Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.983
Filtrar
1.
Crit Rev Biochem Mol Biol ; 59(3-4): 154-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946646

RESUMEN

The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.


Asunto(s)
Mutación , Humanos , Animales , Potasio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38914258

RESUMEN

NaCCC2 transport proteins, including those from Drosophila melanogaster (Ncc83) and Aedes aegypti (aeCCC2), are an insect-specific clade with sequence similarity to Na+-K+-2Cl- cotransporters. Whereas the Na+-K+-2Cl- cotransporters and other cation-chloride cotransporters are electroneutral, recent work indicates that Ncc83 and aeCCC2 carry charge across membranes. Here, we further characterize the regulation and transport properties of Ncc83 and aeCCC2 expressed in Xenopus oocytes. In cation uptake experiments, Li+ was used as a tracer for Na+ and Rb+ was used as a tracer for K+. Li+ uptake of oocytes expressing either aeCCC2 or Ncc83 was greater than uptake in water-injected controls, activated by hypotonic swelling, and not inhibited by ouabain or ethyl cinnamate. Rb+ uptake of oocytes expressing either aeCCC2 or Ncc83 was not different than water injected controls. In oocytes expressing either aeCCC2 or Ncc83, Li+ uptake plateaued with increasing Li+ concentrations, with apparent Km values in the range of 10 to 20 mM. Following exposure to ouabain, intracellular [Na+] was greater in oocytes expressing aeCCC2 than in controls. Elevating intracellular cAMP (via 8-bromo-cAMP) in Ncc83 oocytes significantly stimulated both Li+ uptake and membrane conductances. Elevating intracellular cAMP in aeCCC2 oocytes did not affect Li+ uptake, but stimulated membrane conductances. Overall, these results confirm that the NaCCC2s resemble other cation-chloride cotransporters in their regulation and some transport properties. However, unlike other cation-chloride cotransporters, they carry charge across membranes.


Asunto(s)
Aedes , Drosophila melanogaster , Proteínas de Insectos , Oocitos , Sodio , Animales , Oocitos/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Aedes/metabolismo , Aedes/genética , Sodio/metabolismo , Xenopus laevis , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Ouabaína/farmacología
3.
Brain ; 147(9): 3216-3233, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38815055

RESUMEN

Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.


Asunto(s)
Recien Nacido Prematuro , Neuronas , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Humanos , Recién Nacido , Ratones , Hemorragia Cerebral Intraventricular/metabolismo , Cotransportadores de K Cl , Neuronas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo
4.
J Comp Physiol B ; 194(1): 21-32, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308715

RESUMEN

In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl- through TMEM16A Cl- channels, which acts as a driving force for fluid secretion. To sustain the Cl- secretion, [Cl-]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl- cotransporter-mediated Cl- entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl- and fluid secretion. Sodium-glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium-glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium-glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium-glucose cotransporter-1 activity is required for sustaining Cl- secretion to drive fluid secretion, we analyzed the Cl- currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl- currents by reducing the Cl- efflux dependent on the Na+-K+-2Cl- cotransporter-mediated Cl- entry in addition to affecting TMEM16A activity. Our results suggest that the sodium-glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl- secretion supported by the Na+-K+-2Cl- cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium-glucose cotransporter-1, Na+-K+-2Cl- cotransporter, and apically located Cl- channels might underlie the efficient driving of Cl- secretion in different secretory epithelia from a variety of animal species.


Asunto(s)
Células Acinares , Florizina , Animales , Ratones , Células Acinares/metabolismo , Carbacol/farmacología , Cloruros/metabolismo , Glucosa , Florizina/farmacología , Sodio/metabolismo , Simportadores de Cloruro de Sodio-Potasio
5.
Genet Med ; 26(5): 101097, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334070

RESUMEN

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Asunto(s)
Lisosomas , Trastornos del Neurodesarrollo , Simportadores de Cloruro de Sodio-Potasio , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Simportadores de Cloruro de Sodio-Potasio/genética
6.
Gene ; 903: 148211, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280496

RESUMEN

Solute carrier family 12 member 8 (SLC12A8) is a nicotinamide mononucleotide transporter. Despite emerging evidence supporting its potential involvement in oncogenesis, a systematic pan-cancer analysis of SLC12A8 has not been performed. Thus, this research aimed to explore the prognostic implications of SLC12A8 and assess its possible immune-related functions across 33 different tumor types. And multiple datasets were retrieved from the databases of TCGA, GTEx, Broad Institute CCLE, TISCH, HPA, and GDSC2. After this data acquisition, bioinformatics analyses were conducted to assess the potential involvement of SLC12A8 in cancer pathogenesis. These analyses focused on examining the relationship between SLC12A8 and prognosis, drug sensitivity, chemotherapy response, immune checkpoints (ICPs), immune cell infiltration, and immunotherapy efficacy across various tumor types. Furthermore, experimental methods such as EdU assay, wound healing assay, and transwell assay were conducted to evaluate the cell proliferative and invasive abilities. Finally, the data analysis demonstrated that SLC12A8 was differentially expressed and predicted unfavorable survival outcomes in the majority of the tumor types in the TCGA dataset. Furthermore, a notable upregulation in the expression of SLC12A8 mRNA and protein was observed in cancer tissues compared to normal tissues. Additionally, the SLC12A8 levels demonstrated a strong association with ICPs, chemokines, immune-activating genes, immune-suppressive genes, chemokine receptors, chemotherapy response, and immunotherapy efficacy. In vitro experiments substantiated that knockdown of SLC12A8 restricted the malignant phenotypes of MDA-MB-231 and BT-549 cells. So SLC12A8 holds promise as a cancer biomarker with the capacity to interact with other ICPs to synergistically regulate the immune microenvironment. Thus, the identification of SLC12A8 contributes to the development of novel therapeutic strategies for enhancing the efficacy of immunotherapy.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/genética , Neoplasias/terapia , Carcinogénesis , Biomarcadores de Tumor/genética , Inmunoterapia , Microambiente Tumoral/genética , Simportadores de Cloruro de Sodio-Potasio
7.
Kidney360 ; 5(1): 133-141, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37968800

RESUMEN

The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.


Asunto(s)
Cloruros , Simportadores de Cloruro de Sodio-Potasio , Animales , Humanos , Cationes/metabolismo , Cloruros/metabolismo , Diuréticos/metabolismo , Túbulos Renales Distales/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12
8.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37563251

RESUMEN

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Asunto(s)
Cloruros , Simportadores de Cloruro de Sodio-Potasio , Humanos , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Cloruros/metabolismo , Microscopía por Crioelectrón , Miembro 3 de la Familia de Transportadores de Soluto 12 , Cationes/metabolismo
9.
Aging (Albany NY) ; 15(24): 15419-15433, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38157260

RESUMEN

OBJECTIVE: The goal of the study is to assess the clinical value and the potential mechanism of SLC12A9 combing transcriptome and single cell sequencing data. METHODS: In this study, the expression level and the receiver operating characteristic curve analysis of SLC12A9 in CRC and normal tissue were analyzed in multiple data cohort. The standardized mean difference (SMD) calculation and the summary receiver operating characteristic (SROC) analysis were performed further to detect its diagnostic ability and expression level. KM survival analysis was performed to assess the prognosis value of SLC12A9. The expression level of SLC12A9 in different clinical characteristics was analyzed to explore the clinical value. Single cell data was studied to reveal the potential mechanism of SLC12A9. The correlation analysis of immunoinfiltration was performed to detect the potential immune cell related to SLC12A9. The nomogram was drawn to assess the probable mortality rate of CRC patient. RESULTS: We found that SLC12A9 was significantly up-regulated with the moderate diagnostic value in CRC. Patients with overexpressed SLC12A9 had a worse prognosis. SLC12A9 was related to Age, Pathologic N stage, Pathologic M stage, Lymphatic invasion and Pathologic stage (p < 0.05). The 1, 3 and 5-year survival rates of patient named TCGA-G4-6309 are 0.959, 0.897 and 0.827. PCR also showed that SLC12A9 was overexpressed in CRC comparing with normal tissue. CONCLUSION: In conclusion, our study comprehensively analyzed the clinical value of SLC12A9 and its potential mechanism, as well as immune cell infiltration, which may accelerate the diagnosis and improve the prognosis of CRC.


Asunto(s)
Neoplasias Colorrectales , Nomogramas , Simportadores de Cloruro de Sodio-Potasio , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Pronóstico , Curva ROC , Análisis de Supervivencia , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1613-1621, 2023 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-37814877

RESUMEN

OBJECTIVE: To investigate the role of solute carrier family 12 member A8 (SLC12A8) in regulation of biological behaviors of bladder cancer and the mechanism mediating its effect. METHODS: The TCGA database was used to analyze SLC12A8 expression in bladder cancer and is correlation with prognosis and clinicopathological characteristics of the patients. In different bladder cancer cell lines, the effects of transient transfection with SLC12A8 siRNA on cell proliferation, invasion and migration ability were examined using CCK-8 assay, Transwell assay and scratch experiment. Gene set enrichment analysis (GSEA) was carried out to analyze pathway enrichment. The correlation of SLC12A8 with the expressions of epithelial-mesenchymal transition (EMT) markers was analyzed using Western blotting. The effect of colivelin on biological behaviors of the cells with SLC12A8 knockdown was assessed using CCK-8 and Transwell assays. RESULTS: SLC12A8 was highly expressed in bladder cancer (P<0.05) and associated with a poor prognosis and advanced pathological stages of the patients (P<0.05), and could serve as an independent prognostic factor. The bladder cancer cell lines with SLC12A8 knockdown showed significantly attenuated proliferation, invasion and migration capacities (P<0.05). GSEA identified significant gene enrichment in the JAK/STAT signaling pathway (P=0.008). Correlation analysis showed that SLC12A8 expression was negatively correlated with E- cadherin expression (r=-0.167, P<0.001) but positively with N-cadherin (r=0.306, P<0.001) and vimentin (r=0.358, P<0.001) expressions. The bladder cancer cells with SLC12A8 knockdown showed significantly decreased expressions of p-Jak2, p-Stat3, N-cadherin and vimentin proteins with an increased expression of E-cadherin. Treatment with colivelin effectively enhanced proliferation, invasion and migration capacities of the bladder cancer cells with SLC12A8 knockdown (P<0.05). CONCLUSION: SLC12A8 promotes bladder cancer progression by activating the JAK/STAT signaling pathway and its high expression is closely associated with a poor prognosis of the patients.


Asunto(s)
Transición Epitelial-Mesenquimal , Simportadores de Cloruro de Sodio-Potasio , Neoplasias de la Vejiga Urinaria , Humanos , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Vimentina/metabolismo
11.
PeerJ ; 11: e16025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904849

RESUMEN

Background: Wilms' tumor (WT) is one of the most common solid tumors in children with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. Many genes are associated with the occurrence and prognosis of WT. This study aimed to explore the key genes and potential molecular mechanisms through bioinformatics and to verify the effects of aquaporin 1 (AQP1) on WT metastasis. Methods: Differentially expressed genes (DEGs) were generated from WT gene expression data sets from the Gene Expression Omnibus (GEO) database. Gene functional enrichment analysis was carried out with the Database for Annotation, Visualization and Integrated Discovery (DAVID). A protein-protein interaction network (PPI) was constructed and visualized by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape software. Minimal Common Oncology Data Elements (MCODE) was used to detect the important modules in the PPI network, and the important nodes (genes) in the PPI module were sorted by CytoHubba. RT-qPCR was performed to validate the expression of the key genes in WT. Wound healing and Transwell assays were used to detect the cell migration and invasion abilities of AQP1-overexpressing cells. Phalloidin-iFlour 488 was used to stain the cytoskeleton to observe how AQP1 overexpression affects cytoskeletal microfilament structure. Results: A total of 73 co-expressed DEGs were chosen for further investigation. The importance of homeostasis and transmembrane transport of ions and water were highlighted by functional analysis. Gene regulatory network and PPI network were predicted. MCODE plug identified two important modules. Finally, top five key genes were identified using CytoHubba, including Renin (REN), nephrosis 2 (NPHS2), Solute Carrier Family 12 Member 3 (SLC12A3), Solute Carrier Family 12 Member 1 (SLC12A1) and AQP1. The five key genes were mainly enriched in cell volume and ion homeostasis. RT-qPCR confirmed the expression of the five key genes in WT. AQP1 was validated to be expressed at significantly lower levels in WT than in normal tissue. AQP1 overexpression significantly reduced the migratory and invasive capacity of Wit-49 cells, as evidenced by reducing the scratch healing rate and the number of perforated control cells by Wit-49 cells. AQP1 overexpression also reduced the expression of biomarkers of epithelial-mesenchymal transformation, decreased levels of vimentin and N-cadherin and increased expression of E-cadherin, resulting in decreased formation of conspicuous lamellipodial protrusions, characteristic of diminished WT cell invasion and migration. Conclusion: Our study reveals the key genes of WT. These key genes may provide novel insight for the mechanism and diagnosis of WT. AQP1 overexpression inhibited invasion, migration, EMT, and cytoskeletal rearrangement of WT cells, indicating that AQP1 plays a role in the pathogenesis of WT.


Asunto(s)
Perfilación de la Expresión Génica , Tumor de Wilms , Niño , Humanos , Acuaporina 1/genética , Biomarcadores , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Tumor de Wilms/genética
12.
J Cancer Res Clin Oncol ; 149(18): 16729-16739, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37725242

RESUMEN

PURPOSE: Epidermal growth factor receptor (EGFR) mutation is a prominent driver of lung cancer. Tyrosine kinase inhibitors (TKIs) have shown efficacy in treating EGFR-mutant lung cancer, but the emergence of drug resistance poses a significant challenge. Recent research has highlighted solute carrier family 12 member 8 (SLC12A8) as one of the highly upregulated genes in various cancer types. However, its oncogenic function remains largely unexplored. METHODS: 343 consecutive lung cancer patients were prospectively recruited and were followed for over 10 years. SLC12A8 expression in lung cancer tissues was measured by qPCR and was associated with patient survival. The association of SLC12A8 with TKI resistance was studied in in vitro EGFR-mutant lung cancer cell line as well as in in vivo xenograft tumor model. High-throughput kinome screening was employed to investigate SLC12A8-mediated oncogenic signaling pathway in lung cancer. RESULTS: SLC12A8 is a predictive biomarker of poor prognosis in lung cancer, particularly in patients with EGFR mutations. SLC12A8 overexpression diminishes the effectiveness of TKIs in EGFR-mutant lung cancer, resulting in treatment failure and disease progression. More importantly, SLC12A8-induced TKI resistance is mediated by the PDK1/AKT signaling axis, while silencing SLC12A8 expression inhibits oncogenic PDK1/AKT signaling, restoring TKI sensitivity in lung cancer cells. CONCLUSION: SLC12A8 mediates TKI resistance in EGFR-mutant lung cancer via PDK1/AKT axis. These findings not only advance our understanding of the molecular mechanisms driving TKI resistance, but also offer novel alternative strategies for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Simportadores de Cloruro de Sodio-Potasio , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética
13.
J Histochem Cytochem ; 71(9): 509-510, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534586

RESUMEN

The author of the accompanying classic paper from the Journal of Histochemistry and Cytochemistry (Crouch JJ, Sakaguchi N, Lytle C, Schulte BA. Immunohistochemical localization of the Na-K-Cl Co-transporter (NKCC1) in the Gerbil Inner Ear. Journal of Histochemistry & Cytochemistry 1997;45(6):773-778) comments on how the immunohistochemical techniques used in the study provided critical new information that helped define the cellular and molecular mechanisms involved in the generation and maintenance of electrochemical gradients in the ear, particularly the presence of the Na,K,2Cl symporter (NKCC) in the inner ear. (J Histochem Cytochem 71: 509-510, 2023).


Asunto(s)
Oído Interno , Inmunohistoquímica , Simportadores de Cloruro de Sodio-Potasio , Cóclea
14.
Am J Physiol Cell Physiol ; 325(2): C385-C390, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399495

RESUMEN

Mutations in the SLC12A2 gene, which encodes the Na-K-2Cl cotransporter-1 (NKCC1), are linked to various conditions such as neurodevelopmental deficits, deafness, and fluid secretion in different epithelia. Cases of complete NKCC1 deficiency in young patients are straightforward, leading to clinical presentations that overlap with the phenotypes observed in NKCC1 knockout mouse models. However, cases involving deleterious variants in one allele are more difficult, as the clinical presentation is variable, and the cause-effect relationship is not always clear. For instance, we worked on a single patient's case from multiple angles and published six related papers to convince ourselves of the cause-and-effect relationship between her NKCC1 mutation and her clinical presentations. The cluster of mutations in a small portion of the carboxyl terminus and its association with deafness point to a cause-and-effect relationship, even if the molecular mechanism is unknown. Overall, the preponderance of evidence suggests that the SLC12A2 gene is a human disease-causing and likely haploinsufficient gene that requires further investigation.


Asunto(s)
Sordera , Simportadores , Humanos , Ratones , Animales , Femenino , Simportadores/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Ratones Noqueados , Mutación/genética
15.
Sci Rep ; 13(1): 5685, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069177

RESUMEN

Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the maternally expressed UBE3A gene. Treatments for the main manifestations, including cognitive dysfunction or epilepsy, are still under development. Recently, the Cl- importer Na+-K+-Cl- cotransporter 1 (NKCC1) and the Cl- exporter K+-Cl- cotransporter 2 (KCC2) have garnered attention as therapeutic targets for many neurological disorders. Dysregulation of neuronal intracellular Cl- concentration ([Cl-]i) is generally regarded as one of the mechanisms underlying neuronal dysfunction caused by imbalanced expression of these cation-chloride cotransporters (CCCs). Here, we analyzed the regulation of [Cl-]i and the effects of bumetanide, an NKCC1 inhibitor, in Angelman syndrome models (Ube3am-/p+ mice). We observed increased NKCC1 expression and decreased KCC2 expression in the hippocampi of Ube3am-/p+ mice. The average [Cl-]i of CA1 pyramidal neurons was not significantly different but demonstrated greater variance in Ube3am-/p+ mice. Tonic GABAA receptor-mediated Cl- conductance was reduced, which may have contributed to maintaining the normal average [Cl-]i. Bumetanide administration restores cognitive dysfunction in Ube3am-/p+ mice. Seizure susceptibility was also reduced regardless of the genotype. These results suggest that an imbalanced expression of CCCs is involved in the pathophysiological mechanism of Ube3am-/p+ mice, although the average [Cl-]i is not altered. The blockage of NKCC1 may be a potential therapeutic strategy for patients with Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Epilepsia , Simportadores , Ratones , Animales , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Bumetanida/farmacología , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/genética , Cloruros/metabolismo , Simportadores/genética , Simportadores/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Receptores de GABA-A
16.
Am J Physiol Renal Physiol ; 324(5): F446-F460, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36892908

RESUMEN

The thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. The function of the TAL depends on the activity of the bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), which is highly abundant in the luminal membrane of TAL cells. TAL function is regulated by various hormonal and nonhormonal factors. However, many of the underlying signal transduction pathways remain elusive. Here, we describe and characterize a novel gene-modified mouse model for an inducible and specific Cre/Lox-mediated gene modification in the TAL. In these mice, tamoxifen-dependent Cre (CreERT2) was inserted into the 3'-untranslated region of the Slc12a1 gene, which encodes NKCC2 (Slc12a1-CreERT2). Although this gene modification strategy slightly reduced endogenous NKCC2 expression at the mRNA and protein levels, the lowered NKCC2 abundance was not associated with altered urinary fluid and ion excretion, urinary concentration, and the renal response to loop diuretics. Immunohistochemistry on kidneys from Slc12a1-CreERT2 mice revealed strong Cre expression exclusively in TAL cells but not in any other nephron portion. Cross-breeding of these mice with the mT/mG reporter mouse line showed a very low recombination rate (∼0% in male mice and <3% in female mice) at baseline but complete (∼100%) recombination after repeated tamoxifen administration in male and female mice. The achieved recombination encompassed the entire TAL and also included the macula densa. Thus, the new Slc12a1-CreERT2 mouse line allows inducible and very efficient gene targeting in the TAL and hence promises to be a powerful tool to advance our understanding of the regulation of TAL function.NEW & NOTEWORTHY The renal thick ascending limb (TAL) is critical for renal control of fluid and ion homeostasis. However, the underlying molecular mechanisms that regulate TAL function are incompletely understood. This study describes a novel transgenic mouse model (Slc12a1-creERT2) for inducible and highly efficient gene targeting in the TAL that promises to ease physiological studies on the functional role of candidate regulatory genes.


Asunto(s)
Riñón , Simportadores de Cloruro de Sodio-Potasio , Femenino , Ratones , Masculino , Animales , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Riñón/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Sodio/metabolismo , Modelos Animales de Enfermedad
17.
FASEB J ; 37(4): e22834, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961378

RESUMEN

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Ratones , Humanos , Ratas , Femenino , Animales , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Simportadores del Cloruro de Sodio/genética , Simportadores del Cloruro de Sodio/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Cloruros/metabolismo , Preeclampsia/inducido químicamente , Preeclampsia/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Placenta/metabolismo , Túbulos Renales Distales/metabolismo , Hipertensión/metabolismo , Sodio/metabolismo , Potasio/metabolismo , Tetraspanina 28/metabolismo
18.
PLoS Genet ; 19(1): e1010581, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36626385

RESUMEN

Glial cells play a critical role in maintaining homeostatic ion concentration gradients. Salt-inducible kinase 3 (SIK3) regulates a gene expression program that controls K+ buffering in glia, and upregulation of this pathway suppresses seizure behavior in the eag, Shaker hyperexcitability mutant. Here we show that boosting the glial SIK3 K+ buffering pathway suppresses seizures in three additional molecularly diverse hyperexcitable mutants, highlighting the therapeutic potential of upregulating glial K+ buffering. We then explore additional mechanisms regulating glial K+ buffering. Fray, a transcriptional target of the SIK3 K+ buffering program, is a kinase that promotes K+ uptake by activating the Na+/K+/Cl- co-transporter, Ncc69. We show that the Wnk kinase phosphorylates Fray in Drosophila glia and that this activity is required to promote K+ buffering. This identifies Fray as a convergence point between the SIK3-dependent transcriptional program and Wnk-dependent post-translational regulation. Bypassing both regulatory mechanisms via overexpression of a constitutively active Fray in glia is sufficient to robustly suppress seizure behavior in multiple Drosophila models of hyperexcitability. Finally, we identify cortex glia as a critical cell type for regulation of seizure susceptibility, as boosting K+ buffering via expression of activated Fray exclusively in these cells is sufficient to suppress seizure behavior. These findings highlight Fray as a key convergence point for distinct K+ buffering regulatory mechanisms and cortex glia as an important locus for control of neuronal excitability.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo , Convulsiones/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética
19.
Biosci Rep ; 42(11)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36305246

RESUMEN

Hypertension affects 30% of adults and is the leading risk factor for cardiovascular disease. Kidney sodium reabsorption plays a vital role in the initial stage and development of essential hypertension. It has been extensively reported that the variants of kidney ion handling genes are associated to blood pressure, and clinical features of hypertension. However, the underlying mechanisms by which these variants alter protein function are rarely summarized. In addition, the variation of one single gene is often limited to induce a significant effect on blood pressure. In the past few decades, the influence by genes × genes (G × G) and/or genotype × environment (G × E) interactions on a given trait, for example, blood pressure, have been widely considered, especially in studies on polygenic genetic traits. In the present review, we discuss the progress in genetics studies on kidney ion handling genes, encoding Na+ channels (Na+-Cl- cotransporter [NCC], Na-K-2Cl cotransporter [NKCC2], epithelial Na+ channels [ENaCs]), K+ channel (renal outer medullary potassium channel [ROMK]), and Cl- channels (Pendrin, chloride voltage-gated channel Kb [CLC-Kb]), respectively, and their upstream kinases, WNKs and SGK1. We seek to clarify how these genes are involved in kidney sodium absorption and influence blood pressure, especially emphasizing the underlying mechanisms by which genetic variants alter protein functions and interaction in blood pressure regulation. The present review aims to enhance our understanding of the important role of kidney ion handling genes/channels in blood pressure control.


Asunto(s)
Hipertensión , Riñón , Adulto , Humanos , Presión Sanguínea/genética , Riñón/metabolismo , Sodio , Simportadores de Cloruro de Sodio-Potasio , Miembro 3 de la Familia de Transportadores de Soluto 12
20.
J Cell Physiol ; 237(12): 4356-4368, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36125923

RESUMEN

Bone turnover diseases are exceptionally prevalent in human and come with a high burden on physical health. While these diseases are associated with a variety of risk factors and causes, they are all characterized by common denominators, that is, abnormalities in the function or number of osteoblasts, osteoclasts, and/or osteocytes. As such, much effort has been deployed in the recent years to understand the signaling mechanisms of bone cell proliferation and differentiation with the objectives of exploiting the intermediates involved as therapeutic preys. Ion transport systems at the external and in the intracellular membranes of osteoblasts and osteoclasts also play an important role in bone turnover by coordinating the movement of Ca2+ , PO4 2- , and H+ ions in and out of the osseous matrix. Even if they sustain the terminal steps of osteoformation and osteoresorption, they have been the object of very little attention in the last several years. Members of the cation-Cl- cotransporter (CCC) family are among the systems at work as they are expressed in bone cells, are known to affect the activity of Ca2+ -, PO4 2- -, and H+ -dependent transport systems and have been linked to bone mass density variation in human. In this review, the roles played by the CCCs in bone remodeling will be discussed in light of recent developments and their potential relevance in the treatment of skeletal disorders.


Asunto(s)
Osteocitos , Simportadores , Humanos , Cationes/metabolismo , Transporte Iónico/fisiología , Osteocitos/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Simportadores/metabolismo , Remodelación Ósea , Densidad Ósea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA