Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Metallomics ; 15(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37994650

RESUMEN

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.


Asunto(s)
Fósforo Dietético , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Fósforo Dietético/metabolismo , Fósforo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Homeodominio/metabolismo
2.
Cell Rep ; 38(4): 110293, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081357

RESUMEN

Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/fisiología , Simportadores de Protón-Fosfato/metabolismo , Simbiosis/fisiología , Animales , Células CACO-2 , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
3.
Biochem J ; 478(2): 357-375, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33394033

RESUMEN

Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citrulina/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
4.
PLoS Genet ; 15(9): e1008383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525194

RESUMEN

Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.


Asunto(s)
Adaptación Biológica/genética , Hibridación Genética/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/genética , Evolución Biológica , Quimera/genética , Frío , Aptitud Genética/genética , Variación Genética/genética , Genoma Fúngico/genética , Genotipo , Simportadores de Protón-Fosfato/genética , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
5.
Mol Biochem Parasitol ; 233: 111212, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445076

RESUMEN

Here we characterize a high-affinity Pi transport system energized by a H+ gradient in Leishmania amazonensis. Pi uptake and transcription of LamPho84 gene are differentially regulated during parasite life cycle. Our data suggest that Pi acquisition could be a pivotal task for the success of the parasite throughout its life cycle.


Asunto(s)
Leishmania/metabolismo , Simportadores de Protón-Fosfato , Animales , Proliferación Celular , Regulación de la Expresión Génica , Genes Protozoarios , Estadios del Ciclo de Vida , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas Protozoarias/metabolismo
6.
Bioengineered ; 10(1): 335-344, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31322471

RESUMEN

Selenium-enriched yeast can transform toxic inorganic selenium into absorbable organic selenium, which is of great significance for human health and pharmaceutical industry. A yeast Rhodotorula glutinis X-20 we obtained before has good selenium-enriched ability, but its selenium content is still low for industrial application. In this study, strategies of process optimization and transport regulation of selenium were thus employed to further improve the cell growth and selenium enrichment. Through engineering phosphate transporters from Saccharomyces cerevisiae into R. glutinis X-20, the selenium content was increased by 21.1%. Through using mixed carbon culture (20 g L-1, glycerol: glucose 3:7), both biomass and selenium content were finally increased to 5.3 g L-1 and 5349.6 µg g-1 (cell dry weight, DWC), which were 1.14 folds and 6.77 folds compared to their original values, respectively. Our results indicate that high selenium-enrichment ability and biomass production can be achieved through combining process optimization and regulation of selenium transport.


Asunto(s)
Ingeniería Metabólica/métodos , Fosfatos/metabolismo , Rhodotorula/genética , Saccharomyces cerevisiae/genética , Selenio/metabolismo , Transgenes , Transporte Biológico , Biomasa , Medios de Cultivo/química , Medios de Cultivo/farmacología , Fermentación , Expresión Génica , Glucosa/química , Glucosa/metabolismo , Glicerol/química , Glicerol/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180237, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31154981

RESUMEN

Eukaryotic genomes contain thousands of genes organized into complex and interconnected genetic interaction networks. Most of our understanding of how genetic variation affects these networks comes from quantitative-trait loci mapping and from the systematic analysis of double-deletion (or knockdown) mutants, primarily in the yeast Saccharomyces cerevisiae. Evolve and re-sequence experiments are an alternative approach for identifying novel functional variants and genetic interactions, particularly between non-loss-of-function mutations. These experiments leverage natural selection to obtain genotypes with functionally important variants and positive genetic interactions. However, no systematic methods for detecting genetic interactions in these data are yet available. Here, we introduce a computational method based on the idea that variants in genes that interact will co-occur in evolved genotypes more often than expected by chance. We apply this method to a previously published yeast experimental evolution dataset. We find that genetic targets of selection are distributed non-uniformly among evolved genotypes, indicating that genetic interactions had a significant effect on evolutionary trajectories. We identify individual gene pairs with a statistically significant genetic interaction score. The strongest interaction is between genes TRK1 and PHO84, genes that have not been reported to interact in previous systematic studies. Our work demonstrates that leveraging parallelism in experimental evolution is useful for identifying genetic interactions that have escaped detection by other methods. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Asunto(s)
Biología Computacional/métodos , Epistasis Genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte de Catión/genética , Evolución Molecular , Redes Reguladoras de Genes , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Cells ; 8(5)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096715

RESUMEN

Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.


Asunto(s)
Polifosfatos/metabolismo , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Anhídrido Hidrolasas/genética , Manganeso/toxicidad , Estrés Oxidativo/fisiología
9.
Genes Genet Syst ; 93(5): 199-207, 2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30449767

RESUMEN

To achieve inorganic phosphate (Pi) homeostasis, cells must be able to sense intracellular and extracellular Pi concentrations. In the Pi signaling (PHO) pathway in Saccharomyces cerevisiae, high Pi represses genes involved in Pi uptake (e.g., PHO84) and Pi utilization (PHO5); conversely, the cyclin-dependent kinase inhibitor Pho81 inhibits the activity of the Pho80-Pho85 cyclin-cyclin dependent kinase complex in low-Pi conditions, leading to induction of these genes. However, how yeast senses Pi availability remains unresolved. To identify factors involved in Pi sensing upstream of the Pho81-Pho80-Pho85 complex, we generated and screened suppressor mutants of a Δpho84 strain that shows constitutive PHO5 expression. By a series of genetic tests, including dominance-recessiveness, complementation and tetrad analyses, three sef (suppressor of pho84 [pho eighty-four]) mutants (sef8, sef9 and sef10) were shown to contain a novel single mutation. The sef mutants suppressed the phenotype of constitutive PHO5 expression at the transcriptional level, but did not show restored Pi uptake capacity. An epistasis-hypostasis test revealed that the sef mutations were hypostatic to pho80 mutation, indicating that their gene products function upstream of the Pho81-Pho80-Pho85 complex in the PHO pathway. The sef mutations identified are associated with gene(s) that may be involved in the homeostasis of an intracellular Pi level-sensing mechanism in S. cerevisiae.


Asunto(s)
Fosfatos/metabolismo , Simportadores de Protón-Fosfato/antagonistas & inhibidores , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatasa Ácida/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Mutación , Fenotipo , Simportadores de Protón-Fosfato/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
10.
PLoS Pathog ; 14(7): e1007076, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30059535

RESUMEN

Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.


Asunto(s)
Candida albicans/patogenicidad , Candidiasis/metabolismo , Estrés Oxidativo/fisiología , Simportadores de Protón-Fosfato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Transporte Biológico/fisiología , Drosophila , Proteínas Fúngicas/metabolismo , Humanos , Ratones , Fosfatos/metabolismo , Transducción de Señal/fisiología , Virulencia
11.
Fungal Genet Biol ; 115: 20-32, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29627365

RESUMEN

The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.


Asunto(s)
Blastocladiella/genética , Secuencia Conservada/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Blastocladiella/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis/genética , Proteoma/genética , Proteoma/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Esporas Fúngicas
12.
Genetics ; 208(1): 191-205, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141908

RESUMEN

SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (transcription factor IID) have been previously shown to facilitate the formation of the PIC (pre-initiation complex) at the promoters of two distinct sets of genes. Here, we demonstrate that TFIID and SAGA differentially participate in the stimulation of PIC formation (and hence transcriptional initiation) at the promoter of PHO84, a gene for the high-affinity inorganic phosphate (Pi) transporter for crucial cellular functions, in response to nutrient signaling. We show that transcriptional initiation of PHO84 occurs predominantly in a TFIID-dependent manner in the absence of Pi in the growth medium. Such TFIID dependency is mediated via the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase (HAT). Intriguingly, transcriptional initiation of PHO84 also occurs in the presence of Pi in the growth medium, predominantly via the SAGA complex, but independently of NuA4 HAT. Thus, Pi in the growth medium switches transcriptional initiation of PHO84 from NuA4-TFIID to SAGA dependency. Further, we find that both NuA4-TFIID- and SAGA-dependent transcriptional initiations of PHO84 are facilitated by the 19S proteasome subcomplex or regulatory particle (RP) via enhanced recruitment of the coactivators SAGA and NuA4 HAT, which promote TFIID-independent and -dependent PIC formation for transcriptional initiation, respectively. NuA4 HAT does not regulate activator binding to PHO84, but rather facilitates PIC formation for transcriptional initiation in the absence of Pi in the growth medium. On the other hand, SAGA promotes activator recruitment to PHO84 for transcriptional initiation in the growth medium containing Pi. Collectively, our results demonstrate two distinct stimulatory pathways for PIC formation (and hence transcriptional initiation) at PHO84 by TFIID, SAGA, NuA4, and 19S RP in the presence and absence of an essential nutrient, Pi, in the growth media, thus providing new regulatory mechanisms of transcriptional initiation in response to nutrient signaling.


Asunto(s)
Regulación de la Expresión Génica , Fenómenos Fisiológicos de la Nutrición/genética , Activación Transcripcional , Medios de Cultivo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Transducción de Señal , Levaduras/genética , Levaduras/metabolismo
13.
PLoS Biol ; 15(12): e2002039, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29236696

RESUMEN

Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.


Asunto(s)
Aumento de la Célula , Fosfatos/metabolismo , Medios de Cultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales
14.
BMC Genomics ; 18(1): 701, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28877665

RESUMEN

BACKGROUND: Ion homeostasis is an essential property of living organisms. The yeast Saccharomyces cerevisiae is an ideal model organism to investigate ion homeostasis at all levels. In this yeast genes involved in high-affinity phosphate uptake (PHO genes) are strongly induced during both phosphate and potassium starvation, indicating a link between phosphate and potassium homeostasis. However, the signal transduction processes involved are not completely understood. As 14-3-3 proteins are key regulators of signal transduction processes, we investigated the effect of deletion of the 14-3-3 genes BMH1 or BMH2 on gene expression during potassium starvation and focused especially on the expression of genes involved in phosphate uptake. RESULTS: Genome-wide analysis of the effect of disruption of either BMH1 or BMH2 revealed that the mRNA levels of the PHO genes PHO84 and SPL2 are greatly reduced in the mutant strains compared to the levels in wild type strains. This was especially apparent at standard potassium and phosphate concentrations. Furthermore the promoter of these genes is less active after deletion of BMH1. Microscopic and flow cytometric analysis of cells with GFP-tagged SPL2 showed that disruption of BMH1 resulted in two populations of genetically identical cells, cells expressing the protein and the majority of cells with no detectible expression. Heterogeneity was also observed for the expression of GFP under control of the PHO84 promoter. Upon deletion of PHO80 encoding a regulator of the transcription factor Pho4, the effect of the BMH1 deletion on SPL2 and PHO84 promoter was lost, suggesting that the BMH1 deletion mainly influences processes upstream of the Pho4 transcription factor. CONCLUSION: Our data indicate that that yeast cells can be in either of two states, expressing or not expressing genes required for high-affinity phosphate uptake and that 14-3-3 proteins are involved in the process(es) that establish the activation state of the PHO regulon.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas 14-3-3/deficiencia , Transporte Biológico/genética , Fosfatos/metabolismo , Potasio/metabolismo
15.
FEMS Yeast Res ; 17(5)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810702

RESUMEN

Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(24): 6346-6351, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28566496

RESUMEN

The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Hifa/genética , Hifa/crecimiento & desarrollo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Simportadores de Protón-Fosfato/antagonistas & inhibidores , Simportadores de Protón-Fosfato/genética , Regulón , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
17.
Molecules ; 22(5)2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28445410

RESUMEN

Aromatic substitution reactions between 1,3-diaminobenzene and chloronitrobenzofurazan derivatives have never been reported so far. The aim of the current study was to synthesize novel electron-donor and -acceptor architectures of interest in applied fields and to provide new insights on the nucleophilic behavior of 1,3-diaminobenzenes. The reaction of 1,3-dipiperidinyl-, 1,3-dimorpholinyl-, 1,3-dipyrrolidinyl-, or 1,3-dimethylamino-benzene with 7-chloro-4,6-dinitrobenzofuroxan or with a series of chloro-nitrobenzofurazans has been carried out in mild conditions. The partners reactivity has been investigated by monitoring the reaction course through ¹H-NMR spectroscopy. The reaction occurred in a regioselective way, providing in good yields the novel C-C coupling compounds. Indications on the reactivity behavior for the studied nucleophiles have been relieved.


Asunto(s)
Derivados del Benceno/química , Benzofuranos/química , Diaminas/química , Simportadores de Protón-Fosfato , Teoría Cuántica
18.
Exp Parasitol ; 173: 1-8, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27956087

RESUMEN

Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.


Asunto(s)
Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/metabolismo , Trypanosomatina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Potenciales de la Membrana , Simportadores de Protón-Fosfato/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/genética , Trypanosomatina/genética , Regulación hacia Arriba
19.
Biochem Soc Trans ; 44(5): 1541-1548, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911737

RESUMEN

The plant PHosphate Transporter 1 (PHT1) family of membrane proteins belongs to the major facilitator super family and plays a major role in the acquisition of inorganic phosphate (Pi) from the soil and its transport within the plant. These transporters have been well characterized for expression patterns, localization, and in some cases affinity. Furthermore, the crystal structure of a high-affinity eukaryotic phosphate transporter from the fungus Piriformospora indica (PiPT) has revealed important information on the residues involved in Pi transport. Using multiple-sequence alignments and homology modelling, the phosphate-binding site residues were shown to be well conserved between all the plant PHT1 proteins, Saccharomyces cerevisiae PHO84 and PiPT. For example, Asp 324 in PiPT is conserved in the equivalent position in all plant PHT1 and yeast transporters analyzed, and this residue in ScPHO84 was shown by mutagenesis to be important for both the binding and transport of Pi. Moreover, Asp 45 and Asp 149, which are predicted to be involved in proton import, and Lys 459, which is putatively involved in Pi-binding, are all fully conserved in PHT1 and ScPHO84 transporters. The conserved nature of the residues that play a key role in Pi-binding and transport across the PHT1 family suggests that the differing Pi affinities of these transporters do not reside in differences in the Pi-binding site. Recent studies suggest that phosphate transporters could possess dual affinity and that post-translational modifications may be important in regulating affinity for phosphate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , Unión Competitiva , Evolución Molecular , Proteínas de Transporte de Fosfato/genética , Unión Proteica , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
20.
J Biol Chem ; 291(51): 26388-26398, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27875295

RESUMEN

Pho84, a major facilitator superfamily (MFS) protein, is the main high-affinity Pi transceptor in Saccharomyces cerevisiae Although transport mechanisms have been suggested for other MFS members, the key residues and molecular events driving transport by Pi:H+ symporters are unclear. The current Pho84 transport model is based on the inward-facing occluded crystal structure of the Pho84 homologue PiPT in the fungus Piriformospora indica However, this model is limited by the lack of experimental data on the regulatory residues for each stage of the transport cycle. In this study, an open, inward-facing conformation of Pho84 was used to study the release of Pi A comparison of this conformation with the model for Pi release in PiPT revealed that Tyr179 in Pho84 (Tyr150 in PiPT) is not part of the Pi binding site. This difference may be due to a lack of detailed information on the Pi release step in PiPT. Molecular dynamics simulations of Pho84 in which a residue adjacent to Tyr179, Asp178, is protonated revealed a conformational change in Pho84 from an open, inward-facing state to an occluded state. Tyr179 then became part of the binding site as was observed in the PiPT crystal structure. The importance of Tyr179 in regulating Pi release was supported by site-directed mutagenesis and transport assays. Using trehalase activity measurements, we demonstrated that the release of Pi is a critical step for transceptor signaling. Our results add to previous studies on PiPT, creating a more complete picture of the proton-coupled Pi transport cycle of a transceptor.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatos/química , Simportadores de Protón-Fosfato/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Biológico Activo/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA