RESUMEN
Thermal perception is critical for sensing environmental temperature, keeping body temperature consistent, and avoiding thermal danger. Central to thermal perception is the detection of cutaneous (skin) temperature information by the peripheral nerves and its transmission to the spinal cord, thalamus, and downstream cortical areas including the insular cortex, primary somatosensory cortex, and secondary somatosensory cortex. Although much is still unknown about this process, advances in technology have enabled significant progress to be made in recent years.This chapter summarizes our current understanding of how the peripheral nerves, spinal cord, and brain process cutaneous temperature information to give rise to conscious thermal perception.
Asunto(s)
Temperatura Cutánea , Sensación Térmica , Humanos , Sensación Térmica/fisiología , Temperatura Cutánea/fisiología , Animales , Sistema Nervioso Central/fisiología , Sistema Nervioso Periférico/fisiología , Médula Espinal/fisiología , Corteza Somatosensorial/fisiologíaRESUMEN
Cerebrospinal fluid (CSF) is responsible for maintaining brain homeostasis through nutrient delivery and waste removal for the central nervous system (CNS). Here, we demonstrate extensive CSF flow throughout the peripheral nervous system (PNS) by tracing distribution of multimodal 1.9-nanometer gold nanoparticles, roughly the size of CSF circulating proteins, infused within the lateral cerebral ventricle (a primary site of CSF production). CSF-infused 1.9-nanometer gold transitions from CNS to PNS at root attachment/transition zones and distributes through the perineurium and endoneurium, with ultimate delivery to axoplasm of distal peripheral nerves. Larger 15-nanometer gold fails to transit from CNS to PNS and instead forms "dye-cuffs," as predicted by current dogma of CSF restriction within CNS, identifying size limitations in central to peripheral flow. Intravenous 1.9-nanometer gold is unable to cross the blood-brain/nerve barrier. Our findings suggest that CSF plays a consistent role in maintaining homeostasis throughout the nervous system with implications for CNS and PNS therapy and neural drug delivery.
Asunto(s)
Líquido Cefalorraquídeo , Nervios Periféricos , Animales , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/fisiología , Nervios Periféricos/fisiología , Oro/química , Sistema Nervioso Periférico/fisiología , Nanopartículas del Metal/química , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/metabolismo , Ratas , RatonesRESUMEN
The peripheral nervous system of the octopus is among the most complex of any animal. In each arm, hundreds of serial ganglia form a central core of nervous tissue processing sensory input, issuing motor commands, and exchanging information with the central brain.1,2,3,4,5 In addition to the central cord, there are two other types of neural elements: fine intramuscular nerve cords (INCs)6,7 and small sucker ganglia at the base of each sucker.2,6,8,9 Connections between these different elements and the structural organization of the arm nervous system remain poorly understood, despite decades of interest and a more recent explosion of studies of the cephalopod nervous system.8,10,11,12,13,14,15 Here, we use serial blockface electron microscopy to reconstruct large volumes of an arm from Octopus bocki at the base and toward the tip, mapping connections between the various neural elements and their relationship to the muscle and skin. We show that the ganglia follow an alternating mirror-image pattern along the arm, where the left or right-sided location of successive suckers determines ganglionic orientation. We also describe previously unrecognized patterns in (1) continuity of oblique connectives between the INCs that encircle the arm; (2) repeatable structures of the major blood vessel branches and nerve connectives within each ganglion; (3) clustering of rare, unusually large neurons within the cell body layers; and (4) division of the cortex into repeating columns. These new findings from the first 3DEM reconstruction of the arm should greatly facilitate future studies of octopus neurobiology, particularly sensori-motor integration and arm control.
Asunto(s)
Octopodiformes , Animales , Octopodiformes/fisiología , Octopodiformes/anatomía & histología , Extremidades/anatomía & histología , Extremidades/fisiología , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Microscopía ElectrónicaRESUMEN
Relatively little is known about how peripheral nervous systems (PNSs) contribute to the patterning of behavior in which their role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (stage 1) followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (stage 2). In decerebrated specimens, stage 1 bristling was preserved, while stage 2 bristling was replaced by slower, uncoordinated ceratal movements. We conclude from these observations that, first, the animal's PNS and central nervous system (CNS) mediate stages 1 and 2 of bristling, respectively; second, the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and third, the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS' computational capacity and provide insight into a neuroethological scheme in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.
Asunto(s)
Sistema Nervioso Central , Sistema Nervioso Periférico , Animales , Sistema Nervioso Central/fisiología , Sistema Nervioso Periférico/fisiología , Conducta Animal/fisiología , Invertebrados/fisiologíaRESUMEN
In this issue of Neuron, Bhat et al.1 unveil the temporary reawakening of an embryonic guidance program, which facilitates the alignment of blood neovessels, creating a supportive "bridge" microenvironment for axon regrowth and tissue regeneration after peripheral nervous system (PNS) injury.
Asunto(s)
Axones , Regeneración Nerviosa , Axones/fisiología , Regeneración Nerviosa/fisiología , Neuronas , Sistema Nervioso Periférico/fisiologíaRESUMEN
Objective.Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.Approach.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).Main results.The cuff recorded the largest ECAP signal (p< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.Significance.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.
Asunto(s)
Nervios Periféricos , Sistema Nervioso Periférico , Humanos , Animales , Porcinos , Nervios Periféricos/fisiología , Sistema Nervioso Periférico/fisiología , Potenciales Evocados/fisiología , Microelectrodos , Fibras Nerviosas , Potenciales de Acción/fisiología , Estimulación Eléctrica/métodosRESUMEN
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Asunto(s)
Vaina de Mielina , Células de Schwann , Femenino , Humanos , Vaina de Mielina/metabolismo , Neuroglía , Sistema Nervioso Periférico/fisiología , Embarazo , Células de Schwann/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Neurons of the peripheral nervous system (PNS) are tasked with diverse roles, from encoding touch, pain, and itch to interoceptive control of inflammation and organ physiology. Thus, technologies that allow precise control of peripheral nerve activity have the potential to regulate a wide range of biological processes. Noninvasive modulation of neuronal activity is an important translational application of focused ultrasound (FUS). Recent studies have identified effective strategies to modulate brain circuits; however, reliable parameters to control the activity of the PNS are lacking. To develop robust noninvasive technologies for peripheral nerve modulation, we employed targeted FUS stimulation and electrophysiology in mouse ex vivo skin-saphenous nerve preparations to record the activity of individual mechanosensory neurons. Parameter space exploration showed that stimulating neuronal receptive fields with high-intensity, millisecond FUS pulses reliably and repeatedly evoked one-to-one action potentials in all peripheral neurons recorded. Interestingly, when neurons were classified based on neurophysiological properties, we identified a discrete range of FUS parameters capable of exciting all neuronal classes, including myelinated A fibers and unmyelinated C fibers. Peripheral neurons were excited by FUS stimulation targeted to either cutaneous receptive fields or peripheral nerves, a key finding that increases the therapeutic range of FUS-based peripheral neuromodulation. FUS elicited action potentials with millisecond latencies compared with electrical stimulation, suggesting ion channelmediated mechanisms. Indeed, FUS thresholds were elevated in neurons lacking the mechanically gated channel PIEZO2. Together, these results demonstrate that transcutaneous FUS drives peripheral nerve activity by engaging intrinsic mechanotransduction mechanisms in neurons [B. U. Hoffman, PhD thesis, (2019)].
Asunto(s)
Canales Iónicos , Neuronas , Sistema Nervioso Periférico , Estimulación Eléctrica Transcutánea del Nervio , Potenciales de Acción , Animales , Interneuronas , Mamíferos , Neuronas/fisiología , Sistema Nervioso Periférico/fisiología , Ultrasonografía/métodosRESUMEN
Disturbance in the neuronal network leads to instability in the microtubule (MT) railroad of axons, causing hindrance in the intra-axonal transport and making it difficult to re-establish the broken network. Peripheral nervous system (PNS) neurons can stabilize their MTs, leading to the formation of regeneration-promoting structures called "growth cones". However, central nervous system (CNS) neurons lack this intrinsic reparative capability and, instead, form growth-incompetent structures called "retraction bulbs", which have a disarrayed MT network. It is evident from various studies that although axonal regeneration depends on both cell-extrinsic and cell-intrinsic factors, any therapy that aims at axonal regeneration ultimately converges onto MTs. Understanding the neuronal MT dynamics will help develop effective therapeutic strategies in diseases where the MT network gets disrupted, such as spinal cord injury, traumatic brain injury, multiple sclerosis, and amyotrophic lateral sclerosis. It is also essential to know the factors that aid or inhibit MT stabilization. In this review, we have discussed the MT dynamics postaxotomy in the CNS and PNS, and factors that can directly influence MT stability in various diseases.
Asunto(s)
Axones , Sistema Nervioso Periférico , Transporte Axonal/fisiología , Axones/metabolismo , Axotomía , Microtúbulos , Regeneración Nerviosa/fisiología , Sistema Nervioso Periférico/fisiologíaRESUMEN
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Asunto(s)
Sistema Nervioso Periférico , Células de Schwann , Axones/metabolismo , Sistema Nervioso Central/fisiología , Neuroglía/fisiología , Sistema Nervioso Periférico/fisiología , Células de Schwann/metabolismoRESUMEN
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Asunto(s)
Regeneración Tisular Dirigida , Técnicas In Vitro , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones/metabolismo , Axones/patología , Biomarcadores , Técnicas de Cultivo de Célula , Susceptibilidad a Enfermedades , Regeneración Tisular Dirigida/métodos , Humanos , Técnicas In Vitro/instrumentación , Técnicas In Vitro/métodos , Traumatismos de los Nervios Periféricos/terapia , Sistema Nervioso Periférico/fisiologíaRESUMEN
Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.
Asunto(s)
Tronco Encefálico/fisiología , Imagen por Resonancia Magnética/métodos , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Adaptación Fisiológica , Adulto , Afecto , Vías Aferentes/fisiología , Sistema Nervioso Autónomo/fisiología , Estudios Cruzados , Femenino , Humanos , Masculino , Sistema Nervioso Periférico/fisiología , Estimulación Eléctrica Transcutánea del NervioRESUMEN
Space analogs, such as bed rest, are used to reproduce microgravity-induced morphological and physiological changes and can be used as clinical models of prolonged inactivity. Nevertheless, nonuniform decreases in muscle mass and function have been frequently reported, and peripheral nerve adaptations have been poorly studied, although some of these mechanisms may be explained. Ten young healthy males (18-33 yr) underwent 10 days of horizontal bed rest. Peripheral neurophysiological assessments were performed bilaterally for the dominant (DL) and nondominant upper and lower limbs (N-DL) on the 1st and 10th day of bed rest, including ultrasound of the median, deep peroneal nerve (DPN), and common fibular nerve (CFN) , as well as a complete nerve conduction study (NCS) of the upper and lower limbs. Consistently, reduced F waves, suggesting peripheral nerve dysfunction, of both the peroneal (DL: P = 0.005, N-DL: P = 0.013) and tibial nerves (DL: P = 0.037, N-DL: P = 0.005) were found bilaterally, whereas no changes were observed in nerve ultrasound or other parameters of the NCS of both the upper and lower limbs. In these young healthy males, only the F waves, known to respond to postural changes, were significantly affected by short-term bed rest. These preliminary results suggest that during simulated microgravity, most changes occur at the muscle or central nervous system level. Since the assessment of F waves is common in clinical neurophysiological examinations, caution should be used when testing individuals after prolonged immobility.
Asunto(s)
Reposo en Cama , Extremidades/inervación , Sistema Nervioso Periférico/fisiología , Simulación de Ingravidez , Adaptación Fisiológica , Adolescente , Adulto , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Conducción Nerviosa , Examen Neurológico , Sistema Nervioso Periférico/diagnóstico por imagen , Posición Supina , Factores de Tiempo , Ultrasonografía , Adulto JovenRESUMEN
Reflex cardiorespiratory alterations elicited after instillation of nociceptive agents intra-arterially (i.a) are termed as 'vasosensory reflex responses'. The present study was designed to evaluate such responses produced after i.a. instillation of histamine (1 mM; 10 mM; 100 mM) and to delineate the pathways i.e. the afferents and efferents mediating these responses. Blood pressure, electrocardiogram and respiratory excursions were recorded before and after injecting saline/histamine, in a local segment of femoral artery in urethane anesthetized rats. Paw edema and latencies of responses were also estimated. Separate groups of experiments were conducted to demonstrate the involvement of somatic nerves in mediating histamine-induced responses after ipsilateral femoral and sciatic nerve sectioning (+NX) and lignocaine pre-treatment (+Ligno). In addition, another set of experiments was performed after bilateral vagotomy (+VagX) and the responses after histamine instillation were studied. Histamine produced concentration-dependent hypotensive, bradycardiac, tachypnoeic and hyperventilatory responses of shorter latencies (2-7 s) favouring the neural mechanisms in eliciting the responses. Instillation of saline (time matched control) in a similar fashion produced no response, excluding the possibilities of ischemic/stretch effects. Paw edema was absent in both hind limbs indicating that the histamine did not reach the paws and did not spill out into the systemic circulation. +NX, +VagX, +Ligno attenuated histamine-induced cardiorespiratory responses significantly. These observations conclude that instillation of 10 mM of histamine produces optimal vasosensory reflex responses originating from the local vascular bed; afferents and efferents of which are mostly located in ipsilateral somatic and vagus nerves respectively.
Asunto(s)
Endotelio Vascular/inervación , Histamina/farmacología , Sistema Nervioso Periférico/efectos de los fármacos , Reflejo/efectos de los fármacos , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Bradicardia/inducido químicamente , Bradicardia/fisiopatología , Endotelio Vascular/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hiperventilación/inducido químicamente , Hiperventilación/fisiopatología , Masculino , Sistema Nervioso Periférico/fisiología , Ratas , Reflejo/fisiología , Taquipnea/inducido químicamente , Taquipnea/fisiopatología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiologíaRESUMEN
BACKGROUND: The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS: To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS: This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Asunto(s)
Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Sistema Nervioso Periférico/metabolismo , Animales , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/fisiología , Humanos , Ácido Hialurónico/metabolismo , Red Nerviosa/enzimología , Red Nerviosa/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Sistema Nervioso Periférico/enzimología , Sistema Nervioso Periférico/fisiología , Proteoglicanos/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
The primary cilium plays a pivotal role during the embryonic development of vertebrates. It acts as a somatic signaling hub for specific pathways, such as Sonic Hedgehog signaling. In humans, mutations in genes that cause dysregulation of ciliogenesis or ciliary function lead to severe developmental disorders called ciliopathies. Beyond its role in early morphogenesis, growing evidence points towards an essential function of the primary cilium in neural circuit formation in the central nervous system. However, very little is known about a potential role in the formation of the peripheral nervous system. Here, we investigate the presence of the primary cilium in neural crest cells and their derivatives in the trunk of developing chicken embryos in vivo. We found that neural crest cells, sensory neurons, and boundary cap cells all bear a primary cilium during key stages of early peripheral nervous system formation. Moreover, we describe differences in the ciliation of neuronal cultures of different populations from the peripheral and central nervous systems. Our results offer a framework for further in vivo and in vitro investigations on specific roles that the primary cilium might play during peripheral nervous system formation.
Asunto(s)
Cilios/fisiología , Sistema Nervioso Periférico/fisiología , Biomarcadores , Movimiento Celular , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Cresta Neural/metabolismo , Neuronas/metabolismo , Organogénesis/genéticaRESUMEN
Muscle sympathetic nerve activity (MSNA) is known as an effective measure to evaluate peripheral sympathetic activity; however, it requires invasive measurement with the microneurography method. In contrast, peripheral arterial stiffness affected by MSNA is a measure that allows non-invasive evaluation of mechanical changes of arterial elasticity. This paper aims to clarify the features of peripheral arterial stiffness to determine whether it inherits MSNA features towards non-invasive evaluation of its activity. To this end, we propose a method to estimate peripheral arterial stiffness [Formula: see text] at a high sampling rate. Power spectral analysis of the estimated [Formula: see text] was then performed on data acquired from 15 patients ([Formula: see text] years) who underwent endoscopic thoracic sympathectomy. We examined whether [Formula: see text] exhibited the features of MSNA where its frequency components synchronise with heart and respiration rates and correlates with the low-frequency component of systolic blood pressure. Regression analysis revealed that the local peak frequency in the range of heartbeat frequency highly correlate with the heart rate ([Formula: see text], [Formula: see text]) where the regression slope was approximately 1 and intercept was approximately 0. Frequency analysis then found spectral peaks of [Formula: see text] approximately 0.2 Hz that correspond to the respiratory cycle. Finally, cross power spectral analysis showed a significant magnitude squared coherence between [Formula: see text] and systolic blood pressure in the frequency band from 0.04 to 0.2 Hz. These results indicate that [Formula: see text] inherits the features observed in MSNA that require invasive measurements, and thus [Formula: see text] can be an effective non-invasive substitution for MSNA measure.
Asunto(s)
Presión Sanguínea , Fenómenos Fisiológicos Cardiovasculares , Fenómenos Fisiológicos Respiratorios , Simpatectomía , Rigidez Vascular , Algoritmos , Endoscopía , Humanos , Modelos Biológicos , Neuroendoscopios , Sistema Nervioso Periférico/fisiología , Reproducibilidad de los Resultados , Simpatectomía/efectos adversos , Simpatectomía/métodos , Sistema Nervioso Simpático/fisiología , Signos VitalesRESUMEN
The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.
Asunto(s)
Sistema Nervioso Central/fisiología , Péptido 1 Similar al Glucagón/fisiología , Sistema Nervioso Periférico/fisiología , Respuesta de Saciedad/fisiología , Animales , Ingestión de Alimentos , Femenino , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proglucagón/metabolismo , Receptores de Oxitocina/metabolismo , Nervio Vago/fisiologíaRESUMEN
Neurons are polarized cells whose fundamental functions are to receive, conduct and transmit signals. In bilateral animals, the nervous system is divided into the central (CNS) and peripheral (PNS) nervous system. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Sensory axons can be up to 3 feet in length. Because of its long-reaching and complex structure, the peripheral nervous system (PNS) is exposed and vulnerable to many genetic, metabolic and environmental predispositions. Lipids and lipid intermediates are essential components of nerves. About 50 % of the brain dry weight consist of lipids, which makes it the second highest lipid rich tissue after adipose tissue. However, the role of lipids in neurological disorders in particular of the peripheral nerves is not well understood. This review aims to provide an overview about the role of lipids in the disorders of the PNS.