Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Matrix Biol ; 131: 46-61, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806135

RESUMEN

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.


Asunto(s)
Envejecimiento , Enfermedades Óseas Metabólicas , Homeostasis , Ratones Noqueados , Sindecano-4 , Animales , Ratones , Sindecano-4/metabolismo , Sindecano-4/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Microtomografía por Rayos X , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Columna Vertebral/metabolismo , Columna Vertebral/patología , Columna Vertebral/diagnóstico por imagen , Anillo Fibroso/metabolismo , Anillo Fibroso/patología , Osteoclastos/metabolismo
2.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700644

RESUMEN

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Asunto(s)
Corazón , Regeneración , Sindecano-4 , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Regeneración/genética , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proliferación Celular/genética , Miocardio/metabolismo , Miocardio/patología , Técnicas de Silenciamiento del Gen
3.
Cell Biol Int ; 48(6): 883-897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38591778

RESUMEN

Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5ß1 and αvß3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.


Asunto(s)
Anoicis , Células Endoteliales , Matriz Extracelular , Silenciador del Gen , Sindecano-4 , Sindecano-4/metabolismo , Sindecano-4/genética , Animales , Matriz Extracelular/metabolismo , Células Endoteliales/metabolismo , Conejos , Adhesión Celular , Movimiento Celular , Fibronectinas/metabolismo , Células Cultivadas
4.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530908

RESUMEN

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Asunto(s)
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renales , Animales , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Adiponectina/metabolismo , Adiponectina/genética , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/efectos de los fármacos , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Barrera de Filtración Glomerular/metabolismo , Barrera de Filtración Glomerular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Sindecano-4/metabolismo , Sindecano-4/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
J Appl Toxicol ; 44(6): 908-918, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396353

RESUMEN

Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-ß signaling pathway to further investigate the role of TGF-ß. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-ß/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.


Asunto(s)
Células Endoteliales , Glicocálix , Glomérulos Renales , Ratones Endogámicos C57BL , Sindecano-4 , Animales , Masculino , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Sindecano-4/metabolismo , Sindecano-4/genética , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Ratones , Glicocálix/efectos de los fármacos , Glicocálix/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Cadmio/toxicidad , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
6.
Oncogene ; 43(1): 47-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37935976

RESUMEN

ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-ß signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-ß signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-ß signaling by soluble TGFBR3, while TGF-ß signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-ß receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Retroalimentación , Factor de Crecimiento Transformador beta/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Óseas/genética , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Factor 1 de Respuesta al Butirato , Sindecano-4/metabolismo
7.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982607

RESUMEN

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Asunto(s)
Glicocálix , Sindecano-1 , Sindecano-1/metabolismo , Glicocálix/metabolismo , Sindecano-3/metabolismo , Sindecano-4/metabolismo , Sindecano-2/metabolismo , Biglicano/metabolismo , Glipicanos/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Antiinflamatorios/metabolismo
8.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067582

RESUMEN

Syndecan-4 (SDC4) consists of transmembrane heparan sulfate proteoglycan (HSPG) belonging to the syndecan family. It is present in most cell types of Mammalia. Its structure contains a heparan-sulfate-modified extracellular domain, a single transmembrane domain, and a short C-terminal cytoplasmic domain. Regarding the overall cellular function of SDC4, other cells or ligands can bind to its ecto-domain. In addition, 4,5-bisphosphate phosphatidylinositol (PIP2) or protein kinase Cα can bind to its cyto-domain to activate downstream signaling pathways. To understand the signal transduction mechanism of syndecan, it is important to know the interactions between their actual structure and function in vivo. Therefore, it is important to identify the structure of SDC4 to understand the ligand binding behavior of SDC4. In this study, expression and purification were performed to reveal structures of the short ecto-domain, the transmembrane domain, and the cytoplasmic domain of Syd4-eTC (SDC4). Solution-state NMR spectroscopy and solid-state NMR spectroscopy were used to study the structure of Syd4-eTC in membrane environments and to demonstrate the interaction between Syd4-eTC and PIP2.


Asunto(s)
Transducción de Señal , Sindecano-4 , Sindecano-4/metabolismo , Citoplasma/metabolismo , Transducción de Señal/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Espectroscopía de Resonancia Magnética
9.
Nat Commun ; 14(1): 8069, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057316

RESUMEN

CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.


Asunto(s)
Sindecano-4 , Cicatrización de Heridas , Masculino , Ratones , Animales , Sindecano-4/genética , Sindecano-4/metabolismo , Cicatrización de Heridas/fisiología , Péptidos/metabolismo , Epidermis/metabolismo , Células Epidérmicas/metabolismo , Movimiento Celular
10.
Adv Sci (Weinh) ; 10(24): e2300812, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357136

RESUMEN

Cells regulate adhesion to the fibrillar extracellular matrix (ECM) of which fibronectin is an essential component. However, most studies characterize cell adhesion to globular fibronectin substrates at time scales long after cells polarize and migrate. To overcome this limitation, a simple and scalable method to engineer biomimetic 3D fibrillar fibronectin matrices is introduced and how they are sensed by fibroblasts from the onset of attachment is characterized. Compared to globular fibronectin substrates, fibroblasts accelerate adhesion initiation and strengthening within seconds to fibrillar fibronectin matrices via α5ß1 integrin and syndecan-4. This regulation, which additionally accelerates on stiffened fibrillar matrices, involves actin polymerization, actomyosin contraction, and the cytoplasmic proteins paxillin, focal adhesion kinase, and phosphoinositide 3-kinase. Furthermore, this immediate sensing and adhesion of fibroblast to fibrillar fibronectin guides migration speed, persistency, and proliferation range from hours to weeks. The findings highlight that fibrillar fibronectin matrices, compared to widely-used globular fibronectin, trigger short- and long-term cell decisions very differently and urge the use of such matrices to better understand in vivo interactions of cells and ECMs. The engineered fibronectin matrices, which can be printed onto non-biological surfaces without loss of function, open avenues for various cell biological, tissue engineering and medical applications.


Asunto(s)
Fibronectinas , Sindecano-4 , Adhesión Celular/fisiología , Fibronectinas/química , Fibronectinas/metabolismo , Sindecano-4/metabolismo , Biomimética , Fosfatidilinositol 3-Quinasas , Integrina alfa5beta1/metabolismo , Proliferación Celular
11.
Free Radic Biol Med ; 205: 129-140, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257701

RESUMEN

RATIONALE: Lung fibroblast senescence is involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). However, the mechanisms underlining this phenomenon are still poorly understood. Secreted phospholipases (sPLA2, a subclass of phospholipases) are secreted by senescent cells and can in turn induce senescence. However, their role in fibroblasts senescence in COPD is unknown. OBJECTIVES: The aim of this study was to analyze the role of sPLA2 in pulmonary fibroblast senescence. METHODS: Fibroblasts were isolated from patients with COPD and control subjects, and senescence markers and inflammatory profile was analyzed. sPLA2 levels were quantified in serum of COPD and controls. MAIN RESULTS: In comparison with non-smokers and smoker controls, senescent lung COPD fibroblasts exhibited a higher mRNA and protein expression of the sPLA2 isoform XIIA and of syndecan 4 (one of its receptors). sPLA2 XIIA induced in turn senescence of non-senescent pulmonary fibroblasts via a pathway involving consecutively syndecan 4, activation of MAPK and p-serine 727 STAT-3, increased mitochondrial ROS production, and activation of AMPK/p53. This pathway was associated with a specific inflammatory secretome (IL-10, IL-12 and TNFα), globally suggesting occurrence of a mitochondrial damage-induced senescence. COPD fibroblasts were more susceptible to this sPLA2 XIIA effect than cells from controls subjects. sPLA2 XIIA levels were significantly higher in serum from COPD patients as compared to controls. CONCLUSION: sPLA2 XIIA is involved in senescence in COPD and could be a potential target to dampen this process.


Asunto(s)
Fosfolipasas A2 Secretoras , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Sindecano-4/metabolismo , Sindecano-4/farmacología , Senescencia Celular , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Fibroblastos/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Fosfolipasas A2 Secretoras/farmacología
12.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155874

RESUMEN

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Asunto(s)
Neoplasias Gástricas , Sindecano-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividad Neoplásica , Neoplasias Gástricas/genética , Sindecano-4/genética , Sindecano-4/metabolismo
13.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108098

RESUMEN

The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.


Asunto(s)
Músculo Esquelético , Sindecano-4 , Animales , Ratones , Calcio/metabolismo , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo
14.
PLoS One ; 18(2): e0281350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36735684

RESUMEN

Satellite cells (SCs) comprise a heterogeneous population of muscle stem cells. Thermal stress during the first week after hatch alters proliferation, myogenesis, and adipogenesis of SCs of turkey pectoralis major (p. major) muscle via mechanistic target of rapamycin (mTOR) and wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) pathways. Pivotal genes in mTOR and Wnt/PCP pathways are mTOR and frizzled-7 (Fzd7), respectively. The objective of this study was to determine the differential effects of thermal stress on SDC4 and CD44 expression in turkey p. major muscle SCs and how the expression of SDC4 and CD44 is modulated by the mTOR and Wnt/PCP pathways. Satellite cells were isolated from the p. major muscle of 1-week-old faster-growing modern-commercial (NC) turkeys and slower-growing historic Randombred Control Line 2 (RBC2) turkeys, and were challenged with hot (43°C) and cold (33°C) thermal stress for 72 h of proliferation followed by 48 h of differentiation. The NC line SCs were found to contain a lower proportion of SDC4 positive and CD44 negative (SDC4+CD44-) cells and a greater proportion of SDC4 negative and CD44 positive (SDC4-CD44+) cells compared to the RBC2 line at the control temperature (38°C) at both 72 h of proliferation and 48 h of differentiation. In general, at 72 h of proliferation, the proportion of SDC4+CD44- cells decreased with heat stress (43°C) and increased with cold stress (33°C) relative to the control temperature (38°C) in both lines, whereas the proportion of SDC4-CD44+ cells increased with heat stress and decreased with cold stress. In general, the expression of SDC4 and CD44 in the NC SCs showed greater response to both hot and cold thermal stress compared to the RBC2 cells. Knockdown of mTOR or Fzd7 expression increased the proportion of SDC4+CD44- cells while the proportion of SDC4-CD44+ cells decreased during differentiation with line differences being specific to treatment temperatures. Thus, differential composition of p. major muscle SCs in growth-selected commercial turkey may be resulted, in part, from the alteration in SDC4 and CD44 expression. Results indicate differential temperature sensitivity and mTOR and Wnt/PCP pathway responses of growth-selected SC populations and this may have long-lasting effect on muscle development and growth.


Asunto(s)
Células Satélite del Músculo Esquelético , Pavos , Animales , Polaridad Celular , Músculos Pectorales/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Temperatura , Serina-Treonina Quinasas TOR/metabolismo , Receptores de Hialuranos/metabolismo
15.
J Biomed Mater Res B Appl Biomater ; 111(3): 538-550, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36208170

RESUMEN

Acellular vascular scaffolds with capture molecules have shown great promise in recruiting circulating endothelial colony forming cells (ECFCs) to promote in vivo endothelialization. A microenvironment conducive to cell spreading and differentiation following initial cell capture are key to the eventual formation of a functional endothelium. In this study, syndecan-4 and stromal cell-derived factor-1 alpha were used to functionalize an elastomeric biomaterial composed of poly(glycerol sebacate), Silk Fibroin and Type I Collagen, termed PFC, to enhance ECFC-material interaction. Functionalized PFC (fPFC) showed significantly greater ECFCs capture capability under physiological flow. Individual cell spreading area on fPFC (1474 ± 63 µm2 ) was significantly greater than on PFC (1187 ± 54 µm2 ) as early as 2 h, indicating enhanced cell-material interaction. Moreover, fPFC significantly upregulated the expression of endothelial cell specific markers such as platelet endothelial cell adhesion molecule (24-fold) and Von Willebrand Factor (11-fold) compared with tissue culture plastic after 7 days, demonstrating differentiation of ECFCs into endothelial cells. fPFC fabricated as small diameter conduits and tested using a pulsatile blood flow bioreactor were stable and maintained function. The findings suggest that the new surface functionalization strategy proposed here results in an endovascular material with enhanced endothelialization.


Asunto(s)
Quimiocina CXCL12 , Células Endoteliales , Sindecano-4 , Diferenciación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Sindecano-4/metabolismo
16.
J Cancer Res Clin Oncol ; 149(8): 4563-4578, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36152082

RESUMEN

In Australia, 13% of women are diagnosed with breast cancer (BC) in their lifetime with approximately 20,000 women diagnosed with the disease in 2021. BC is characterised by complex histological and genomic influences with recent advances in cancer biology improving early diagnosis and personalised treatment interventions. The Phosphatidyl-inositol-3-kinase/Protein kinase B (PI3K/AKT) pathway is essential in apoptosis resistance, cell survival, activation of cellular responses to DNA damage and DNA repair. Heparan sulfate proteoglycans (HSPGs) are ubiquitous molecules found on the cell surface and in the extracellular matrix with essential functions in regulating cell survival, growth, adhesion and as mediators of cell differentiation and migration. HSPGs, particularly the syndecans (SDCs), have been linked to cancers, making them an exciting target for anticancer treatments. In the PI3K/AKT pathway, syndecan-4 (SDC4) has been shown to downregulate AKT Serine/Threonine Kinase (AKT1) gene expression, while the ATM Serine/Threonine Kinase (ATM) gene has been found to inhibit this pathway upstream of AKT. We investigated single-nucleotide polymorphisms (SNPs) in HSPG and related genes SDC4, AKT1 and ATM and their influence on the prevalence of BC. SNPs were genotyped in the Australian Caucasian Genomics Research Centre Breast Cancer (GRC-BC) population and in the Griffith University-Cancer Council Queensland Breast Cancer Biobank (GU-CCQ BB) population. We identified that SDC4-rs1981429 and ATM-rs228590 may influence the development and progression of BC, having the potential to become biomarkers in early BC diagnosis and personalised treatment.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Sindecano-4/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Australia , Proteoglicanos de Heparán Sulfato/metabolismo , Biomarcadores , Serina , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
17.
Nat Commun ; 13(1): 7139, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414669

RESUMEN

Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , Osteoartritis , Sindecano-4 , Animales , Ratones , Ratas , Cartílago/metabolismo , Colesterol/metabolismo , Regulación hacia Abajo , Osteoartritis/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
18.
BMC Cancer ; 22(1): 1042, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199068

RESUMEN

OBJECTIVE: Pancreatic adenocarcinoma (PAAD) is a leading cause of cancer-related mortality in adults. Syndecan-4 (SDC4) is involved in cancer pathogenesis. Therefore, this study aimed to explore the expression and clinical significance of SDC4 in PAAD. METHODS: Differentially expressed genes (DEGs) between PAAD and normal pancreas were screened from the GTEx and TCGA databases, and the correlationship between the DEGs and prognosis were analyzed. The prognostic value of the screened SDC4, SERPINE1, and SLC2A1 was evaluated using the Kaplan-Meier curve and SDC4 was subsequently selected as the better candidate. Also, SDC4 expression was analyzed in PAAD tissues, the other risk factors affecting postoperative survival were analyzed using Cox regression analysis, and SDC4-mediated pathways enrichment was identified by GSVA and GSEA. SDC4 expression in PAAD tissues and adjacent normal tissues of selected PAAD patients was detected by RT-qPCR and immunohistochemistry. The correlation between SDC4 and clinical features was evaluated by the χ2 test. RESULTS: SDC4 was highly expressed in PAAD tissues. Elevated SDC4 was correlated with reduced overall survival. SDC4 enrichment pathways included spliceosome function, proteasome activity, pentose phosphate pathway, base excision repair, mismatch repair, DNA replication, oxidative phosphorylation, mitotic spindle formation, epithelial-mesenchymal transition, and G2M checkpoints. SDC4 was elevated in PAAD tissues of PAAD patients compared with adjacent normal tissues. High SDC4 expression was related to metastatic differentiation, TNM stage, lymphatic metastasis, and lower 3-year survival rate. SDC4 was an independent risk factor affecting postoperative survival. CONCLUSION: SDC4 was highly expressed in PAAD and was related to clinicopathological features and poor prognosis, which might be an important index for PAAD early diagnosis and prognosis.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/patología , Pronóstico , Complejo de la Endopetidasa Proteasomal/genética , Sindecano-4/genética , Sindecano-4/metabolismo , Neoplasias Pancreáticas
19.
Mol Biol Rep ; 49(12): 11795-11809, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36205855

RESUMEN

BACKGROUND: Cardiomyocyte hypertrophy is a hallmark of cardiac dysfunction in patients with aortic stenosis (AS), and can be triggered by left ventricular (LV) pressure overload in mice by aortic banding (AB). Syndecan-4 is a transmembrane heparan sulphate proteoglycan which is found increased in the myocardium of AS patients and AB mice. The role of syndecan-4 in cardiomyocyte hypertrophy is not well understood. PURPOSE OF THE STUDY: We developed mice with cardiomyocyte-specific overexpression of syndecan-4 (Sdc4-Tg) and subjected these to AB to examine the role of syndecan-4 in hypertrophy and activation of the pro-hypertrophic calcineurin-NFAT signalling pathway. METHODS AND RESULTS: Sdc4-Tg mice showed exacerbated cardiac remodelling upon AB compared to wild type (WT). At 2-6 weeks post-AB, Sdc4-Tg and WT mice showed similar hypertrophic growth, while at 20 weeks post-AB, exacerbated hypertrophy and dysfunction were evident in Sdc4-Tg mice. After cross-breeding of Sdc4-Tg mice with NFAT-luciferase reporter mice, we found increased NFAT activation in Sdc4-Tg hearts after AB. Immunoprecipitation showed that calcineurin bound to syndecan-4 in Sdc4-Tg hearts. Isolated cardiomyocytes from Sdc4-Tg mice showed alterations in Ca2+ fluxes, suggesting that syndecan-4 regulated Ca2+ levels, and thereby, activating the syndecan-4-calcineurin complex resulting in NFAT activation and hypertrophic growth. Similarly, primary cardiomyocyte cultures from neonatal rats showed increased calcineurin-NFAT-dependent hypertrophic growth upon viral Sdc4 overexpression. CONCLUSION: Our study of mice with cardiomyocyte-specific overexpression of Sdc4 have revealed that syndecan-4 is important for activation of the Ca2+-dependent calcineurin-NFAT signalling pathway, hypertrophic remodelling and dysfunction in cardiomyocytes in response to pressure overload.


Asunto(s)
Calcineurina , Miocitos Cardíacos , Sindecano-4 , Animales , Ratones , Ratas , Calcineurina/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología , Sindecano-4/genética , Sindecano-4/metabolismo
20.
Am J Physiol Cell Physiol ; 323(5): C1345-C1354, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094435

RESUMEN

Expression of the cell surface heparan sulfate proteoglycan syndecan-4 is dysregulated in breast cancer, the most frequent malignancy in women. High expression of syndecan-4 correlates with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. Aberrant expression of syndecan-4 in breast cancer involves both transcriptional and posttranscriptional mechanisms, including estrogen- and growth factor-dependent regulation, mutations in GAPVD1, NUP153, PDE4DIP, and RREB1, as well as targeting by microRNAs. At the functional level, syndecan-4 plays an important role in various stages of breast cancer progression by interacting with ligands as diverse as plasma proteins, extracellular matrix proteins, growth factors, and surface receptors, as well as members of the integrin family. Mechanisms including integrin recycling, ectodomain shedding, and crosstalk with other syndecans expand the repertoire of syndecan-4 function. Through these interactions, syndecan-4 regulates cellular processes such as adhesion, migration, and invasion. Additional possible functions of syndecan-4 in cells of the microenvironment contribute to the complexity of its pathophysiology. Notably, syndecan-4 expression is modulated by drugs used in breast cancer treatment, such as trastuzumab and zoledronate. Overall, these findings mark syndecan-4 as a novel pathogenesis factor and promising target for therapeutic interventions in breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Sindecano-4/genética , Sindecano-4/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Neoplasias de la Mama/patología , Ácido Zoledrónico , Progesterona , Ligandos , Receptores de Estrógenos , Proteínas de la Matriz Extracelular , Péptidos y Proteínas de Señalización Intercelular , Trastuzumab , Integrinas , Estrógenos , Sindecano-1 , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA