Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
2.
Front Cell Infect Microbiol ; 12: 793416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281448

RESUMEN

Streptococcus agalactiae causes neonatal meningitis and can also infect the adult central nervous system (CNS). S. agalactiae can cross the blood-brain barrier but may also reach the CNS via other paths. Several species of bacteria can directly invade the CNS via the olfactory and trigeminal nerves, which extend between the nasal cavity and brain and injury to the nasal epithelium can increase the risk/severity of infection. Preterm birth is associated with increased risk of S. agalactiae infection and with nasogastric tube feeding. The tubes, also used in adults, can cause nasal injuries and may be contaminated with bacteria, including S. agalactiae. We here investigated whether S. agalactiae could invade the CNS after intranasal inoculation in mice. S. agalactiae rapidly infected the olfactory nerve and brain. Methimazole-mediated model of nasal epithelial injury led to increased bacterial load in these tissues, as well as trigeminal nerve infection. S. agalactiae infected and survived intracellularly in cultured olfactory/trigeminal nerve- and brain-derived glia, resulting in cytokine production, with some differences between glial types. Furthermore, a non-capsulated S. agalactiae was used to understand the role of capsule on glial cells interaction. Interestingly, we found that the S. agalactiae capsule significantly altered cytokine and chemokine responses and affected intracellular survival in trigeminal glia. In summary, this study shows that S. agalactiae can infect the CNS via the nose-to-brain path with increased load after epithelial injury, and that the bacteria can survive in glia.


Asunto(s)
Nacimiento Prematuro , Streptococcus agalactiae , Animales , Sistema Nervioso Central/microbiología , Ratones , Neuroglía , Nervio Trigémino/microbiología
3.
mBio ; 12(6): e0231321, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724829

RESUMEN

Cryptococcus neoformans is a major human central nervous system (CNS) fungal pathogen causing considerable morbidity and mortality. In this study, we provide the widest view to date of the yeast transcriptome directly from the human subarachnoid space and within cerebrospinal fluid (CSF). We captured yeast transcriptomes from C. neoformans of various genotypes in 31 patients with cryptococcal meningoencephalitis as well as several Cryptococcus gattii infections. Using transcriptome sequencing (RNA-seq) analyses, we compared the in vivo yeast transcriptomes to those from other environmental conditions, including in vitro growth on nutritious media or artificial CSF as well as samples collected from rabbit CSF at two time points. We ranked gene expressions and identified genetic patterns and networks across these diverse isolates that reveal an emphasis on carbon metabolism, fatty acid synthesis, transport, cell wall structure, and stress-related gene functions during growth in CSF. The most highly expressed yeast genes in human CSF included those known to be associated with survival or virulence and highlighted several genes encoding hypothetical proteins. From that group, a gene encoding the CMP1 putative glycoprotein (CNAG_06000) was selected for functional studies. This gene was found to impact the virulence of Cryptococcus in both mice and the CNS rabbit model, in agreement with a recent study also showing a role in virulence. This transcriptional analysis strategy provides a view of regulated yeast genes across genetic backgrounds important for human CNS infection and a relevant resource for the study of cryptococcal genes, pathways, and networks linked to human disease. IMPORTANCE Cryptococcus is the most common fungus causing high-morbidity and -mortality human meningitis. This encapsulated yeast has a unique propensity to travel to the central nervous system to produce disease. In this study, we captured transcriptomes of yeasts directly out of the human cerebrospinal fluid, the most concerning site of infection. By comparing the RNA transcript levels with other conditions, we gained insights into how the basic machinery involved in metabolism and environmental responses enable this fungus to cause disease at this body site. This approach was applied to clinical isolates with diverse genotypes to begin to establish a genotype-agnostic understanding of how the yeast responds to stress. Based on these results, future studies can focus on how these genes and their pathways and networks can be targeted with new therapeutics and possibly classify yeasts with bad infection outcomes.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/genética , Meningoencefalitis/microbiología , Animales , Sistema Nervioso Central/microbiología , Criptococosis/líquido cefalorraquídeo , Cryptococcus neoformans/clasificación , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/patogenicidad , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genotipo , Humanos , Masculino , Meningoencefalitis/diagnóstico , Ratones , RNA-Seq , Conejos , Transcriptoma , Virulencia
4.
Molecules ; 26(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833963

RESUMEN

Intracranial bacterial infection remains a major cause of morbidity and mortality in neurosurgical cases. Metabolomic profiling of cerebrospinal fluid (CSF) holds great promise to gain insights into the pathogenesis of central neural system (CNS) bacterial infections. In this pilot study, we analyzed the metabolites in CSF of CNS infection patients and controls in a pseudo-targeted manner, aiming at elucidating the metabolic dysregulation in response to postoperative intracranial bacterial infection of pediatric cases. Untargeted analysis uncovered 597 metabolites, and screened out 206 differential metabolites in case of infection. Targeted verification and pathway analysis filtered out the glycolysis, amino acids metabolism and purine metabolism pathways as potential pathological pathways. These perturbed pathways are involved in the infection-induced oxidative stress and immune response. Characterization of the infection-induced metabolic changes can provide robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for pathological investigation, and new targets for treatment.


Asunto(s)
Infecciones Bacterianas/líquido cefalorraquídeo , Metaboloma , Complicaciones Posoperatorias/líquido cefalorraquídeo , Infecciones Bacterianas/metabolismo , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Niño , Femenino , Humanos , Masculino , Proyectos Piloto , Complicaciones Posoperatorias/metabolismo
5.
EMBO J ; 40(23): e108605, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622466

RESUMEN

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Bacterias/crecimiento & desarrollo , Sistema Nervioso Central/inmunología , Homeostasis , Macrófagos/inmunología , Células Mieloides/inmunología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Animales , Bacterias/clasificación , Bacterias/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Femenino , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Células Mieloides/metabolismo , Células Mieloides/microbiología , Células Mieloides/patología , Transcriptoma
6.
Cells ; 10(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34571840

RESUMEN

Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal impairments; however, an increasing number of studies indicates that H. pylori infection might be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases. In this review, we focused on the nervous system and aimed to summarize the findings regarding H. pylori infection and its involvement in the induction/progression of neurological disorders. Neurological impairments induced by H. pylori infection are primarily due to impairments in the gut-brain axis (GBA) and to an altered gut microbiota facilitated by H. pylori colonization. Currently, regarding a potential relationship between Helicobacter infection and neurological disorders, most of the studies are mainly focused on H. pylori.


Asunto(s)
Sistema Nervioso Central/microbiología , Microbioma Gastrointestinal/fisiología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/microbiología , Animales , Humanos
7.
Infect Immun ; 89(10): e0012821, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228504

RESUMEN

Microbial penetration of the blood-brain barrier, a prerequisite for the development of central nervous system (CNS) infection, involves microbial invasion, intracellular traversal, and exocytosis. Microbial invasion of the blood-brain barrier has been investigated, but the molecular basis for microbial traversal and exit from the blood-brain barrier remains unknown. We performed transcriptome analysis of human brain microvascular endothelial cells (HBMEC) infected with Escherichia coli and Cryptococcus neoformans, representative bacterial and fungal pathogens common in CNS infections. Among the targets upregulated in response to E. coli and C. neoformans infection, PDLIM2 was knocked down by small hairpin RNA (shRNA) in HBMEC for further investigation. We demonstrated that Pdlim2 specifically regulated microbial traversal and exit from HBMEC by assessing microbial invasion, transcytosis, intracellular multiplication, and egression. Additionally, the defective exocytosis of internalized E. coli cells from the PDLIM2 shRNA knockdown cells was restored by treatment with a calcium ionophore (ionomycin). Moreover, we performed proximity-dependent biotin labeling with the biotin ligase BioID2 and identified 210 potential Pdlim2 interactors. Among the nine Pdlim2 interactors enriched in response to both E. coli and C. neoformans infection, we selected MPRIP and showed that HBMEC with knockdown of MPRIP mimicked the phenotype of PDLIM2 knockdown cells. These results suggest that the CNS-infecting microbes hijack Pdlim2 and Mprip for intracellular traversal and exocytosis in the blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica/inmunología , Infecciones del Sistema Nervioso Central/inmunología , Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Exocitosis/inmunología , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Transporte Biológico/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Infecciones del Sistema Nervioso Central/metabolismo , Infecciones del Sistema Nervioso Central/microbiología , Criptococosis/metabolismo , Criptococosis/microbiología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Proteínas con Dominio LIM/inmunología , Proteínas de Microfilamentos/inmunología , Fosforilación/inmunología
8.
Ann Clin Microbiol Antimicrob ; 20(1): 44, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130699

RESUMEN

BACKGROUND: Aspergillosis of Central Nervous System (CNS) is a highly lethal infection in patients with leukemia and Stem Cell Transplantation (SCT). METHODS: Case reports of CNS aspergillosis in patients with leukemia and SCT published between 1990 and August 2020 were gathered using a structured search through PubMed/Medline. RESULTS: Sixty-seven cases were identified over the searches of the PubMed bibliographic database and then, 59 cases were included in the final analysis. Europe had the largest share of cases at 57.6% (34 reports), followed by Americas and Asia. Affected patients were predominantly males (58.6%) and the mean age of the patients was 36.1 years, while 62.7% of the patients were under the age of 50 years. The most common leukemia types include Acute Lymphoblastic Leukemia (ALL), Chronic Lymphocytic Leukemia (CLL), and Acute Myeloid Leukemia (AML) at 43.4%, 27.4%, and 23.5%, respectively. Furthermore, stem cell transplantation was reported in 11 cases. The overall mortality was 33%; however, the attributable mortality rate of CNS aspergillosis was 24.5%. Altered mental status, hemiparesis, cranial nerve palsies, and seizures were the clearest manifestations of infection and lung involvement reported in 57% of the patients. Histopathologic examination led to the diagnosis of infection in 57% of the patients followed by culture (23.7%), galactomannan assay (8.5%), and molecular method (3.3%). Amphotericin B and voriconazole were the most frequently used drugs for infection treatment. Good results were not obtained in one-third of the patients treated by voriconazole. Finally, neurosurgical intervention was used for 23 patients (39%). CONCLUSION: CNS aspergillosis is a rapidly progressive infection in leukemic patients. Thus, these patients should be followed up more carefully. Furthermore, management of induction chemotherapy, use of different diagnostic methods, and use of appropriate antifungal can lead to infection control.


Asunto(s)
Aspergilosis/complicaciones , Aspergilosis/epidemiología , Sistema Nervioso Central/microbiología , Leucemia/complicaciones , Trasplante de Células Madre/efectos adversos , Antifúngicos/uso terapéutico , Asia , Aspergilosis/diagnóstico , Aspergilosis/tratamiento farmacológico , Bases de Datos Factuales , Europa (Continente) , Femenino , Humanos , Masculino , Voriconazol/uso terapéutico
9.
J Neuroinflammation ; 18(1): 136, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130738

RESUMEN

BACKGROUND: The crucial role of type I interferon (IFN-I, IFN-α/ß) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated. METHODS: Viral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad. Bone marrow (BM) chimeric models were used for defining hematopoietic and tissue-resident cells in viral dissemination and tissue tropism. RESULTS: The paradoxical and interesting finding was that IFN-I signaling was essentially required for CNS neuroinflammation following JEV inoculation in distal footpad tissue. IFN-I signal-competent mice died after a prolonged neurological illness, but IFN-I signal-incompetent mice all succumbed without neurological signs. Rather, IFN-I signal-incompetent mice developed hemorrhage-like disease as evidenced by thrombocytopenia, functional injury of the liver and kidney, increased vascular leakage, and excessive cytokine production. This hemorrhage-like disease was closely associated with quick viral dissemination and impaired IFN-I innate responses before invasion of JEV into the CNS. Using bone marrow (BM) chimeric models, we found that intrinsic IFN-I signaling in tissue-resident cells in peripheral organs played a major role in inducing the hemorrhage-like disease because IFN-I signal-incompetent recipients of BM cells from IFN-I signal-competent mice showed enhanced viral dissemination, uncontrolled cytokine production, and increased vascular leakage. IFN-I signal-deficient hepatocytes and enterocytes were permissive to JEV replication with impaired induction of antiviral IFN-stimulated genes, and neuron cells derived from both IFN-I signal-competent and -incompetent mice were vulnerable to JEV replication. Finally, circulating CD11b+Ly-6C+ monocytes infiltrated into the distal tissues inoculated by JEV participated in quick viral dissemination to peripheral organs of IFN-I signal-incompetent mice at an early stage. CONCLUSION: An IFN-I signal-dependent model is proposed to demonstrate how CD11b+Ly-6C+ monocytes are involved in restricting the tissue tropism of JEV to the CNS.


Asunto(s)
Antígeno CD11b/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/microbiología , Receptor de Interferón alfa y beta , Animales , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/microbiología , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/microbiología , Hemorragia/inmunología , Hemorragia/microbiología , Interacciones Huésped-Patógeno , Mediadores de Inflamación/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología , Tropismo Viral
10.
Sci Rep ; 11(1): 10722, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021227

RESUMEN

Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.


Asunto(s)
Sistema Nervioso Central/microbiología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Neuroglía/microbiología , Sistema Nervioso Periférico/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Biomarcadores , Células Cultivadas , Sistema Nervioso Central/inmunología , Citocinas/metabolismo , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Microglía , Neuroglía/inmunología , Neuroglía/metabolismo , Sistema Nervioso Periférico/inmunología , Fagocitosis/inmunología , Infecciones Estafilocócicas/inmunología
11.
Front Immunol ; 12: 585316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868222

RESUMEN

Central nervous system immune reconstitution inflammatory syndrome (CNS-IRIS) describes clinical characteristics that may be observed in previously immunocompromised patients during rapid restoration of immunity function in the presence of a pathogen. There have been no reports about CNS-IRIS related to bacterial meningitis so far. Here, we report a 24-year-old pregnant female patient with bacterial meningitis. Her clinical and neuroradiological condition worsened after induced labor despite great effective anti-infective therapy. CNS-IRIS was considered. Corticosteroids were administered, and the patient gradually recovered. We present the first case of CNS-IRIS associated with bacterial meningitis.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Sistema Nervioso Central/inmunología , Síndrome Inflamatorio de Reconstitución Inmune/inmunología , Meningitis Bacterianas/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Corticoesteroides/uso terapéutico , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/microbiología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/microbiología , Femenino , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/tratamiento farmacológico , Síndrome Inflamatorio de Reconstitución Inmune/microbiología , Meningitis Bacterianas/tratamiento farmacológico , Meningitis Bacterianas/microbiología , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/microbiología , Resultado del Tratamiento , Adulto Joven
12.
Front Immunol ; 12: 788976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095865

RESUMEN

Tuberculosis (TB) remains one of the leading infectious killers in the world, infecting approximately a quarter of the world's population with the causative organism Mycobacterium tuberculosis (M. tb). Central nervous system tuberculosis (CNS-TB) is the most severe form of TB, with high mortality and residual neurological sequelae even with effective TB treatment. In CNS-TB, recruited neutrophils infiltrate into the brain to carry out its antimicrobial functions of degranulation, phagocytosis and NETosis. However, neutrophils also mediate inflammation, tissue destruction and immunopathology in the CNS. Neutrophils release key mediators including matrix metalloproteinase (MMPs) which degrade brain extracellular matrix (ECM), tumor necrosis factor (TNF)-α which may drive inflammation, reactive oxygen species (ROS) that drive cellular necrosis and neutrophil extracellular traps (NETs), interacting with platelets to form thrombi that may lead to ischemic stroke. Host-directed therapies (HDTs) targeting these key mediators are potentially exciting, but currently remain of unproven effectiveness. This article reviews the key role of neutrophils and neutrophil-derived mediators in driving CNS-TB immunopathology.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neutrófilos/inmunología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Animales , Sistema Nervioso Central/microbiología , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Matriz Extracelular/microbiología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Metaloproteinasas de la Matriz/inmunología , Mycobacterium tuberculosis/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Tuberculosis/microbiología
15.
Front Immunol ; 11: 578648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362764

RESUMEN

Gut microbiota has emerged as an important environmental factor in the pathobiology of multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS). Both genetic and environmental factors have been shown to play an important role in MS. Among genetic factors, the human leukocyte antigen (HLA) class II allele such as HLA-DR2, DR3, DR4, DQ6, and DQ8 show the association with the MS. We have previously used transgenic mice expressing MS susceptible HLA class II allele such as HLA-DR2, DR3, DQ6, and DQ8 to validate significance of HLA alleles in MS. Although environmental factors contribute to 2/3 of MS risk, less is known about them. Gut microbiota is emerging as an imporatnt environmental factor in MS pathogenesis. We and others have shown that MS patients have distinct gut microbiota compared to healthy control (HC) with a lower abundance of Prevotella. Additionally, the abundance of Prevotella increased in patients receiving disease-modifying therapies (DMTs) such as Copaxone and/or Interferon-beta (IFNß). We have previously identified a specific strain of Prevotella (Prevotella histicola), which can suppress experimental autoimmune encephalomyelitis (EAE) disease in HLA-DR3.DQ8 transgenic mice. Since Interferon-ß-1b [IFNß (Betaseron)] is a major DMTs used in MS patients, we hypothesized that treatment with the combination of P. histicola and IFNß would have an additive effect on the disease suppression. We observed that treatment with P. histicola suppressed disease as effectively as IFNß. Surprisingly, the combination of P. histicola and IFNß was not more effective than either treatment alone. P. histicola alone or in combination with IFNß increased the frequency and number of CD4+FoxP3+ regulatory T cells in the gut-associated lymphoid tissue (GALT). Treatment with P. histicola alone, IFNß alone, and in the combination decreased frequency of pro-inflammatory IFN-γ and IL17-producing CD4+ T cells in the CNS. Additionally, P. histicola alone or IFNß alone or the combination treatments decreased CNS pathology, characterized by reduced microglia and astrocytic activation. In conclusion, our study indicates that the human gut commensal P. histicola can suppress disease as effectively as commonly used MS drug IFNß and may provide an alternative treatment option for MS patients.


Asunto(s)
Antiinflamatorios/farmacología , Encefalomielitis Autoinmune Experimental/prevención & control , Microbioma Gastrointestinal , Interferón beta/farmacología , Intestinos/microbiología , Prevotella/fisiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/microbiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/microbiología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/microbiología , Femenino , Factores de Transcripción Forkhead/metabolismo , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Tejido Linfoide/microbiología , Masculino , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Microglía/microbiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/microbiología
16.
PLoS One ; 15(10): e0240178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33007030

RESUMEN

Brucella ceti infections have been increasingly reported in cetaceans, although a very limited characterization of Mediterranean Brucella spp. isolates has been previously reported and relatively few data exist about brucellosis among cetaceans in Italy. To address this gap, we studied 8 cases of B. ceti infection in striped dolphins (Stenella coeruleoalba) stranded along the Italian coastline from 2012 to 2018, investigated thanks to the Italian surveillance activity on stranded cetaceans. We focused on cases of stranding in eastern and western Italian seas, occurred along the Apulia (N = 6), Liguria (N = 1) and Calabria (N = 1) coastlines, through the analysis of gross and microscopic findings, the results of microbiological, biomolecular and serological investigations, as well as the detection of other relevant pathogens. The comparative genomic analysis used whole genome sequences of B. ceti from Italy paired with the publicly available complete genomes. Pathological changes consistent with B. ceti infection were detected in the central nervous system of 7 animals, showing non-suppurative meningoencephalitis. In 4 cases severe coinfections were detected, mostly involving Dolphin Morbillivirus (DMV). The severity of B. ceti-associated lesions supports the role of this microbial agent as a primary neurotropic pathogen for striped dolphins. We classified the 8 isolates into the common sequence type 26 (ST-26). Whole genome SNP analysis showed that the strains from Italy clustered into two genetically distinct clades. The first clade comprised exclusively the isolates from Ionian and Adriatic Seas, while the second one included the strain from the Ligurian Sea and those from the Catalonian coast. Plotting these clades onto the geographic map suggests a link between their phylogeny and topographical distribution. These results represent the first extensive characterization of B. ceti isolated from Italian waters reported to date and show the usefulness of WGS for understanding of the evolution of this emerging pathogen.


Asunto(s)
Brucella/fisiología , Océanos y Mares , Stenella/microbiología , Animales , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Geografía , Italia , Funciones de Verosimilitud
17.
Commun Biol ; 3(1): 559, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033372

RESUMEN

Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic variation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central nervous system (CNS) infections, particularly meningitis. Here, we address this question through a large-scale linear mixed model genome-wide association study of 909 African pneumococcal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling for host age, geography, and strain population structure, we identify genome-wide statistically significant genotype-phenotype associations in surface-exposed choline-binding (P = 5.00 × 10-08) and helicase proteins (P = 1.32 × 10-06) important for invasion, immune evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability indicated that causation of CNS infection requires multiple genetic and other factors reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore, virulence for meningitis.


Asunto(s)
Variación Genética/genética , Meningitis Neumocócica/microbiología , Streptococcus pneumoniae/patogenicidad , Tropismo Viral/genética , Adolescente , Sistema Nervioso Central/microbiología , Niño , Preescolar , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/fisiología
18.
mSphere ; 5(5)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938704

RESUMEN

Listeria monocytogenes is thought to colonize the brain using one of three mechanisms: direct invasion of the blood-brain barrier, transportation across the barrier by infected monocytes, and axonal migration to the brain stem. The first two pathways seem to occur following unrestricted bacterial growth in the blood and thus have been linked to immunocompromise. In contrast, cell-to-cell spread within nerves is thought to be mediated by a particular subset of neurotropic L. monocytogenes strains. In this study, we used a mouse model of foodborne transmission to evaluate the neurotropism of several L. monocytogenes isolates. Two strains preferentially colonized the brain stems of BALB/cByJ mice 5 days postinfection and were not detectable in blood at that time point. In contrast, infection with other strains resulted in robust systemic infection of the viscera but no dissemination to the brain. Both neurotropic strains (L2010-2198, a human rhombencephalitis isolate, and UKVDL9, a sheep brain isolate) typed as phylogenetic lineage III, the least characterized group of L. monocytogenes Neither of these strains encodes InlF, an internalin-like protein that was recently shown to promote invasion of the blood-brain barrier. Acute neurologic deficits were observed in mice infected with the neurotropic strains, and milder symptoms persisted for up to 16 days in some animals. These results demonstrate that neurotropic L. monocytogenes strains are not restricted to any one particular lineage and suggest that the foodborne mouse model of listeriosis can be used to investigate the pathogenic mechanisms that allow L. monocytogenes to invade the brain stem.IMPORTANCE Progress in understanding the two naturally occurring central nervous system (CNS) manifestations of listeriosis (meningitis/meningoencephalitis and rhombencephalitis) has been limited by the lack of small animal models that can readily distinguish between these distinct infections. We report here that certain neurotropic strains of Listeria monocytogenes can spread to the brains of young otherwise healthy mice and cause neurological deficits without causing a fatal bacteremia. The novel strains described here fall within phylogenetic lineage III, a small collection of L. monocytogenes isolates that have not been well characterized to date. The animal model reported here mimics many features of human rhombencephalitis and will be useful for studying the mechanisms that allow L. monocytogenes to disseminate to the brain stem following natural foodborne transmission.


Asunto(s)
Encéfalo/microbiología , Listeria monocytogenes/patogenicidad , Listeriosis/sangre , Tropismo Viral , Animales , Encéfalo/patología , Sistema Nervioso Central/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Encefalitis Infecciosa/microbiología , Listeria monocytogenes/aislamiento & purificación , Listeriosis/microbiología , Listeriosis/transmisión , Ratones , Ratones Endogámicos BALB C , Filogenia , Ovinos , Virulencia
20.
Sci Rep ; 10(1): 9387, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523003

RESUMEN

Cryptococcosis is a systemic infection and it may occur in immunocompromised and immunocompetent hosts. In order to better understand the clinical characteristics of patients with PC in different immune status, we retrospectively investigated the clinical, radiological, and treatment profiles of immunocompetent and immunocompromised patients with PC during a 10-year period (2008-2017). As a result, out of 136 patients, 94 (69.1%) were immunocompromised hosts. For the PC patients without CNS involvement, higher percentage of immunocompetent patients (39.5%, 15/38) had asymptomatic presentation than immunocompromised patients (6.3%, 3/48) (P < 0.05). Multiple pulmonary nodules (72.7%, 56/77), ground-glass attenuation/interstitial changes (94.4%, 17/18) and cavitation (88.6%, 31/35) were significantly frequent in immunocompromised patients (P < 0.05). A total of 47 patients were misdiagnosed as tuberculosis or tumors based on CT signs. PC was likely to be misdiagnosed as tuberculosis in immunocompromised patients (88.2%, 15/17), and tumor was more likely to be considered in immunocompetent patients (43.3%, 13/30). Immunocompetent patients accounted for 80% (24/30) of patients with definite diagnosis on surgical lung biopsy. Fluconazole monotherapy can achieve good clinical outcome in most PC patients without central nervous system (CNS) involvement (91.5%, 54/59). After 3 months of treatment, 92.7% (38/41) patients have improved imaging findings. In conclusion, PC has diverse imaging manifestations and it is easily misdiagnosed. Lobectomy should be carefully selected in immunocompetent patients with a single lung lesion. Fluconazole monotherapy is preferred for PC patients without CNS involvement.


Asunto(s)
Enfermedades Asintomáticas/epidemiología , Sistema Nervioso Central/microbiología , Criptococosis/inmunología , Cryptococcus/fisiología , Errores Diagnósticos/estadística & datos numéricos , Huésped Inmunocomprometido , Pulmón/patología , Adulto , Sistema Nervioso Central/patología , China/epidemiología , Criptococosis/epidemiología , Criptococosis/terapia , Femenino , Fluconazol/uso terapéutico , Humanos , Inmunocompetencia , Pulmón/microbiología , Masculino , Persona de Mediana Edad , Neumonectomía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA