Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Best Pract Res Clin Haematol ; 37(2): 101560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098806

RESUMEN

Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.


Asunto(s)
Antígenos HLA-E , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Humanos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/genética , Aloinjertos , Linfocitos T/inmunología , Polimorfismo Genético , Trasplante Homólogo
2.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38943249

RESUMEN

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Asunto(s)
Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Animales , Ratones , Línea Celular Tumoral , Antígenos HLA-E , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Anticuerpos Monoclonales/farmacología , Sistemas CRISPR-Cas , Eliminación de Gen , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Citotoxicidad Inmunológica
3.
Front Immunol ; 15: 1389358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736873

RESUMEN

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Genotipo , Células Asesinas Naturales , Receptores KIR , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Femenino , Masculino , Adulto , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Citomegalovirus/inmunología , Receptores KIR/genética , Persona de Mediana Edad , Factores Sexuales , Factores de Edad , Antígenos CD57 , Prueba de Histocompatibilidad , Adulto Joven , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Antígenos HLA/genética , Antígenos HLA/inmunología , Anciano , Receptores KIR3DL1/genética
4.
Emerg Microbes Infect ; 13(1): 2361019, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38804979

RESUMEN

HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-γ production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.


Asunto(s)
COVID-19 , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Células Asesinas Naturales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Inmunidad Adaptativa , Masculino , Femenino , Persona de Mediana Edad , Pulmón/inmunología , Pulmón/virología
5.
J Immunol ; 212(11): 1754-1765, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639635

RESUMEN

Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.


Asunto(s)
Haplotipos , Macaca fascicularis , Receptores KIR , Animales , Receptores KIR/genética , Macaca fascicularis/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Genómica/métodos , Genotipo
6.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158698

RESUMEN

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Asunto(s)
Antígenos HLA-E , Señales de Clasificación de Proteína , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/química , Péptidos/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
7.
Front Immunol ; 14: 1227897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901227

RESUMEN

Transplantation of hematopoietic stem cells (HSCT) is a procedure commonly used in treatment of various haematological disorders which is associated with significantly improved survival rates. However, one of its drawbacks is the possibility of development of post-transplant complications, including acute and chronic graft-versus-host disease (GvHD) or CMV infection. Various studies suggested that NK cells and their receptors may affect the transplant outcome. In the present study, patients and donors were found to significantly differ in the distribution of the NKG2A rs7301582 genetic variants - recipients carried the C allele more often than their donors (0.975 vs 0.865, p<0.0001). Increased soluble HLA-E (sHLA-E) levels detected in recipients' serum 30 days after transplantation seemed to play a prognostic and protective role. It was observed that recipients with higher sHLA-E levels were less prone to chronic GvHD (11.65 vs 6.33 pg/mL, p=0.033) or more severe acute GvHD grades II-IV (11.07 vs 8.04 pg/mL, p=0.081). Our results also showed an unfavourable role of HLA-E donor-recipient genetic incompatibility in CMV infection development after transplantation (OR=5.92, p=0.014). Frequencies of NK cells (both CD56dim and CD56bright) expressing NKG2C were elevated in recipients who developed CMV, especially 30 and 90 days post-transplantation (p<0.03). Percentages of NKG2C+ NK cells lacking NKG2A expression were also increased in these patients. Moreover, recipients carrying a NKG2C deletion characterized with decreased frequency of NKG2C+ NK cells (p<0.05). Our study confirms the importance of NK cells in the development of post-transplant complications and highlights the effect of HLA-E and NKG2C genetic variants, sHLA-E serum concentration, as well as NKG2C surface expression on transplant outcome.


Asunto(s)
Infecciones por Citomegalovirus , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase I , Subfamília C de Receptores Similares a Lectina de Células NK , Humanos , Infecciones por Citomegalovirus/metabolismo , Enfermedad Injerto contra Huésped/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Trasplante Homólogo/efectos adversos , Antígenos de Histocompatibilidad Clase I/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Antígenos HLA-E
8.
Genome Biol ; 24(1): 157, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403156

RESUMEN

BACKGROUND: The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS: Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION: Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.


Asunto(s)
Genoma Humano , Genómica , Animales , Humanos , Duplicaciones Segmentarias en el Genoma , Familia de Multigenes , Centrómero/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética
9.
Gene ; 857: 147181, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36623676

RESUMEN

The aim of the study was to explore the potential molecular mechanism associated with shear stress on abdominal aortic aneurysm (AAA) progression. This study performed RNA sequencing on AAA patients (SQ), AAA patients after endovascular aneurysm repair (EVAR, SH), and normal controls (NC). Furthermore, we identified the differentially expressed microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNA (cirRNAs) and constructed competing endogenous RNA (ceRNA) networks. Finally, 164 differentially expressed miRNAs, 179 co-differentially expressed lncRNAs, and 440 co-differentially expressed circRNAs among the three groups were obtained. The differentially expressed miRNAs mainly enriched in 325 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Target genes associated with co-differentially expressed genes among the group of SH, SQ, and NC mainly enriched in 66 KEGG pathways. LncRNA-miRNA-mRNA interactions, including 15 lncRNAs, 63 miRNAs and 57 mRNAs, was constructed. CircRNA-miRNA-mRNA ceRNA network included 79 circRNAs, 21 miRNAs, and 49 mRNAs. Among them, KLRC2 and CSTF1, targeted by miR-125b, participated in cell-mediated immunity regulation. MiR-320-related circRNAs and SATB1-AS1 serving as the sponge of miRNAs, such as has-circ-0129245, has-circ-0138746, and has-circ-0139786, were hub genes in ceRNA network. In conclusion, AAA patients might be benefit from EVAR based on various pathways and some molecules, such as miR-125b and SATB1-AS1, related with shear stress.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , ARN Largo no Codificante , Humanos , Aneurisma de la Aorta Abdominal/genética , Redes Reguladoras de Genes , Proteínas de Unión a la Región de Fijación a la Matriz/genética , MicroARNs/genética , MicroARNs/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética
10.
J Med Virol ; 95(1): e28404, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515427

RESUMEN

The severity of COVID-19 is associated with individual genetic host factors. Among these, genetic polymorphisms affecting natural killer (NK) cell responses, as variations in the HLA-E- (HLA-E*0101/0103), FcγRIIIa- (FcγRIIIa-158-F/V), and NKG2C- (KLRC2wt/del ) receptor, were associated with severe COVID-19. Recently, the rs9916629-C/T genetic polymorphism was identified that indirectly shape the human NK cell repertoire towards highly pro-inflammatory CD56bright NK cells. We investigated whether the rs9916629-C/T variants alone and in comparison to the other risk factors are associated with a fatal course of COVID-19. We included 1042 hospitalized surviving and 159 nonsurviving COVID-19 patients as well as 1000 healthy controls. rs9916629-C/T variants were genotyped by TaqMan assays and were compared between the groups. The patients' age, comorbidities, HLA-E*0101/0103, FcγRIIIa-158-F/V, and KLRC2wt/del variants were also determined. The presence of the rs9916629-C allele was a risk factor for severe and fatal COVID-19 (p < 0.0001), independent of the patients' age or comorbidities. Fatal COVID-19 was more frequent in younger patients (<69.85 years) carrying the FcγRIIIa-158-V/V (p < 0.006) and in older patients expressing the KLRC2del variant (p < 0.003). Thus, patients with the rs9916629-C allele have a significantly increased risk for fatal COVID-19 and identification of the genetic variants may be used as prognostic marker for hospitalized COVID-19 patients.


Asunto(s)
COVID-19 , Células Asesinas Naturales , Polimorfismo Genético , Anciano , Humanos , Alelos , COVID-19/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Factores de Riesgo
11.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012691

RESUMEN

Adaptive natural killer (NK) cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs) can be expanded in vivo in response to human cytomegalovirus (HCMV) infection. Developing a method to preferentially expand this subset is essential for effective targeting of allogeneic cancer cells. A previous study developed an in vitro method to generate single KIR+ NK cells for enhanced targeting of the primary acute lymphoblastic leukemia cells; however, the expansion rate was quite low. Here, we present an effective expansion method using genetically modified K562-HLA-E feeder cells for long-term proliferation of adaptive NK cells displaying highly differentiated phenotype and comparable cytotoxicity, CD107a, and interferon-γ (IFN-γ) production. More importantly, our expansion method achieved more than a 10,000-fold expansion of adaptive NK cells after 6 weeks of culture, providing a high yield of alloreactive NK cells for cell therapy against cancer.


Asunto(s)
Infecciones por Citomegalovirus , Subfamília C de Receptores Similares a Lectina de Células NK , Citomegalovirus , Antígenos de Histocompatibilidad Clase I , Humanos , Células K562 , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Receptores KIR , Antígenos HLA-E
12.
HLA ; 100(5): 469-478, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35802353

RESUMEN

NK cells monitor altered molecular patterns in tumors and infected cells through an ample array of receptors. Two families of evolutionarily distant receptors have converged to enable human NK cells to sense levels of HLA class I ligands, frequently abnormal in altered cells. Whilst different forms of polymorphism are a hallmark of killer-cell immunoglobulin-like receptors and their classic HLA-A, B, and C ligands, genetic diversity of killer-cell lectin-like receptors for the non-classical HLA-E (CD94/NKG2 heterodimers) is less conspicuous and has attracted less attention. A common pattern of diversification in both receptor families is evolution of pairs of inhibitory and activating homologs for a common ligand, the genes encoding activating receptors being more frequently affected by copy number variation (CNV). This is exemplified by the gene encoding the activating NKG2C subunit (KLRC2 or NKG2C), which marks an NK-cell subpopulation that differentiates or expands in response to cytomegalovirus. We have studied NKG2C diversity in 240 South European individuals, using polymerase chain reaction and sequencing methods to assess both gene CNV and single-nucleotide polymorphisms (SNPs) affecting its promoter, coding and 3'-untranslated (3'UT) regions. Sequence analysis revealed eight common SNPs-one in the promoter, two in the coding sequence, and five in the 3'UT region. These SNPs associate strongly with each other, forming three conserved extended haplotypes (frequencies: 0.456, 0.221, and 0.117). Homo- and heterozygous combination of these, together with complete gene deletion (0.175) and additional haplotypes with frequencies lower than 0.015, generate a diversity of NKG2C genotypes of potential immunological importance.


Asunto(s)
Variaciones en el Número de Copia de ADN , Antígenos de Histocompatibilidad Clase I , Humanos , Regiones no Traducidas 3' , Alelos , Genotipo , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA-A/genética , Inmunoglobulinas/genética , Lectinas/genética , Ligandos , Subfamília C de Receptores Similares a Lectina de Células NK/genética
13.
Oncoimmunology ; 11(1): 2081415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694192

RESUMEN

Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity, and the possibility to be applied as 'off-the-shelf' product makes them highly attractive for cell-based immunotherapies. In patients with multiple myeloma (MM), an elevated number of NK cells has been correlated with higher overall-survival rate. However, NK cell function can be impaired by upregulation of inhibitory receptors, such as the immune checkpoint NKG2A. Here, we developed a CRISPR-Cas9-based gene editing protocol that allowed us to knockout about 80% of the NKG2A-encoding killer cell lectin like receptor C1 (KLRC1) locus in primary NK cells. In-depth phenotypic analysis confirmed significant reduction in NKG2A protein expression. Importantly, the KLRC1-edited NK cells showed significantly increased cytotoxicity against primary MM cells isolated from a small cohort of patients, and maintained the NK cell-specific cytokine production. In conclusion, KLRC1-editing in primary NK cells has the prospect of overcoming immune checkpoint inhibition in clinical applications.


Asunto(s)
Mieloma Múltiple , Subfamília C de Receptores Similares a Lectina de Células NK , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Células Asesinas Naturales/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
14.
Front Immunol ; 13: 829228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401541

RESUMEN

Natural killer (NK) cells may contribute to antibody-mediated rejection (ABMR) of renal allografts. The role of distinct NK cell subsets in this specific context, such as NK cells expressing the activating receptor NKG2C, is unknown. Our aim was to investigate whether KLRC2 gene deletion variants which determine NKG2C expression affect the pathogenicity of donor-specific antibodies (DSA) and, if so, influence long-term graft survival. We genotyped the KLRC2wt/del variants for two distinct kidney transplant cohorts, (i) a cross-sectional cohort of 86 recipients who, on the basis of a positive post-transplant DSA result, all underwent allograft biopsies, and (ii) 1,860 recipients of a deceased donor renal allograft randomly selected from the Collaborative Transplant Study (CTS) database. In the DSA+ patient cohort, KLRC2wt/wt (80%) was associated with antibody-mediated rejection (ABMR; 65% versus 29% among KLRC2wt/del subjects; P=0.012), microvascular inflammation [MVI; median g+ptc score: 2 (interquartile range: 0-4) versus 0 (0-1), P=0.002], a molecular classifier of ABMR [0.41 (0.14-0.72) versus 0.10 (0.07-0.27), P=0.001], and elevated NK cell-related transcripts (P=0.017). In combined analyses of KLRC2 variants and a functional polymorphism in the Fc gamma receptor IIIA gene (FCGR3A-V/F158), ABMR rates and activity gradually increased with the number of risk genotypes. In DSA+ and CTS cohorts, however, the KLRC2wt/wt variant did not impact long-term death-censored graft survival, also when combined with the FCGR3A-V158 risk variant. KLRC2wt/wt may be associated with DSA-triggered MVI and ABMR-associated gene expression patterns, but the findings observed in a highly selected cohort of DSA+ patients did not translate into meaningful graft survival differences in a large multicenter kidney transplant cohort not selected for HLA sensitization.


Asunto(s)
Trasplante de Riñón , Estudios Transversales , Rechazo de Injerto , Humanos , Isoanticuerpos , Trasplante de Riñón/efectos adversos , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK , Receptores de Células Asesinas Naturales
15.
J Hum Genet ; 67(8): 475-479, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35314764

RESUMEN

Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19-22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.


Asunto(s)
Coinfección , Variaciones en el Número de Copia de ADN , Infecciones por VIH , Hepatitis C , Subfamília C de Receptores Similares a Lectina de Células NK , Coinfección/genética , Coinfección/virología , Infecciones por VIH/genética , VIH-1 , Hepatitis C/complicaciones , Hepatitis C/genética , Humanos , Subfamília C de Receptores Similares a Lectina de Células NK/genética
16.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34990406

RESUMEN

CMV infection remains an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Several investigators have reported that adaptive NKG2C+ NK cells persistently expand during CMV reactivation. In our study, 2 cohorts were enrolled to explore the relationships among the NKG2C genotype, NKG2C+ NK cell reconstitution, and CMV infection. Multivariate analysis showed that donor NKG2C gene deletion was an independent prognostic factor for CMV reactivation and refractory CMV reactivation. Furthermore, adaptive NKG2C+ NK cells' quantitative and qualitative reconstitution, along with their anti-CMV function after transplantation, was significantly lower in patients grafted with NKG2Cwt/del donor cells than in those grafted with NKG2Cwt/wt donor cells. At day 30 after transplantation, quantitative reconstitution of NKG2C+ NK cells was significantly lower in patients with treatment-refractory CMV reactivation than in patients without CMV reactivation and those with nonrefractory CMV reactivation. In humanized CMV-infected mice, we found that, compared with those from NKG2Cwt/del donors, adaptive NKG2C+ NK cells from NKG2Cwt/wt donors induced earlier and stronger expansion of NKG2C+ NK cells as well as earlier and stronger CMV clearance in vivo. In conclusion, donor NKG2C homozygosity contributes to CMV clearance by promoting the quantitative and qualitative reconstruction of adaptive NKG2C+ NK cells after haploidentical allo-HSCT.


Asunto(s)
Infecciones por Citomegalovirus/genética , Rechazo de Injerto/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Asesinas Naturales/patología , Mutación , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Donantes de Tejidos , Adolescente , Adulto , Animales , Línea Celular , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , ADN/genética , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Homocigoto , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Masculino , Ratones , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Estudios Prospectivos , Trasplante Haploidéntico , Activación Viral , Adulto Joven
17.
PLoS Negl Trop Dis ; 15(12): e0010006, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871302

RESUMEN

BACKGROUND: Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. METHODOLOGY/PRINCIPAL FINDINGS: NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. CONCLUSIONS/SIGNIFICANCE: Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/inmunología , Fiebre Hemorrágica con Síndrome Renal/virología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Virus Puumala/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/virología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/inmunología , Virus Puumala/genética , Adulto Joven
18.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34948123

RESUMEN

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Asunto(s)
Sistemas CRISPR-Cas , Proliferación Celular , Regulación de la Expresión Génica , Vectores Genéticos , Activación de Linfocitos , Subfamília C de Receptores Similares a Lectina de Células NK/biosíntesis , Receptores KIR2DL2/biosíntesis , Receptores KIR2DL3/biosíntesis , Retroviridae , Transducción Genética , Muerte Celular , Humanos , Células K562 , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Receptores KIR2DL2/genética , Receptores KIR2DL3/genética
19.
Cell Rep ; 37(3): 109871, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686325

RESUMEN

Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.


Asunto(s)
Citotoxicidad Inmunológica , Linfocitos Intraepiteliales/metabolismo , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Anciano , Estudios de Casos y Controles , Proliferación Celular , Autorrenovación de las Células , Técnicas de Cocultivo , Citocinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata , Lactante , Linfocitos Intraepiteliales/inmunología , Células K562 , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Fenotipo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Transducción de Señal
20.
J Virol ; 95(16): e0041721, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34076484

RESUMEN

NKG2C is an activating NK cell receptor encoded by a gene having an unexpressed deletion variant. Cytomegalovirus (CMV) infection expands a population of NKG2C+ NK cells with adaptive-like properties. Previous reports found that carriage of the deleted NKG2C- variant was more frequent in people living with HIV (PLWH) than in HIV- controls unexposed to HIV. The frequency of NKG2C+ NK cells positively correlated with HIV viral load (VL) in some studies and negatively correlated with VL in others. Here, we investigated the link between NKG2C genotype and HIV susceptibility and VL set point in PLWH. NKG2C genotyping was performed on 434 PLWH and 157 HIV-exposed seronegative (HESN) subjects. Comparison of the distributions of the three possible NKG2C genotypes in these populations revealed that the frequencies of NKG2C+/+ and NKG2C+/- carriers did not differ significantly between PLWH and HESN subjects, while that of NKG2C-/- carriers was higher in PLWH than in HESN subjects, in which none were found (P = 0.03, χ2 test). We were unable to replicate that carriage of at least 1 NKG2C- allele was more frequent in PLWH. Information on the pretreatment VL set point was available for 160 NKG2C+/+, 83 NKG2C+/-, and 6 NKG2C-/- PLWH. HIV VL set points were similar between NKG2C genotypes. The frequency of NKG2C+ CD3- CD14- CD19- CD56dim NK cells and the mean fluorescence intensity (MFI) of NKG2C expression on NK cells were higher on cells from CMV+ PLWH who carried 2, versus 1, NKG2C+ alleles. We observed no correlations between VL set point and either the frequency or the MFI of NKG2C expression. IMPORTANCE We compared NKG2C allele and genotype distributions in subjects who remained HIV uninfected despite multiple HIV exposures (HESN subjects) with those in the group PLWH. This allowed us to determine whether NKG2C genotype influenced susceptibility to HIV infection. The absence of the NKG2C-/- genotype among HESN subjects but not PLWH suggested that carriage of this genotype was associated with HIV susceptibility. We calculated the VL set point in a subset of 252 NKG2C-genotyped PLWH. We observed no between-group differences in the VL set point in carriers of the three possible NKG2C genotypes. No significant correlations were seen between the frequency or MFI of NKG2C expression on NK cells and VL set point in cytomegalovirus-coinfected PLWH. These findings suggested that adaptive NK cells played no role in establishing the in VL set point, a parameter that is a predictor of the rate of treatment-naive HIV disease progression.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Infecciones por VIH/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Carga Viral/genética , Alelos , Coinfección/genética , Coinfección/inmunología , Coinfección/virología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Femenino , Frecuencia de los Genes , Genotipo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Seronegatividad para VIH/genética , Seronegatividad para VIH/inmunología , Humanos , Células Asesinas Naturales/metabolismo , Masculino , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA