Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Biomed Pharmacother ; 178: 117216, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096618

RESUMEN

AIMS: Silicosis is the most common and severe type of pneumoconiosis, imposing a substantial disease burden and economic loss on patients and society. The pathogenesis and key targets of silicosis are not yet clear, and there are currently no effective treatments available. Therefore, we conducted research on mefunidone (MFD), a novel antifibrotic drug, to explore its efficacy and mechanism of action in murine silicosis. METHODS: Acute 7-day and chronic 28-day silicosis models were constructed in C57BL/6J mice by the intratracheal instillation of silica and subsequently treated with MFD to assess its therapeutic potential. The effects of MFD on silica-induced inflammation, pyroptosis, and fibrosis were further investigated using immortalized mouse bone marrow-derived macrophages (iBMDMs). RESULTS: In the 7-day silica-exposed mouse models, MFD treatment significantly alleviated pulmonary inflammation and notably reduced macrophage infiltration into the lung tissue. RNA-sequencing analysis of silica-induced iBMDMs followed by gene set enrichment analysis revealed that MFD profoundly influenced cytokine-cytokine receptor interactions, chemokine signaling, and the toll-like receptor signaling pathways. MFD treatment also markedly reduced the secretion of inflammatory cytokines and chemokines from silica-exposed iBMDMs. Moreover, MFD effectively downregulated the activation of the TLR4-NF-κB/MAPK signaling pathway induced by silica and mitigated the upregulation of pyroptosis markers. Additionally, MFD treatment significantly suppressed the activation of fibroblasts and alveolar epithelial cells co-cultured with silica-exposed mouse macrophages. Ultimately, in the 28-day silica-exposed mouse models, MFD administration led to a substantial reduction in the severity of pulmonary fibrosis. CONCLUSION: MFD mitigates silica-induced pulmonary inflammation and fibrosis in mice by suppressing the TLR4-NF-κB/MAPK signaling pathway and reducing pyroptotic responses in macrophages. MFD could potentially emerge as a novel therapeutic agent for the treatment of silicosis.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , FN-kappa B , Piroptosis , Dióxido de Silicio , Silicosis , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Dióxido de Silicio/toxicidad , Piroptosis/efectos de los fármacos , FN-kappa B/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Piridonas/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
2.
J Tradit Chin Med ; 44(4): 784-793, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066539

RESUMEN

OBJECTIVE: To explore the mechanisms of Yangqing Chenfei formula (, YCF) in the treatment of silicosis through a comprehensive strategy consisting of serum pharmacochemistry, network pharmacology analysis, and in vitro validation. METHODS: An ultrahigh-performance liquid chroma-tography-tandem mass spectrometry method was used to confirm the active components in YCF-medicated serum. Then, we obtained targets for active components and genes for silicosis from multiple databases. Furthermore, a protein-protein interaction network was constructed, and Kyoto Encyclopedia of Genes and Genomes pathway and biological process analyses were conducted to elucidate the mechanisms of YCF for the treatment of silicosis. Finally, we validated the important components and mechanisms in vitro. RESULTS: Altogether, 19 active components were identified from rat serum after YCF administration. We identified 724 targets for 19 components, which were mainly related to inflammation [phosphatidy linositol 3 kinase/protein kinase B, forkhead box O, hypoxia inducible factor, and T-cell receptor signaling pathway, nitric oxide biosynthetic process], fibrotic processes [vascular endothelial growth factor signaling pathway, extracellular signal regulated kinase (ERK) 1 and ERK2 cascade, smooth muscle cell proliferation], and apoptosis (negative regulation of apoptotic process). In addition, 218 genes for silicosis were identified and were mainly associated with the inflammatory response and immune process [cytokine?cytokine receptor interaction, tumor necrosis factor alpha (TNF-α), toll-like receptor, and nucleotide binding oligomerization domain-like receptor signaling pathway]. Taking an intersection of active component targets and silicosis genes, we obtained 61 common genes that were mainly related to the inflammatory response and apoptosis, such as the phosphatidylinositol-3-kinase/protein kinase B signaling pathway, mitogen activated protein kinases signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, biosynthesis of nitric oxide, and apoptotic process. In the herb-component-gene-pathway network, paeoniflorin, rutin and nobiletin targeted the most genes. In vitro, paeoniflorin, rutin and nobiletin decreased the mRNA levels of inflammatory factors [interleukin (IL)-6, TNF-α, and IL-1ß], suppressed p-AKT and cleaved caspase-3, and increased B cell lymphoma (Bcl)-2 protein expression in silica-induced macrophages in a concentration-dependent manner. CONCLUSION: YCF could significantly relieve the inflammatory response of silicosis via suppression of the AKT/Bcl-2/Caspase-3 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Silicosis , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Silicosis/genética , Medicamentos Herbarios Chinos/farmacología , Animales , Ratas , Masculino , Humanos , Transducción de Señal/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos
3.
Int J Biol Macromol ; 277(Pt 1): 134024, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032899

RESUMEN

Silicosis is a systemic disease with predominantly diffuse fibrosis of the lungs due to prolonged inhalation of free SiO2 dust during the manufacturing process, for which there is no effective treatment. In this study, we used a combined epigenetic and transcriptomic approach to reveal the chromatin-opening features of silicosis and identify the key transcription factor activator protein 1 (AP-1) that responds to silicosis fibrosis. Therapeutic administration of an AP-1 inhibitor inhibits the PI3K/AKT signaling pathway, reduces fibrosis marker proteins, and significantly ameliorates lung fibrosis in a mouse model of silicosis. In addition, it was observed that the expression of Jun and JunB was significantly up-regulated in a TGF-ß1-induced in vitro transdifferentiation model of NIH/3T3 cells, and Co-IP confirmed that a protein complex could be formed between Jun and JunB. Mechanistically, silencing of Jun and JunB expression reversed the activation of the PI3K/AKT signaling pathway and the upregulation of fibrosis marker proteins in NIH/3 T3 cells after TGF-ß1 stimulation. Taken together, Jun/JunB is expected to be a potential therapeutic target for silicosis fibrosis.


Asunto(s)
Proteínas Proto-Oncogénicas c-jun , Transducción de Señal , Silicosis , Factor de Transcripción AP-1 , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Animales , Ratones , Factor de Transcripción AP-1/metabolismo , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Ratones Endogámicos C57BL
4.
Artículo en Chino | MEDLINE | ID: mdl-39075002

RESUMEN

Objective: To explore the active ingredients of shengxian and jinshuiliujun decoction with the method of network pharmacology, and to verify the experimental mechanism of its treatment of silicosis. Methods: In May 2023, the active ingredients and targets of drugs in shengxian and jinshuiliujun decoction were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The target of silicosis disease was screened by databases such as Genecards, Disease Gene Network (DisGeNET), Comparative Toxicogenomics Database (CTD), etc. The screened drug targets and disease targets were intersected to obtain the target set of shengxian and jinshuiliujun decoction for the treatment of silicosis. Protein-protein interaction (PPI) network analysis was performed on the target set through STRING database, and core target genes were screened. GO enrichment analysis and KEGG pathway analysis of intersection genes were performed based on Metascape database, and molecular docking verification of key components and targets of shengxian and jinshuiliujun decoction was carried out. Twenty-four adult male SD rats with SPF grade were randomly divided into control group, model group and TCM intervention group, with 8 rats in each group. The dust-stained rat model was prepared by non-tracheal exposure of 1 ml silica suspension (50 mg/ml) in one go, and TCM intervention group was given shengxian and jinshuiliujun decoction[6 g/ (kg·d) ] on the second day. The CT of the lungs of each group was observed 28 days after the dust-stained rat model. Paraffin sections of rat lung tissues were prepared and stained with Hematoxylin-Eosin (HE) and Masson. Western blot was used to verify the expression of core target-related proteins in rat lung tissues after the intervention of shengxian and jinshuiliujun decoction for 28 days, and the differences in protein expression between groups were compared by one-way analysis of variance. Results: A total of 205 active ingredients and 3345 active compounds were selected from shengxian and jinshuiliujun decoction, corresponding to 281 targets, among which 240 targets were related to silicosis. Serine/threonine kinase 1 (AKT1), tumor protein p53 (TP53), tumor necrosis factor (TNF) and interleukin (IL) 6 may be the key targets of shengxian and jinshuiliujun decoction in the treatment of silicosis. Through enrichment analysis, 30 GO entries and 20 potential signaling pathways were screened according to P-value, including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) and cancer signaling pathways. Molecular docking showed that the active compounds of shengxian and jinshuiliujun decoction had good binding with the core target proteins, and the strongest binding properties were beta-sitosterol and TNF-α (-10.45 kcal/mol). In animal experiments, the inflammatory infiltration and fibrosis of lung tissue of rats in TCM intervention group were significantly improved. Compared with control group, the levels of TNF-α, IL-1ß, IL-6 and NF-κB in lung tissue of model group were significantly increased (P<0.05). Compared with model group, the lung injury of rats in TCM intervention group was significantly improved, and the expressions of TNF-α, IL-1ß, IL-6 and NF-κB were significantly decreased (P<0.05) . Conclusion: Shengxian and jinshuiliujun decoction in the treatment of silicosis may play an anti-fibrosis role by inhibiting the NF-κB signal transduction pathway mediated by inflammatory factors such as TNF-α and IL-1ß, which provides a reference for further exploring the material basis and mechanism of its action.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Silicosis , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Ratas , Masculino , Farmacología en Red , Medicina Tradicional China , Humanos , Mapas de Interacción de Proteínas
5.
J Transl Med ; 22(1): 682, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060930

RESUMEN

BACKGROUND: Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. METHODS: We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. RESULTS: BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO2. Additionally, BIC inhibited SiO2-mediated secretion of the inflammatory cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-ß1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. CONCLUSION: The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-ß1, and consequently inhibits FMT and EMT via TGF-ß1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.


Asunto(s)
Fibrosis Pulmonar , Transducción de Señal , Silicosis , Factor de Crecimiento Transformador beta1 , Animales , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Silicosis/complicaciones , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/complicaciones , Ratones , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Células 3T3 NIH , Ratas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamación/patología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Compuestos de Bifenilo
6.
Biomed Environ Sci ; 37(6): 617-627, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38988112

RESUMEN

Objective: The aim of this study was to explore the role and mechanism of ferroptosis in SiO 2-induced cardiac injury using a mouse model. Methods: Male C57BL/6 mice were intratracheally instilled with SiO 2 to create a silicosis model. Ferrostatin-1 (Fer-1) and deferoxamine (DFO) were used to suppress ferroptosis. Serum biomarkers, oxidative stress markers, histopathology, iron content, and the expression of ferroptosis-related proteins were assessed. Results: SiO 2 altered serum cardiac injury biomarkers, oxidative stress, iron accumulation, and ferroptosis markers in myocardial tissue. Fer-1 and DFO reduced lipid peroxidation and iron overload, and alleviated SiO 2-induced mitochondrial damage and myocardial injury. SiO 2 inhibited Nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes, while Fer-1 more potently reactivated Nrf2 compared to DFO. Conclusion: Iron overload-induced ferroptosis contributes to SiO 2-induced cardiac injury. Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO 2 cardiotoxicity, potentially via modulation of the Nrf2 pathway.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Sobrecarga de Hierro , Ratones Endogámicos C57BL , Miocitos Cardíacos , Dióxido de Silicio , Silicosis , Animales , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Sobrecarga de Hierro/metabolismo , Dióxido de Silicio/toxicidad , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Deferoxamina/farmacología , Fenilendiaminas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Ciclohexilaminas/farmacología
7.
Int Immunopharmacol ; 138: 112563, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943976

RESUMEN

Silicosis is a progressive disease characterized by interstitial fibrosis resulting from inhalation of silica particles, and currently lacks specific treatment. Hydrogen (H2) has demonstrated antioxidative, anti-inflammatory, and anti-fibrotic properties, yet its efficacy in treating silicosis remains unexplored. In this study, rats exposed to silica were administered interventions of H2 combined with tetrandrine, and euthanized at 14, 28, and 56 days post-intervention. Lung tissues and serum samples were collected for analysis. Histological examination, MDA assay, enzyme-linked immunosorbent assay, hydroxyproline assay, and Western blotting were employed to assess the impact of H2 combined with tetrandrine on pulmonary fibrosis. The results revealed that this combination significantly alleviated inflammation in silicosis-afflicted rats, effectively suppressed levels of MDA, TNF-α, and IL-1ß expression, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Notably, protein expression level of E-cadherin was increased,however protein expression levels of vimentin and α-SMA were reduced, and TGF-ß were reduced, alongside a significant decrease in hydroxyproline content. Furthermore, H2 combined with tetrandrine downregulated protein expression of NF-κB p65, NF-κB p-p65, Caspase-1, ASC, and NLRP3. These findings substantiate the hypothesis that H2 combined with tetrandrine mitigates inflammation associated with silicosis and suppresses the EMT process to ameliorate fibrosis via the NF-κB/NLRP3 signaling pathway. However, the pressure of airway opening was not assessed in this study and dynamic readings of lung physiological function were not obtained, which is a major limitation of this study.


Asunto(s)
Bencilisoquinolinas , Transición Epitelial-Mesenquimal , Hidrógeno , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Animales , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Bencilisoquinolinas/administración & dosificación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Ratas , Hidrógeno/uso terapéutico , Hidrógeno/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Humanos
8.
Redox Biol ; 75: 103237, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879894

RESUMEN

Silicosis is the most common type of pneumoconiosis, having a high incidence in workers chronically exposed to crystalline silica (CS). No specific medication exists for this condition. GHK, a tripeptide naturally occurring in human blood and urine, has antioxidant effects. We aimed to investigate the therapeutic effect of GHK-Cu on silicosis and its potential underlying molecular mechanism. An experimental silicosis mouse model was established to observe the effects of GHK-Cu on lung inflammation and fibrosis. Moreover, the effects of GHK-Cu on the alveolar macrophages (AM) were examined using the RAW264.7 cell line. Its molecular target, peroxiredoxin 6 (PRDX6), has been identified, and GHK-Cu can bind to PRDX6, thus attenuating lung inflammation and fibrosis in silicosis mice without significant systemic toxicity. These effects were partly related to the inhibition of the CS-induced oxidative stress in AM induced by GHK-Cu. Thus, our results suggest that GHK-Cu acts as a potential drug by attenuating alveolar macrophage oxidative stress. This, in turn, attenuates the progression of pulmonary inflammation and fibrosis, which provides a reference for the treatment of silicosis.


Asunto(s)
Cobre , Modelos Animales de Enfermedad , Macrófagos Alveolares , Oligopéptidos , Estrés Oxidativo , Peroxiredoxina VI , Silicosis , Animales , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Silicosis/patología , Ratones , Cobre/química , Oligopéptidos/farmacología , Peroxiredoxina VI/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Humanos , Masculino , Antioxidantes/farmacología
9.
Redox Biol ; 74: 103224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865904

RESUMEN

BACKGROUND: Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS: The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS: This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS: This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.


Asunto(s)
Células Epiteliales Alveolares , Compuestos de Bifenilo , Senescencia Celular , Lignanos , Transducción de Señal , Silicosis , Sirtuina 3 , Animales , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/etiología , Sirtuina 3/metabolismo , Sirtuina 3/genética , Senescencia Celular/efectos de los fármacos , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Humanos , Lignanos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Células A549 , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Daño del ADN/efectos de los fármacos , Compuestos Alílicos , Fenoles
10.
Respir Res ; 25(1): 242, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877465

RESUMEN

BACKGROUND: Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS: To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS: In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-ß/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION: In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.


Asunto(s)
Alcaloides , Diferenciación Celular , Fibroblastos , Ratones Endogámicos C57BL , Miofibroblastos , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Animales , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Alcaloides/farmacología , Dióxido de Silicio/toxicidad , Ratones , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Diferenciación Celular/efectos de los fármacos , Silicosis/patología , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Masculino
11.
Biomed Pharmacother ; 177: 117014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908195

RESUMEN

This study examines the involvement of TRIM59 in silica-induced pulmonary fibrosis and explores the therapeutic efficacy of Tanshinone IIA (Tan IIA). In vivo experiments conducted on rats with silica-induced pulmonary fibrosis unveiled an increase in TRIM59 levels and a decrease in PPM1A levels. Subsequent investigations using in vitro silicosis cell models demonstrated that modulation of TRIM59 expression significantly impacts silicosis fibrosis, influencing the levels of PPM1A and activation of the Smad2/3 signaling pathway. Immunofluorescence and co-immunoprecipitation assays confirmed the interaction between TRIM59 and PPM1A in fibroblasts, wherein TRIM59 facilitated the degradation of PPM1A protein via proteasomal and ubiquitin-mediated pathways. Furthermore, employing a rat model of silica-induced pulmonary fibrosis, Tan IIA exhibited efficacy in mitigating lung tissue damage and fibrosis. Immunohistochemical analysis validated the upregulation of TRIM59 and downregulation of PPM1A in silica-induced pulmonary fibrosis, which Tan IIA alleviated. In vitro studies elucidated the mechanism by which Tan IIA regulates the Smad2/3 signaling pathway through TRIM59-mediated modulation of PPM1A. Treatment with Tan IIA in silica-induced fibrosis cell models resulted in concentration-dependent reductions in fibrotic markers and attenuation of relevant protein expressions. Tan IIA intervention in silica-induced fibrosis cell models mitigated the TRIM59-induced upregulation of fibrotic markers and enhanced PPM1A expression, thereby partially reversing Smad2/3 activation. Overall, the findings indicate that while overexpression of TRIM59 may activate the Smads pathway by suppressing PPM1A expression, treatment with Tan IIA holds promise in counteracting these effects by inhibiting TRIM59 expression.


Asunto(s)
Abietanos , Péptidos y Proteínas de Señalización Intracelular , Proteína Fosfatasa 2C , Fibrosis Pulmonar , Transducción de Señal , Silicosis , Proteínas de Motivos Tripartitos , Animales , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Masculino , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Abietanos/farmacología , Humanos , Ratas , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Ratas Sprague-Dawley , Proteína smad3/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Dióxido de Silicio/toxicidad , Modelos Animales de Enfermedad
12.
Int Immunopharmacol ; 136: 112368, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823175

RESUMEN

Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin ß1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin ß1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin ß1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and ß-catenin in the downstream Integrin ß1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinß1 /ILK/PI3K signaling pathway. This indicates that the Integrin ß1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Integrina beta1 , Fosfatidilinositol 3-Quinasas , Proteínas Serina-Treonina Quinasas , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Integrina beta1/metabolismo , Integrina beta1/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Masculino , Dióxido de Silicio/toxicidad , Silicosis/metabolismo , Silicosis/patología , Silicosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Pulmón/patología , Pulmón/efectos de los fármacos , Ratas Sprague-Dawley
13.
Ecotoxicol Environ Saf ; 279: 116483, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788565

RESUMEN

Oxidative stress and inflammation play a fundamental role in the beginning and advancement of silicosis. Hence, questing active phytocompounds (APCs) with anti-oxidative and anti-inflammatory properties such as diosgenin (DG) and emodin (ED) can be a therapeutic intervention targeting silica-induced pulmonary inflammation and fibrosis. Hydrophobicity and low bioavailability are the barriers that restrict the therapeutic efficacy of DG and ED against pulmonary defects. Encapsulating these APCs in polymeric nanoparticles can overcome this limitation. The present study has thus explored the anti-inflammatory and anti-fibrotic effects of polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) individually loaded with DG (DGn) or ED (EDn) and in combine DG+ED [(DG+ED)n] in respirable silica dust (RSD)-induced pulmonary fibrosis silicosis rat model. Our study found that individual and combined NPs revealed physiochemical characteristics appropriate for IV administration with sustained-drug release purposes. Physiological evaluations of RSD-induced silicosis rats suggested that no treatment could improve the body weight. Still, they reduced the lung coefficient by maintaining lung moisture. Only (DG+ED)n significantly cleared free lung silica. All interventions were found to attribute the increased per cent cell viability in BALF, reduce cytotoxicity via minimizing LDH levels, and balance the oxidant-antioxidant status in silicotic rats. The expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, MCP-1, and TGF-ß1) were efficiently down-regulated with NPs interventions compared to pure (DG+ED) treatment. All drug treatments significantly declined, the 8-HdG and HYP productions indicate that RSD-induced oxidative DNA damage and collagen deposition were successfully repaired. Moreover, histopathological investigations proposed that individual or combined drugs NPs interventions could decrease the fibrosis and alveolitis grades in RSD-induced silicosis rats. However, (DG+ED)n intervention significantly inhibited pulmonary fibrosis and alveolitis compared to pure (DG+ED) treatment. In conclusion, the RSD can induce oxidative stress and inflammation in rats, producing reactive oxygen species (ROS)-mediated cytotoxicity to pulmonary cells and leading to silicosis development. The IV administration of combined NP suppressed lung inflammation and collagen formation by maintaining oxidant-antioxidant status and effectively interrupting the fibrosis-silicosis progression. These results may be attributed to the improved bioavailability of DG and ED through their combined nano-encapsulation-mediated targeted drug delivery.


Asunto(s)
Diosgenina , Emodina , Nanopartículas , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Animales , Diosgenina/farmacología , Silicosis/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/prevención & control , Ratas , Emodina/farmacología , Masculino , Polvo , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios , Ratas Wistar , Pulmón/efectos de los fármacos , Pulmón/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
14.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720270

RESUMEN

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibrosis Pulmonar , Dióxido de Silicio , Simvastatina , Animales , Masculino , Ratas , Acetofenonas/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/prevención & control , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Simvastatina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
15.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641226

RESUMEN

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Proteoma , Factor de Transcripción STAT1 , Silicosis , Animales , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/patología , Factor de Transcripción STAT1/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Acetilación/efectos de los fármacos , Ratones , Dióxido de Silicio , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Proteómica/métodos , Masculino , Ácido Succínico/metabolismo
16.
Phytomedicine ; 129: 155616, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669965

RESUMEN

BACKGROUND: Silicosis presents a significant clinical challenges and economic burdens, with Traditional Chinese Medicine (TCM) emerging as a potential therapeutic avenue. However, the precise effects and mechanisms of TCM in treating silicosis remain uncertain and subject to debate. OBJECTIVE: The study aims to elucidate the therapeutic role and mechanisms of the Yang-Yin-Qing-Fei Decoction (YYQFD) and its key component, paeoniflorin, in silicosis using a murine model. METHODS: Silicotic mice were treated with YYQFD, pirfenidone (PFD), or paeoniflorin. RAW264.7 cells and mouse lung fibroblasts (MLF) were stimulated with silica, matrix metalloproteinase-12 (MMP-12), or TGF-ß1, followed by treatment with paeoniflorin, PFD, or relevant inhibitors. YYQFD constituents were characterized using High-Performance Liquid Chromatography (HPLC). Lung fibrosis severity was assessed via histopathological examination, micro-CT imaging, lung functions, and Western blot analysis. Transcriptome sequencing and bioinformatics analysis were employed to delineate the gene expression profile and target genes modulated by YYQFD in silicosis. RESULTS: Treatment with YYQFD ameliorated silica-induced lung fibrosis. Transcriptome sequencing identified MMP-12 as a potential common target of YYQFD and PFD. Additionally, a potential pro-inflammatory role of MMP-12, regulated by silica-induced TLR4 signaling pathways, was revealed. Paeoniflorin, one of the most distinctive compounds in YYQFD, attenuated silica-induced MMP-12 increase and its derived inflammatory factors in macrophages through a direct binding effect. Notably, paeoniflorin treatment exerted anti-fibrotic effects by inhibiting MMP-12-derived inflammatory factors and TGF-ß1-induced myofibroblast differentiation in silica-exposed mice. CONCLUSIONS: This study underscores paeoniflorin as one of the most principal bioactive compounds in YYQFD, highlighting its capacity to attenuate lung inflammation driven by macrophage-derived MMP-12 and reduce lung fibrosis both in vivo and in vitro.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Glucósidos , Metaloproteinasa 12 de la Matriz , Monoterpenos , Silicosis , Animales , Masculino , Ratones , Medicamentos Herbarios Chinos/farmacología , Fibroblastos/efectos de los fármacos , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/patología , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Células RAW 264.7 , Silicosis/tratamiento farmacológico
17.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613881

RESUMEN

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Asunto(s)
Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Umbeliferonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Neumonía/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
18.
Environ Toxicol ; 39(7): 3808-3819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523403

RESUMEN

Silicon dioxide (SiO2)-induced pulmonary fibrosis is potentially associated with the impairment of mitochondrial function. Previous research found that inhibition of macrophage receptor with collagenous structure (MARCO) could alleviate particle-induced lung injury by regulating phagocytosis and mitigating mitochondrial damage. The present study aims to explore the underlying anti-fibrosis mechanism of polyguanylic acid (PolyG, MARCO inhibitor) in a silicotic rat model. Hematoxylin and eosin and Masson staining were performed to visualize lung tissue pathological changes. Confocal microscopy, transmission electron microscope, western blot analysis, quantitative real-time PCR (qPCR), and adenosine triphosphate (ATP) content assay were performed to evaluate collagen content, mitochondrial function, and morphology changes in SiO2-induced rat pulmonary fibrosis. The results suggested that SiO2 exposure contributed to reactive oxygen species aggregation and the reduction of respiratory complexes and ATP synthesis. PolyG treatment could effectively reduce MARCO expression and ameliorate lung injury and fibrosis by rectifying the imbalance of mitochondrial respiration and energy synthesis. Furthermore, PolyG could maintain mitochondrial homeostasis by promoting peroxisome proliferator-activated receptor-coactivator 1 α (PGC1α)-mediated mitochondrial biogenesis and regulating fusion and fission. Together, PolyG could ameliorate SiO2-induced pulmonary fibrosis via inhibiting MARCO to protect mitochondrial function.


Asunto(s)
Mitocondrias , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Silicosis/tratamiento farmacológico , Silicosis/patología , Silicosis/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dióxido de Silicio/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Inflammation ; 47(4): 1109-1126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38265677

RESUMEN

Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moor, known for its potential use in attenuating the progression of silicosis. However, the precise effects and underlying mechanisms of TET remain controversial. In this study, we aimed to elucidate the pharmacological mechanism of TET using a network pharmacology approach, while also evaluating its effect on silica-induced lung fibrosis in mice and TGF-ß1-stimulated pulmonary fibroblasts in vitro. We employed network pharmacology to unravel the biological mechanisms through which TET may exert its therapeutic effects on pulmonary fibrosis and silicosis. In a silica-induced mouse model of lung fibrosis, TET was administered orally either during the early or late stage of fibrotic progression. Additionally, we examined the effects of TET on fibroblasts stimulated by TGF-ß1 in vitro. Through the analysis, we identified a total of 101 targets of TET, 7,851 genes associated with pulmonary fibrosis, and 80 overlapping genes. These genes were primarily associated with key pathways such as epidermal growth factor receptor tyrosine kinase inhibitor resistance, the vascular endothelial growth factor signaling pathway, and the phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or AKT) signaling pathway. Furthermore, molecular docking analysis revealed the binding of TET to AKT1, the catalytic subunit of phosphatidylinositol-3 kinase, and KDR. In vivo experiments demonstrated that TET significantly alleviated silica-induced pulmonary fibrosis and reduced the expression of fibrotic markers. Moreover, TET exhibited inhibitory effects on the migration, proliferation, and differentiation of TGF-ß1-induced lung fibroblasts in vitro. Notably, TET mitigated silica-induced pulmonary fibrosis by suppressing the PI3K/AKT pathway. In conclusion, our findings suggest that TET possesses the ability to suppress silica-induced pulmonary fibrosis by targeting the PI3K/AKT signaling pathway. These results provide valuable insights into the therapeutic potential of TET in the treatment of pulmonary fibrosis and silicosis.


Asunto(s)
Bencilisoquinolinas , Farmacología en Red , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Dióxido de Silicio/toxicidad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Silicosis/patología , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Endogámicos C57BL
20.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276616

RESUMEN

Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-ß) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.


Asunto(s)
Triterpenos Pentacíclicos , Dióxido de Silicio , Silicosis , Ratones , Animales , Especies Reactivas de Oxígeno/farmacología , Dióxido de Silicio/farmacología , Fosfatidilinositol 3-Quinasas , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Silicosis/prevención & control , Fibrosis , Colágeno/farmacología , Inflamación , Apoptosis , Fibroblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA