Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.540
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 152, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289761

RESUMEN

A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Organoides , Sinapsis , Humanos , Organoides/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Células Madre Pluripotentes Inducidas/patología , Sinapsis/patología , Sinapsis/genética , Masculino , Femenino , Corteza Cerebral/patología , Expansión de las Repeticiones de ADN/genética
2.
Sci Adv ; 10(36): eadn2321, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39231235

RESUMEN

Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1. To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.


Asunto(s)
Ataxia Cerebelosa , Expansión de las Repeticiones de ADN , Células Madre Pluripotentes Inducidas , Neuronas , Proteína de Replicación C , Sinapsis , Humanos , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Expansión de las Repeticiones de ADN/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/metabolismo , Sinapsis/metabolismo , Sinapsis/genética , Vestibulopatía Bilateral/genética , Vestibulopatía Bilateral/metabolismo , Enfermedades Vestibulares/genética , Alelos
3.
Trends Neurosci ; 47(9): 665-666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39191629

RESUMEN

Recent work by Giusti and colleagues showed that circTulp4 modulates excitatory synaptic strength. Knocking down circTulp4 disrupts the excitation-inhibition (E/I) balance in mice and leads to hypersensitivity toward aversive stimuli. These observations update our appreciation of the functions of circular (circ)RNA in the nervous system and their potential implication in neurodevelopmental and neuropsychiatric disorders.


Asunto(s)
Sinapsis , Animales , Ratones , Sensación/fisiología , Sinapsis/genética , Sinapsis/metabolismo , ARN Circular/genética , ARN Circular/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141354

RESUMEN

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Asunto(s)
Plasticidad Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Humanos , Plasticidad Neuronal/genética , Simulación por Computador , Potenciación a Largo Plazo/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/genética , Electroencefalografía , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Modelos Neurológicos , Depresión Sináptica a Largo Plazo/genética , Masculino , Potenciales Evocados Visuales/fisiología
6.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111834

RESUMEN

MicroRNAs are emerging as crucial regulators within the complex, dynamic environment of the synapse, and they offer a promising new avenue for the treatment of neurological disease. These small noncoding RNAs modify gene expression in several ways, including posttranscriptional modulation via binding to complementary and semicomplementary sites on target mRNAs. This rapid, finely tuned regulation of gene expression is essential to meet the dynamic demands of the synapse. Here, we provide a detailed review of the multifaceted world of synaptic microRNA regulation. We discuss the many mechanisms by which microRNAs regulate gene expression at the synapse, particularly in the context of neuronal plasticity. We also describe the various factors, such as age, sex, and neurological disease, that can influence microRNA expression and activity in neurons. In summary, microRNAs play a crucial role in the intricate and quickly changing functional requirements of the synapse, and context is essential in the study of microRNAs and their potential therapeutic applications.


Asunto(s)
Encéfalo , MicroARNs , Plasticidad Neuronal , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/genética , Sinapsis/metabolismo , Sinapsis/genética , Regulación de la Expresión Génica
7.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39054069

RESUMEN

Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial dynamics. Vesicle-associated membrane protein-associated protein B (VapB) is an ER membrane protein present at a subset of ER-mitochondrial contact sites. A proline-to-serine mutation in VapB at amino acid 56 (P56S) correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrated that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild-type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondrial tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales Modificados Genéticamente , Mitocondrias , Sinapsis , Pez Cebra , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Sinapsis/metabolismo , Sinapsis/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Neuronas/metabolismo , Humanos , Mutación , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Mitofagia/genética , Mitofagia/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Mol Med ; 30(1): 101, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997636

RESUMEN

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a highly heterogenous neurodegenerative disorder that primarily affects upper and lower motor neurons, affecting additional cell types and brain regions. Underlying molecular mechanisms are still elusive, in part due to disease heterogeneity. Molecular disease subtyping through integrative analyses including RNA editing profiling is a novel approach for identification of molecular networks involved in pathogenesis. METHODS: We aimed to highlight the role of RNA editing in ALS, focusing on the frontal cortex and the prevalent molecular disease subtype (ALS-Ox), previously determined by transcriptomic profile stratification. We established global RNA editing (editome) and gene expression (transcriptome) profiles in control and ALS-Ox cases, utilizing publicly available RNA-seq data (GSE153960) and an in-house analysis pipeline. Functional annotation and pathway analyses identified molecular processes affected by RNA editing alterations. Pearson correlation analyses assessed RNA editing effects on expression. Similar analyses on additional ALS-Ox and control samples (GSE124439) were performed for verification. Targeted re-sequencing and qRT-PCR analysis targeting CACNA1C, were performed using frontal cortex tissue from ALS and control samples (n = 3 samples/group). RESULTS: We identified reduced global RNA editing in the frontal cortex of ALS-Ox cases. Differentially edited transcripts are enriched in synapses, particularly in the glutamatergic synapse pathway. Bioinformatic analyses on additional ALS-Ox and control RNA-seq data verified these findings. We identified increased recoding at the Q621R site in the GRIK2 transcript and determined positive correlations between RNA editing and gene expression alterations in ionotropic receptor subunits GRIA2, GRIA3 and the CACNA1C transcript, which encodes the pore forming subunit of a post-synaptic L-type calcium channel. Experimental data verified RNA editing alterations and editing-expression correlation in CACNA1C, highlighting CACNA1C as a target for further study. CONCLUSIONS: We provide evidence on the involvement of RNA editing in the frontal cortex of an ALS molecular subtype, highlighting a modulatory role mediated though recoding and gene expression regulation on glutamatergic synapse related transcripts. We report RNA editing effects in disease-related transcripts and validated editing alterations in CACNA1C. Our study provides targets for further functional studies that could shed light in underlying disease mechanisms enabling novel therapeutic approaches.


Asunto(s)
Esclerosis Amiotrófica Lateral , Lóbulo Frontal , Edición de ARN , Sinapsis , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Lóbulo Frontal/metabolismo , Sinapsis/metabolismo , Sinapsis/genética , Transcriptoma , Perfilación de la Expresión Génica , Ácido Glutámico/metabolismo , Biología Computacional/métodos , Masculino , Femenino , Regulación de la Expresión Génica , Persona de Mediana Edad
9.
Mol Cell ; 84(15): 2822-2837.e11, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025074

RESUMEN

Histone proteins affect gene expression through multiple mechanisms, including through exchange with histone variants. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. Most notably, widely expressed variants of H2B remain elusive. We applied recently developed antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters, and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Further, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a mechanism linking histone variants to chromatin accessibility, transcriptional regulation, neuronal function, and memory. This work further identifies a widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.


Asunto(s)
Cromatina , Histonas , Memoria a Largo Plazo , Neuronas , Sinapsis , Histonas/metabolismo , Histonas/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Memoria a Largo Plazo/fisiología , Neuronas/metabolismo , Ratones , Sinapsis/metabolismo , Sinapsis/genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Transcripción Genética , Masculino , Humanos
10.
PLoS Genet ; 20(7): e1011359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39074152

RESUMEN

Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3ß, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , ARN Circular , ARN Mensajero , Sinapsis , Proteínas tau , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Animales , Sinapsis/metabolismo , Sinapsis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Neuronas/metabolismo , Ratones Transgénicos , Sinaptosomas/metabolismo , Femenino , Anciano
11.
Int J Biol Macromol ; 276(Pt 2): 133853, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004256

RESUMEN

Synaptic dysfunction is associated with early neurodegenerative changes and cognitive deficits. Neuronal cell-specific alternative splicing (AS) programs exclusively encode unique neuron- and synapse-specific proteins. However, it remains unclear whether splicing disturbances in neurons influence the pathogenesis of cognitive impairment. Here, we observed that RNA-binding motif protein 24 (RBM24) expression was decreased in Alzheimer's disease (AD) patients. Using conditional RBM24 knockout mice, we demonstrated that deletion of RBM24 in the brain resulted in learning and memory impairment. Electrophysiological recordings from hippocampal slices from mice lacking RBM24 revealed multiple defects in excitatory synaptic function and plasticity. Furthermore, RNA sequencing and splicing analysis showed that RBM24 regulates a network of genes related to cognitive function. Deletion of RBM24 disrupted the AS of synapse-associated genes, including GluR2 and Prrt1, the major disease genes involved in cognitive impairment and memory loss, leading to cognitive dysfunction. Together, our results suggest that the regulation of mRNA splicing by RBM24 is a key process involved in maintaining normal synaptic function and provide novel mechanistic insights into the pathogenesis of AD.


Asunto(s)
Disfunción Cognitiva , Neuronas , Proteínas de Unión al ARN , Animales , Humanos , Masculino , Ratones , Empalme Alternativo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo , Sinapsis/genética
12.
STAR Protoc ; 5(2): 103089, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795356

RESUMEN

Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Células Madre Embrionarias Humanas , Neuronas , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Edición Génica/métodos , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Sinapsis/metabolismo , Sinapsis/genética
13.
Dev Neurobiol ; 84(3): 158-168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739110

RESUMEN

The interaction of neurexins (NRXNs) in the presynaptic membrane with postsynaptic cell adhesion molecules called neuroligins (NLGNs) is critical for this synaptic function. Impaired synaptic functions are emphasized in neurodevelopmental disorders to uncover etiological factors. We evaluated variants in NRXN and NLGN genes encoding molecules located directly at the synapse in patients with neuropsychiatric disorders using clinical exome sequencing and chromosomal microarray. We presented detailed clinical findings of cases carrying heterozygous NRXN1 (c.190C > T, c.1679C > T and two copy number variations [CNVs]), NRXN2 (c.808dup, c.1901G > T), NRXN3 (c.3889C > T), and NLGN1 (c.269C > G, c.473T > A) gene variants. In addition, three novel variants were identified in the NRXN1 (c.1679C > T), NRXN3 [c.3889C > T (p.Pro1297Ser)], and NLGN1 [c.473T > A (p.Ile158Lys)] genes. We emphasize the clinical findings of CNVs of the NRXN1 gene causing a more severe clinical presentation than single nucleotide variants of the NRXN1 gene in this study. We detected an NRXN2 gene variant (c.808dup) with low allelic frequency in two unrelated cases with the same diagnosis. We emphasize the importance of this variant for future studies. We suggest that NRXN2, NRXN3, and NLGN1 genes, which are less frequently reported than NRXN1 gene variants, may also be associated with neurodevelopmental disorders.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Moléculas de Adhesión de Célula Nerviosa , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Moléculas de Adhesión Celular Neuronal/genética , Femenino , Masculino , Moléculas de Adhesión de Célula Nerviosa/genética , Niño , Sinapsis/genética , Proteínas de Unión al Calcio/genética , Preescolar , Heterocigoto , Variaciones en el Número de Copia de ADN/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Secuenciación del Exoma
14.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
16.
Nat Rev Neurosci ; 25(6): 393-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600347

RESUMEN

Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.


Asunto(s)
Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Humanos , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Lisosomas/metabolismo , Lisosomas/genética , Sinapsis/patología , Sinapsis/genética , Sinapsis/metabolismo
17.
J Neuropathol Exp Neurol ; 83(7): 626-635, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38630575

RESUMEN

ZCCHC17 is a master regulator of synaptic gene expression and has recently been shown to play a role in splicing of neuronal mRNA. We previously showed that ZCCHC17 protein declines in Alzheimer's disease (AD) brain tissue before there is significant gliosis and neuronal loss, that ZCCHC17 loss partially replicates observed splicing abnormalities in AD brain tissue, and that maintenance of ZCCHC17 levels is predicted to support cognitive resilience in AD. Here, we assessed the functional consequences of reduced ZCCHC17 expression in primary cortical neuronal cultures using siRNA knockdown. Consistent with its previously identified role in synaptic gene expression, loss of ZCCHC17 led to loss of synaptic protein expression. Patch recording of neurons shows that ZCCHC17 loss significantly disrupted the excitation/inhibition balance of neurotransmission, and favored excitatory-dominant synaptic activity as measured by an increase in spontaneous excitatory post synaptic currents and action potential firing rate, and a decrease in spontaneous inhibitory post synaptic currents. These findings are consistent with the hyperexcitable phenotype seen in AD animal models and in patients. We are the first to assess the functional consequences of ZCCHC17 knockdown in neurons and conclude that ZCCHC17 loss partially phenocopies AD-related loss of synaptic proteins and hyperexcitability.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Animales , Humanos , Ratones , Ratas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Cultivadas , Corteza Cerebral/metabolismo , Técnicas de Silenciamiento del Gen , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/genética
18.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119720, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582237

RESUMEN

Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.


Asunto(s)
Sinapsis , Humanos , Sinapsis/metabolismo , Sinapsis/genética , Animales , Óxido Nítrico/metabolismo , Proteoma/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteómica/métodos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Procesamiento Proteico-Postraduccional , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/patología
19.
Mol Psychiatry ; 29(8): 2496-2509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38503925

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Modelos Animales de Enfermedad , Dosificación de Gen , Conducta Social , Animales , Masculino , Ratones , Femenino , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Sinapsis/metabolismo , Sinapsis/genética , Ansiedad/genética , Ansiedad/metabolismo , Conducta Animal/fisiología , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/genética , Memoria Espacial/fisiología , Interacción Social , Células Piramidales/metabolismo
20.
Nature ; 627(8004): 604-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448582

RESUMEN

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Asunto(s)
Envejecimiento , Astrocitos , Neuronas , Corteza Prefrontal , Esquizofrenia , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Envejecimiento/metabolismo , Envejecimiento/patología , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Colesterol/metabolismo , Cognición , Neuronas GABAérgicas/metabolismo , Predisposición Genética a la Enfermedad , Glutamina/metabolismo , Salud , Individualidad , Inhibición Neural , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Análisis de Expresión Génica de una Sola Célula , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA