Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Cell Stem Cell ; 31(8): 1113-1126.e6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981471

RESUMEN

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Herein, we develop a human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on the PSM tissues cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and the PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the biochemical and biomechanical events that guide somite formation.


Asunto(s)
Microfluídica , Modelos Biológicos , Células Madre Pluripotentes , Somitos , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Somitos/citología , Somitos/metabolismo , Microfluídica/métodos , Desarrollo Embrionario , Mesodermo/citología , Diferenciación Celular
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891790

RESUMEN

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Asunto(s)
Proteínas Hedgehog , Costillas , Columna Vertebral , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Costillas/metabolismo , Costillas/embriología , Columna Vertebral/metabolismo , Columna Vertebral/embriología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Mesodermo/embriología , Codorniz , Somitos/metabolismo , Somitos/embriología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Portadoras
3.
Biochem Soc Trans ; 52(3): 987-995, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38716859

RESUMEN

Reproducible tissue morphology is a fundamental feature of embryonic development. To ensure such robustness during tissue morphogenesis, inherent noise in biological processes must be buffered. While redundant genes, parallel signaling pathways and intricate network topologies are known to reduce noise, over the last few years, mechanical properties of tissues have been shown to play a vital role. Here, taking the example of somite shape changes, I will discuss how tissues are highly plastic in their ability to change shapes leading to increased precision and reproducibility.


Asunto(s)
Desarrollo Embrionario , Morfogénesis , Animales , Desarrollo Embrionario/genética , Humanos , Somitos/embriología , Somitos/metabolismo , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica
4.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727565

RESUMEN

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Somitos , Animales , Desarrollo Embrionario/genética , Humanos , Somitos/metabolismo , Somitos/embriología , Desarrollo de Músculos/genética , Neurogénesis/genética , Neurogénesis/fisiología , Páncreas/embriología , Páncreas/metabolismo , Diferenciación Celular/genética
5.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729682

RESUMEN

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Somitos , Animales , Tipificación del Cuerpo/genética , Somitos/embriología , Somitos/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Mesodermo/citología , Pez Cebra/embriología , Pez Cebra/genética , Transducción de Señal , Relojes Biológicos/genética
6.
Dev Cell ; 59(14): 1860-1875.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38697108

RESUMEN

In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.


Asunto(s)
Tipificación del Cuerpo , Notocorda , Somitos , Columna Vertebral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Notocorda/embriología , Notocorda/metabolismo , Somitos/embriología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Columna Vertebral/embriología , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Embrión no Mamífero/metabolismo
7.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742434

RESUMEN

During mouse development, presomitic mesoderm cells synchronize Wnt and Notch oscillations, creating sequential phase waves that pattern somites. Traditional somitogenesis models attribute phase waves to a global modulation of the oscillation frequency. However, increasing evidence suggests that they could arise in a self-organizing manner. Here, we introduce the Sevilletor, a novel reaction-diffusion system that serves as a framework to compare different somitogenesis patterning hypotheses. Using this framework, we propose the Clock and Wavefront Self-Organizing model that considers an excitable self-organizing region where phase waves form independent of global frequency gradients. The model recapitulates the change in relative phase of Wnt and Notch observed during mouse somitogenesis and provides a theoretical basis for understanding the excitability of mouse presomitic mesoderm cells in vitro.


Asunto(s)
Receptores Notch , Somitos , Animales , Ratones , Somitos/embriología , Somitos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Tipificación del Cuerpo/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Relojes Biológicos/fisiología
8.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38752392

RESUMEN

The patterning of somites is coordinated by presomitic mesoderm cells through synchronised oscillations of Notch signalling, creating sequential waves of gene expression that propagate from the posterior to the anterior end of the tissue. In a new study, Klepstad and Marcon propose a new theoretical framework that recapitulates the dynamics of mouse somitogenesis observed in vivo and in vitro. To learn more about the story behind the paper, we caught up with first author Julie Klepstad and corresponding author Luciano Marcon, Principal Investigator at the Andalusian Center for Developmental Biology.


Asunto(s)
Biología Evolutiva , Animales , Biología Evolutiva/historia , Ratones , Somitos/embriología , Somitos/metabolismo , Historia del Siglo XXI , Humanos , Tipificación del Cuerpo/genética , Historia del Siglo XX , Receptores Notch/metabolismo , Receptores Notch/genética
9.
Nat Commun ; 15(1): 4550, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811547

RESUMEN

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cabeza , Anfioxos , Mesodermo , Vertebrados , Animales , Mesodermo/citología , Mesodermo/embriología , Anfioxos/embriología , Anfioxos/genética , Cabeza/embriología , Vertebrados/embriología , Vertebrados/genética , Somitos/embriología , Somitos/citología , Somitos/metabolismo , Evolución Biológica , Transcriptoma
10.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579718

RESUMEN

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias de Ratones , Animales , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Desarrollo Embrionario , Somitos/citología , Somitos/metabolismo
11.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345319

RESUMEN

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Asunto(s)
Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Factores de Transcripción , Animales , Ratones , Diferenciación Celular , Cromatina/metabolismo , Expresión Génica , Mesodermo/metabolismo , Somitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
12.
Nat Rev Mol Cell Biol ; 25(7): 517-533, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38418851

RESUMEN

Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.


Asunto(s)
Tipificación del Cuerpo , Somitos , Somitos/embriología , Somitos/metabolismo , Animales , Humanos , Tipificación del Cuerpo/genética , Vertebrados/embriología , Regulación del Desarrollo de la Expresión Génica , Desarrollo Embrionario/genética , Mesodermo/metabolismo , Mesodermo/embriología , Transducción de Señal , Morfogénesis
13.
J Exp Zool B Mol Dev Evol ; 342(4): 350-367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155515

RESUMEN

In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Proteínas de Xenopus , Xenopus laevis , Animales , Evolución Biológica , Somitos/metabolismo , Columna Vertebral/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
14.
Nat Commun ; 14(1): 6497, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838784

RESUMEN

Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Somitos/metabolismo , Fenotipo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Tipificación del Cuerpo/genética
15.
DNA Cell Biol ; 42(10): 580-584, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37462914

RESUMEN

Fibroblast growth factor (FGF) signaling is conserved from cnidaria to mammals (Ornitz and Itoh, 2022) and it regulates several critical processes such as differentiation, proliferation, apoptosis, cell migration, and embryonic development. One pivotal process FGF signaling controls is the division of vertebrate paraxial mesoderm into repeated segmented units called somites (i.e., somitogenesis). Somite segmentation occurs periodically and sequentially in a head-to-tail manner, and lays down the plan for compartmentalized development of the vertebrate body axis (Gomez et al., 2008). These somites later give rise to vertebrae, tendons, and skeletal muscle. Somite segments form sequentially from the anterior end of the presomitic mesoderm (PSM). The periodicity of somite segmentation is conferred by the segmentation clock, comprising oscillatory expression of Hairy and enhancer-of-split (Her/Hes) genes in the PSM. The positional information for somite boundaries is instructed by the double phosphorylated extracellular signal-regulated kinase (ppERK) gradient, which is the relevant readout of FGF signaling during somitogenesis (Sawada et al., 2001; Delfini et al., 2005; Simsek and Ozbudak, 2018; Simsek et al., 2023). In this review, we summarize the crosstalk between the segmentation clock and FGF/ppERK gradient and discuss how that leads to periodic somite boundary formation. We also draw attention to outstanding questions regarding the interconnected roles of the segmentation clock and ppERK gradient, and close with suggested future directions of study.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Somitos , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Somitos/metabolismo , Mesodermo , Transducción de Señal/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
16.
Cell Stem Cell ; 30(7): 907-908, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419101

RESUMEN

In this issue, Lazaro et al.1 use iPSC-derived presomitic mesoderm cells to analyze the oscillatory expression of somitic clock genes. Comparison of a wide range of species, including mouse, rabbit, cattle, rhinoceros, human, and marmoset, demonstrates an excellent correlation between biochemical reaction speed and the tempo of the clock.


Asunto(s)
Relojes Biológicos , Mesodermo , Animales , Humanos , Ratones , Bovinos , Conejos , Mesodermo/metabolismo , Somitos/metabolismo , Vertebrados/genética , Regulación del Desarrollo de la Expresión Génica
17.
PLoS Genet ; 19(6): e1010781, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267426

RESUMEN

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.


Asunto(s)
Proteínas de Homeodominio , Somitos , Ratones , Animales , Proteínas de Homeodominio/metabolismo , Diferenciación Celular/genética , Somitos/metabolismo , Desarrollo de Músculos/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo
18.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222488

RESUMEN

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Asunto(s)
Somitos , Pez Cebra , Animales , Ratones , Somitos/metabolismo , Proteoglicanos/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Desarrollo de Músculos/fisiología
19.
Nat Commun ; 14(1): 2115, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055428

RESUMEN

The metameric pattern of somites is created based on oscillatory expression of clock genes in presomitic mesoderm. However, the mechanism for converting the dynamic oscillation to a static pattern of somites is still unclear. Here, we provide evidence that Ripply/Tbx6 machinery is a key regulator of this conversion. Ripply1/Ripply2-mediated removal of Tbx6 protein defines somite boundary and also leads to cessation of clock gene expression in zebrafish embryos. On the other hand, activation of ripply1/ripply2 mRNA and protein expression is periodically regulated by clock oscillation in conjunction with an Erk signaling gradient. Whereas Ripply protein decreases rapidly in embryos, Ripply-triggered Tbx6 suppression persists long enough to complete somite boundary formation. Mathematical modeling shows that a molecular network based on results of this study can reproduce dynamic-to-static conversion in somitogenesis. Furthermore, simulations with this model suggest that sustained suppression of Tbx6 caused by Ripply is crucial in this conversion.


Asunto(s)
Somitos , Pez Cebra , Animales , Somitos/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Mesodermo/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Regulación del Desarrollo de la Expresión Génica
20.
Dev Cell ; 58(11): 967-980.e4, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37098349

RESUMEN

Oscillator systems achieve synchronization when oscillators are coupled. The presomitic mesoderm is a system of cellular oscillators, where coordinated genetic activity is necessary for proper periodic generation of somites. While Notch signaling is required for the synchronization of these cells, it is unclear what information the cells exchange and how they react to this information to align their oscillatory pace with that of their neighbors. Combining mathematical modeling and experimental data, we found that interaction between murine presomitic mesoderm cells is controlled by a phase-gated and unidirectional coupling mechanism and results in deceleration of their oscillation pace upon Notch signaling. This mechanism predicts that isolated populations of well-mixed cells synchronize, revealing a stereotypical synchronization in the mouse PSM and contradicting expectations from previously applied theoretical approaches. Collectively, our theoretical and experimental findings reveal the underlying coupling mechanisms of the presomitic mesoderm cells and provide a framework to quantitatively characterize their synchronization.


Asunto(s)
Relojes Biológicos , Somitos , Ratones , Animales , Somitos/metabolismo , Mesodermo/metabolismo , Modelos Teóricos , Transducción de Señal/genética , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA