. Methods: We presented a case of viral encephalitis caused by PRV in China. We performed a systematic review of the literature to investigate the clinical features and prognosis of PRV encephalitis and included 12 patients with PRV encephalitis. Results: All the patients had a history of direct or indirect contact with living pigs or pork before the onset of the disease, accompanied by prodromal symptoms, such as fever and headache. They presented with a series of lesions involving the central nervous system (CNS) and respiratory system, such as acute encephalitis syndrome, respiratory failure, retinitis, or endophthalmitis. Conclusions: The differential diagnosis of an acute attack of CNS infection should include PRV encephalitis, which should be diagnosed by a head magnetic resonance imaging (MRI), fundus examination, and cerebrospinal fluid next-generation sequencing. Intravenous immunoglobulin, glucocorticoid, antiviral, and symptomatic support treatment should be administered as early as possible to improve the prognosis.


Asunto(s)
Encefalitis , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , China , Encefalitis/veterinaria , Herpesvirus Suido 1/genética , Humanos , Seudorrabia/diagnóstico , Seudorrabia/patología , Porcinos
5.
Molecules ; 27(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35209042

RESUMEN

Porcine pseudorabies (PR) is an important infectious disease caused by pseudorabies virus (PRV), which poses a major threat to food safety and security. Vaccine immunization has become the main means to prevent and control the disease. However, since 2011, a new PRV variant has caused huge economic losses to the Chinese pig industry. Panax notoginseng polysaccharides have immunomodulatory activity and other functions, but the antiviral effect has not been reported. We studied the anti-PRV activity of Panax notoginseng polysaccharides in vitro. A less cytopathic effect was observed by increasing the concentration of Panax notoginseng polysaccharides. Western blot, TCID50, plaque assay, and IFA revealed that Panax notoginseng polysaccharides could significantly inhibit the infectivity of PRV XJ5 on PK15 cells. In addition, we also found that Panax notoginseng polysaccharides blocked the adsorption and replication of PRV to PK15 cells in a dose-dependent manner. These results show that Panax notoginseng polysaccharides play an antiviral effect mainly by inhibiting virus adsorption and replication in vitro. Therefore, Panax notoginseng polysaccharides may be a potential anti-PRV agent.


Asunto(s)
Herpesvirus Suido 1/fisiología , Factores Inmunológicos/farmacología , Panax notoginseng/química , Polisacáridos/farmacología , Seudorrabia/metabolismo , Enfermedades de los Porcinos/metabolismo , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Factores Inmunológicos/química , Polisacáridos/química , Seudorrabia/tratamiento farmacológico , Seudorrabia/patología , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología
6.
BMC Vet Res ; 17(1): 247, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34275451

RESUMEN

BACKGROUND: Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS: In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1ß, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS: These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.


Asunto(s)
Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Quempferoles/farmacología , Seudorrabia/tratamiento farmacológico , Aciclovir/farmacología , Animales , Encéfalo , Regulación Viral de la Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Herpesvirus Suido 1/genética , Masculino , Ratones , Seudorrabia/mortalidad , Seudorrabia/patología , Replicación Viral/efectos de los fármacos
7.
J Neurovirol ; 26(5): 687-695, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671812

RESUMEN

Pseudorabies virus (PRV) establishes a lifelong latent infection in swine trigeminal ganglion (TG) following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Muscle injection combined with intravenous deliver of the synthetic corticosteroid dexamethasone (DEX) consistently induces reactivation from latency in pigs. In this study, PRV-free piglets were infected with PRV. Viral shedding in nasal and ocular swabs demonstrated that PRV infection entered the latent period. The anti-PRV antibody was detected by enzyme-linked immunosorbent assay and the serum neutralization test, which suggested that the PRV could establish latent infection in the presence of humoral immunity. Immunohistochemistry and viral genome detection of TG neurons suggested that PRV was reactivated from latency. Viral gene expressions of IE180, EP0, VP16, and LLT-intron were readily detected at 3-h post-DEX treatment, but gB, a γ1 gene, was not detectable. The differentially expressed phosphorylated proteins of TG neurons were analyzed by ITRAQ coupled with LC-MS/MS, and p-EIF2S2 differentially expression was confirmed by western blot assay. Taken together, our study provides the evidence that typical gene expression in PRV reactivation from latency in TG is disordered compared with known lytic infection in epithelial cells.


Asunto(s)
Dexametasona/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Herpesvirus Suido 1/efectos de los fármacos , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Ganglio del Trigémino/efectos de los fármacos , Activación Viral/efectos de los fármacos , Animales , Anticuerpos Antivirales/sangre , Ojo/virología , Glucocorticoides/farmacología , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/inmunología , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/patogenicidad , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/inmunología , Inmunidad Humoral/efectos de los fármacos , Cavidad Nasal/virología , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/virología , Seudorrabia/inmunología , Seudorrabia/patología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Ganglio del Trigémino/inmunología , Ganglio del Trigémino/virología , Latencia del Virus/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos
8.
PLoS Pathog ; 16(6): e1008597, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511265

RESUMEN

During infection of neurons by alphaherpesviruses including Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) viral nucleocapsids assemble in the cell nucleus, become enveloped in the cell body then traffic into and down axons to nerve termini for spread to adjacent epithelia. The viral membrane protein US9p and the membrane glycoprotein heterodimer gE/gI play critical roles in anterograde spread of both HSV-1 and PRV, and several models exist to explain their function. Biochemical studies suggest that PRV US9p associates with the kinesin-3 motor KIF1A in a gE/gI-stimulated manner, and the gE/gI-US9p complex has been proposed to recruit KIF1A to PRV for microtubule-mediated anterograde trafficking into or along the axon. However, as loss of gE/gI-US9p essentially abolishes delivery of alphaherpesviruses to the axon it is difficult to determine the microtubule-dependent trafficking properties and motor-composition of Δ(gE/gI-US9p) particles. Alternatively, studies in HSV-1 have suggested that gE/gI and US9p are required for the appearance of virions in the axon because they act upstream, to help assemble enveloped virions in the cell body. We prepared Δ(gE/gI-US9p) mutant, and control parental PRV particles from differentiated cultured neuronal or porcine kidney epithelial cells and quantitated the efficiency of virion assembly, the properties of microtubule-dependent transport and the ability of viral particles to recruit kinesin motors. We find that loss of gE/gI-US9p has no significant effect upon PRV particle assembly but leads to greatly diminished plus end-directed traffic, and enhanced minus end-directed and bidirectional movement along microtubules. PRV particles prepared from infected differentiated mouse CAD neurons were found to be associated with either kinesin KIF1A or kinesin KIF5C, but not both. Loss of gE/gI-US9p resulted in failure to recruit KIF1A and KF5C, but did not affect dynein binding. Unexpectedly, while KIF5C was expressed in undifferentiated and differentiated CAD neurons it was only found associated with PRV particles prepared from differentiated cells.


Asunto(s)
Herpesvirus Suido 1 , Péptidos y Proteínas de Señalización Intracelular , Cinesinas/metabolismo , Lipoproteínas , Microtúbulos/metabolismo , Seudorrabia , Proteínas del Envoltorio Viral , Proteínas Virales , Liberación del Virus , Animales , Transporte Biológico Activo , Línea Celular , Eliminación de Gen , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microtúbulos/genética , Microtúbulos/virología , Seudorrabia/genética , Seudorrabia/metabolismo , Seudorrabia/patología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
J Neurovirol ; 26(4): 556-564, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572833

RESUMEN

Pseudorabies virus (PRV) is known to cause severe encephalitis in juvenile pigs and various non-native hosts; recent evidences suggest that PRV might cause encephalitis in humans. In a multicenter cohort study in China, next-generation sequencing of cerebrospinal fluid (CSF) was performed to detect pathogens in all patients with clinically suspected central nervous system infections. This study involved all the patients whose CSF samples were positive for PRV-DNA; their clinical features were evaluated, and species-specific PCR and serological tests were sequentially applied for validation. Among the 472 patients tested from June 1, 2016, to December 1, 2018, six were positive for PRV-DNA, which were partially validated by PCR and serological tests. Additionally, we retrospectively examined another case with similar clinical and neuroimaging appearance and detected the presence of PRV-DNA. These patients had similar clinical manifestations, including a rapid progression of panencephalitis, and similar neuroimaging features of symmetric lesions in the basal ganglia and bilateral hemispheres. Six of the patients were engaged in occupations connected with swine production. PRV infection should be suspected in patients with rapidly progressive panencephalitis and characteristic neuroimaging features, especially with exposure to swine.


Asunto(s)
Ganglios Basales/patología , Cerebro/patología , ADN Viral/genética , Encefalitis Viral/patología , Herpesvirus Suido 1/genética , Carne/virología , Seudorrabia/patología , Adulto , Animales , Anticuerpos Antivirales/líquido cefalorraquídeo , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/virología , Cerebro/diagnóstico por imagen , Cerebro/virología , China , ADN Viral/líquido cefalorraquídeo , Encefalitis Viral/líquido cefalorraquídeo , Encefalitis Viral/diagnóstico , Encefalitis Viral/virología , Femenino , Herpesvirus Suido 1/crecimiento & desarrollo , Herpesvirus Suido 1/patogenicidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Seudorrabia/líquido cefalorraquídeo , Seudorrabia/diagnóstico , Seudorrabia/virología , Porcinos
10.
Vet Microbiol ; 244: 108666, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32402347

RESUMEN

This study describes an Aujeszky's disease case in an adult male red fox found in an urban area in Central Italy, that exhibited a fatal infection with neurological lesions, but neither itching nor skin lesions. Diagnostic examinations included histology, and parasitological, bacteriological and virological analyses. Detection of parasitic enteric pathogens, bacteria, E. coli, Leptospira spp., rabies, canine distemper virus, parvovirus, hepatitis E virus and pseudorabies virus (PrV) was performed. Results showed the presence of a gE-deleted PrVthat was closely related to the NIA-3 strain but differed from the PrV strains currently circulating in wild boars and domestic pigs in Italy. All the results led to the conclusion that the fox suffered from Aujeszky's disease caused by a gE-deleted PrV strain closely related to a vaccine strain. The epidemiological link between the PrV vaccine strain and fox infection remains unclear. It could involve vaccinated pigs as a primary source of infection by direct or indirect contact with the red fox or less likely it could be related to improper use of the vaccine in the fox.


Asunto(s)
Zorros/virología , Eliminación de Gen , Herpesvirus Suido 1/genética , Seudorrabia/diagnóstico , Seudorrabia/patología , Proteínas del Envoltorio Viral/genética , Animales , Herpesvirus Suido 1/patogenicidad , Italia , Masculino , Vacunas contra la Seudorrabia , Vacunas Virales/inmunología
11.
PLoS Pathog ; 16(3): e1008445, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226043

RESUMEN

Herpesviral encephalitis caused by Herpes Simplex Virus 1 (HSV-1) is one of the most devastating diseases in humans. Patients present with fever, mental status changes or seizures and when untreated, sequelae can be fatal. Herpes Simplex Encephalitis (HSE) is characterized by mainly unilateral necrotizing inflammation effacing the frontal and mesiotemporal lobes with rare involvement of the brainstem. HSV-1 is hypothesized to invade the CNS via the trigeminal or olfactory nerve, but viral tropism and the exact route of infection remain unclear. Several mouse models for HSE have been developed, but they mimic natural infection only inadequately. The porcine alphaherpesvirus Pseudorabies virus (PrV) is closely related to HSV-1 and Varicella Zoster Virus (VZV). While pigs can control productive infection, it is lethal in other susceptible animals associated with severe pruritus leading to automutilation. Here, we describe the first mutant PrV establishing productive infection in mice that the animals are able to control. After intranasal inoculation with a PrV mutant lacking tegument protein pUL21 and pUS3 kinase activity (PrV-ΔUL21/US3Δkin), nearly all mice survived despite extensive infection of the central nervous system. Neuroinvasion mainly occurred along the trigeminal pathway. Whereas trigeminal first and second order neurons and autonomic ganglia were positive early after intranasal infection, PrV-specific antigen was mainly detectable in the frontal, mesiotemporal and parietal lobes at later times, accompanied by a long lasting lymphohistiocytic meningoencephalitis. Despite this extensive infection, mice showed only mild to moderate clinical signs, developed alopecic skin lesions, or remained asymptomatic. Interestingly, most mice exhibited abnormalities in behavior and activity levels including slow movements, akinesia and stargazing. In summary, clinical signs, distribution of viral antigen and inflammatory pattern show striking analogies to human encephalitis caused by HSV-1 or VZV not observed in other animal models of disease.


Asunto(s)
Encefalitis por Varicela Zóster , Ganglios Autónomos , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Suido 1 , Herpesvirus Humano 3 , Neuronas , Seudorrabia , Animales , Modelos Animales de Enfermedad , Encefalitis por Varicela Zóster/genética , Encefalitis por Varicela Zóster/metabolismo , Femenino , Ganglios Autónomos/metabolismo , Ganglios Autónomos/patología , Ganglios Autónomos/virología , Herpes Simple/genética , Herpes Simple/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Seudorrabia/genética , Seudorrabia/metabolismo , Seudorrabia/patología , Porcinos
12.
Antiviral Res ; 173: 104652, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751590

RESUMEN

Both classical swine fever (CSF) and pseudorabies are highly contagious, economically significant diseases of swine in China. Although vaccination with the C-strain against classical swine fever virus (CSFV) is widely carried out and severe outbreaks of CSF seldom occur in China, CSF is sporadic in many pig herds and novel sub-subgenotypes of CSFV endlessly emerge. Thus, new measures are needed to eradicate CSFV from Chinese farms. The emergence of a pseudorabies virus (PRV) variant also posed a new challenge for the control of swine pseudorabies. Here, the recombinant PRV strain JS-2012-ΔgE/gI-E2 expressing E2 protein of CSFV was developed by inserting the E2 expression cassette into the intergenic region between the gG and gD genes of the gE/gI-deletion PRV variant strain JS-2012-ΔgE/gI. The recombinant virus was stable when passaged in vitro. A single vaccination of JS-2012-ΔgE/gI-E2 via intramuscular injection fully protected against lethal challenges of PRV and CSFV. Vaccination of piglets with the recombinant JS-2012-ΔgE/gI-E2 in the presence of high levels of maternally derived antibodies (Abs) to PRV can provide partial protection against lethal challenge of CSFV. Vaccination of the recombinant PRV JS-2012-ΔgE/gI-E2 strain did not induce the production of Abs to the gE protein of PRV or to the CSFV proteins other than E2. Thus, JS-2012-ΔgE/gI-E2 appears to be a promising recombinant marker vaccine candidate against PRV and CSFV for the control and eradication of the PRV variant and CSFV.


Asunto(s)
Peste Porcina Clásica/prevención & control , Expresión Génica , Vectores Genéticos/genética , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/inmunología , Seudorrabia/prevención & control , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/patología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/inmunología , Orden Génico , Herpesvirus Suido 1/patogenicidad , Seudorrabia/inmunología , Seudorrabia/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación , Vacunas Virales/genética , Vacunas Virales/inmunología
13.
Arch Virol ; 165(2): 459-462, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863263

RESUMEN

We provide the first report of a wolf infected with pseudorabies virus (PRV) in China. We observed the clinical symptoms and also dissected tissue samples from the wolf. The samples were ground under sterile conditions and injected subcutaneously into the necks of rabbits, which subsequently developed intense pruritus symptoms and died. The PRV strain from the wolf was isolated in porcine kidney (PK)-15 cells and was specifically recognized by pig PRV antibody-positive serum, as shown by indirect immunofluorescence. Tissues from the dead wolf and rabbits were examined by polymerase chain reaction (PCR), and the PCR-amplified partial glycoprotein E gene was sequenced, which confirmed that the wolf had died as a result of PRV infection.


Asunto(s)
Herpesvirus Suido 1/aislamiento & purificación , Seudorrabia/virología , Lobos/virología , Animales , Línea Celular , China , Modelos Animales de Enfermedad , Herpesvirus Suido 1/clasificación , Herpesvirus Suido 1/patogenicidad , Seudorrabia/patología , Conejos , Porcinos
14.
Transbound Emerg Dis ; 67(2): 518-522, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31755647

RESUMEN

Pseudorabies virus (PRV) infects numerous species of domestic and wild animals leading to severe diseases especially in swine and cattle. Since 2011, the variant PRVs were identified in pigs, which were genetically different from classic strains. Although variant PRV infection is widely observed in pigs, there is still no report of variant PRV infection in cattle. Here, we reported a natural infection of variant PRV leading to acute bovine death in Eastern China. Our study suggests that the new variant PRV strains could be a potential threat to cattle industry and possibly to the public health of human.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Herpesvirus Suido 1/aislamiento & purificación , Seudorrabia/epidemiología , Enfermedades de los Porcinos/virología , Animales , Bovinos , Enfermedades de los Bovinos/patología , Enfermedades de los Bovinos/virología , China/epidemiología , Herpesvirus Suido 1/clasificación , Herpesvirus Suido 1/genética , Inmunohistoquímica/veterinaria , Ratones Endogámicos BALB C , Seudorrabia/patología , Seudorrabia/virología , Organismos Libres de Patógenos Específicos , Porcinos
15.
Vet Microbiol ; 237: 108394, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31585642

RESUMEN

Porcine circovirus type 2 (PCV2) is widespread throughout Chinese farms, and the infection rate of porcine pseudorabies virus (PRV) is very high. The emergence of mixed infection involving PCV2 and PRV has been difficult to prevent and control and has caused considerable economic loss. The present study investigated lung and brain damage caused by PRV in piglets with PCV2 infection. Twenty piglets were divided randomly into two experiment groups (PRV group and PRV + PCV2 group; n = 10 per group). The pigs were observed for clinical signs at specified times. At necropsy, lung and brain tissue samples were collected for histopathological examination, and tissue virus load was determined using quantitative polymerase chain reaction. Severe pathogenicity due to PRV was evident in two-month-old piglets. PCV2 and PRV co-infection led to more severe neurological and respiratory symptoms and a higher mortality rate in the piglets. In addition, the pathological damage to the lung and brain was also aggravated. The co-infection was associated with a significant increase in the content of PRV in the brain and lung tissue. In conclusion, PCV2 and PRV co-infection could cause severe and irreversible damage to piglets.


Asunto(s)
Encéfalo/patología , Infecciones por Circoviridae/veterinaria , Circovirus/patogenicidad , Pulmón/patología , Seudorrabia/patología , Enfermedades de los Porcinos/virología , Animales , Encéfalo/virología , Infecciones por Circoviridae/patología , Infecciones por Circoviridae/virología , Coinfección , Pulmón/virología , Seudorrabia/virología , Porcinos
16.
Artículo en Alemán | MEDLINE | ID: mdl-31434127

RESUMEN

We describe the magnetic resonance imaging (MRI) examination in a dog with confirmed suid herpesvirus 1 (SHV-1) infection and compare the findings to the results of the histopathologic examination. A 5-year-old female German Hunting Terrier used for hunting displayed severe pruritus and fever 7 days after contact with a wild boar. Two days after the onset of the first disease symptoms, the dog was presented with seizures and hyperthermia. MRI examination revealed hyperintense alterations in the occipital, temporal and parietal lobe areas. In the contrast sequences, contrast enhancement of the medulla oblongata as well as of the pachy- and leptomeninges within the occipital lobe and the cerebellum could be detected. The bitch was euthanized because of the acute deterioration of its condition. Histopathologically, multifocal mild to moderate mixed cellular vasculitis and satellitosis were found in the brain stem and pons, where SHV-1 antigen was detectable immunohistochemically in neurons and glial cells. In molecular-biological studies of the trigeminal ganglion and the medulla oblongata, SHV-1-specific DNA was detected. The MRI lesions of our patient displayed marked differences to the changes described in the literature for central European tick-borne meningoencephalomyelitis or the paralytic course of rabies. By contrast, it appears that similarities to the lesions described in canine distemper and the encephalitic form of rabies did exist.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades de los Perros/diagnóstico por imagen , Seudorrabia/diagnóstico por imagen , Animales , Antígenos Virales/aislamiento & purificación , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Cerebro/diagnóstico por imagen , Cerebro/patología , Enfermedades de los Perros/patología , Enfermedades de los Perros/virología , Perros , Resultado Fatal , Femenino , Fiebre/veterinaria , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/aislamiento & purificación , Inmunohistoquímica/veterinaria , Imagen por Resonancia Magnética/veterinaria , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/patología , Meninges/diagnóstico por imagen , Meninges/patología , Seudorrabia/patología , Seudorrabia/virología , Convulsiones/veterinaria , Sus scrofa
18.
Viruses ; 11(6)2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195631

RESUMEN

Pseudorabies virus (PRV) variants broke out in china since 2011, causing high fever, respiratory distress, systemic neurological symptoms, and diarrhea in piglets. This study investigated the effect of intranasal PRV variant (AH02LA) infection on ileal and colonic bacterial communities and immune status in piglets. Ten piglets (free of PRV) were assigned to PRV variant and control groups (uninfected). At day 5 after inoculation, all piglets were euthanized. No PRV was detected in the ileal and colonic mucosa. In the PRV group, we observed up-regulation of specific cytokines gene expression, down-regulation of intestinal barrier-related gene expression, and reduction of secretory immunoglobulin A (sIgA) concentration in the ileum and colon. PRV infection increased the diversity of ileal bacterial community composition. PRV infection reduced the abundance of some beneficial bacteria (Lactobacillus species in the ileum and colon; butyrate-producing bacteria species in the colon) and increased the abundance of potentially pathogenic Fusobacterium nucleatum in the ileum and Sphingomonas paucimobilis in the colon. Moreover, PRV infection decreased concentrations of the beneficial lactate in the ileum and butyrate in the colon. However, this study does not allow to evaluate whether the observed changes are directly due to the PRV infection or rather to indirect effects (fever, clinical signs and changes in diet), and will be our next research content. In summary, our findings provide evidence that intranasal PRV infection directly or indirectly brings gut health risks and implications, although no PRV was detected in the ileum and colon.


Asunto(s)
Colon/microbiología , Herpesvirus Suido 1 , Íleon/microbiología , Enfermedades de los Porcinos/virología , Administración Intranasal , Animales , Butiratos/análisis , Colon/inmunología , Colon/metabolismo , Colon/virología , Citocinas/metabolismo , Fusobacterium/crecimiento & desarrollo , Íleon/inmunología , Íleon/metabolismo , Íleon/virología , Inmunoglobulina A/metabolismo , Ácido Láctico/análisis , Lactobacillus/crecimiento & desarrollo , Interacciones Microbianas , Microbiota , Seudorrabia/patología , Seudorrabia/virología , Sphingomonas/crecimiento & desarrollo , Porcinos
19.
Mol Neurodegener ; 14(1): 8, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736827

RESUMEN

BACKGROUND: Neurotropic virus-based tracers have been extensively applied in mapping and manipulation of neural circuits. However, their neurotropic and neurotoxic properties remain to be fully characterized. METHODS: Through neural circuit tracing, we systematically compared the neurotropism discrepancy among different multi-trans-synaptic and mono-synaptic retrograde viral tracers including pseudorabies virus (PRV), rabies virus (RV), and the newly engineered retro adeno-associated virus (rAAV2-retro) tracers. The (single-cell) RNA sequencing analysis was utilized for seeking possible attribution to neurotropism discrepancy and comparing cell toxicity caused by viral infection between glycoprotein-deleted RV (RV-∆G) and rAAV2-retro. Viral toxicity induced microglia activation and neuronal protein change were evaluated by immunohistochemistry. RESULTS: Multi-trans-synaptic retrograde viral tracers, PRV and RV, exhibit differential neurotropism when they were used for central neural circuit tracing from popliteal lymph nodes. Mono-synaptic retrograde tracers, including RV-∆G and rAAV2-retro, displayed discrepant neurotropic property, when they were applied to trace the inputs of lateral hypothalamic area and medial preoptic nucleus. rAAV2-retro demonstrated preference in cerebral cortex, whereas RV-∆G prefers to label basal ganglia and hypothalamus. Remarkably, we detected a distinct preference for specific cortical layer of rAAV2-retro in layer 5 and RV-∆G in layer 6 when they were injected into dorsal lateral geniculate nucleus to label corticothalamic neurons in primary visual cortex. Complementation of TVA receptor gene in RV-resistant neurons enabled EnvA-pseudotyped RV infection, supporting receptors attribution to viral neurotropism. Furthermore, both RV-∆G and rAAV2-retro exerted neurotoxic influence at the injection sites and retrogradely labeled sites, while the changes were more profound for RV-∆G infection. Finally, we demonstrated a proof-of-concept strategy for more comprehensive high-order circuit tracing of a specific target nucleus by combining rAAV2-retro, RV, and rAAV tracers. CONCLUSIONS: Different multi-trans-synaptic and mono-synaptic retrograde viral tracers exhibited discrepant neurotropism within certain brain regions, even cortical layer preference. More neurotoxicity was observed under RV-∆G infection as compared with rAAV2-retro. By combining rAAV2-retro, RV, and rAAV tracers, high-order circuit tracing can be achieved. Our findings provide important reference for appropriate application of viral tracers to delineate the landscape and dissect the function of neural network.


Asunto(s)
Encéfalo/virología , Dependovirus , Colorantes Fluorescentes , Herpesvirus Suido 1 , Virus de la Rabia , Animales , Proteínas Luminiscentes , Ratones , Infecciones por Parvoviridae/patología , Seudorrabia/patología , Rabia/patología , Tropismo Viral
20.
BMC Vet Res ; 14(1): 388, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30522490

RESUMEN

BACKGROUND: Pigs (Sus scrofa) are the natural hosts of pseudorabies virus (PRV), also known as Aujeszky's disease. Infection in mammals, with the exception of humans, typically causes extreme itching, facial swelling, and excessive salivation, followed by death in non-suid species. The risk to susceptible mammals was assumed to decrease when PRV was eliminated from U.S. commercial swine in 2004, though the virus remains endemic in feral swine. Infected feral swine pose a threat to the disease-free status of the commercial swine industry, and to other animals, including dogs, that come in direct or indirect contact with them. Since dogs are commonly used for hunting feral swine, they are at high risk of exposure. CASE PRESENTATION: The following report describes the progression of pseudorabies infection in dogs in two states after exposure to feral swine. The first case occurred in a dog in Alabama after participation in a competitive wild hog rodeo. The second case occurred in multiple dogs in Arkansas after hunting feral swine, and subsequent consumption of the offal. The antibody prevalence of feral swine in the two states where the dogs were exposed is also examined. CONCLUSIONS: Dogs that are used for hunting feral swine are at high risk of exposure to pseudorabies because the disease is considered endemic in feral swine in the U.S.


Asunto(s)
Enfermedades de los Perros/patología , Seudorrabia/patología , Seudorrabia/transmisión , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/transmisión , Alabama/epidemiología , Animales , Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Arkansas/epidemiología , Enfermedades de los Perros/diagnóstico , Perros , Resultado Fatal , Femenino , Herpesvirus Suido 1/fisiología , Masculino , Seudorrabia/diagnóstico , Seudorrabia/epidemiología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA