Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664395

RESUMEN

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Asunto(s)
Quirópteros , Hurones , Subtipo H9N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Replicación Viral , Animales , Hurones/virología , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Quirópteros/virología , Humanos , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/inmunología , Ratones , Filogenia , Gripe Humana/transmisión , Gripe Humana/virología , Pulmón/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre
2.
Nat Commun ; 15(1): 3449, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664384

RESUMEN

In 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2). The virus has a pH inactivation profile and neuraminidase activity similar to those of human-adapted IAVs. Despite the virus having an avian virus-like preference for α2,3 sialic acid receptors, it is unable to replicate in male mallard ducks; however, it readily infects ex-vivo human respiratory cell cultures and replicates in the lungs of female mice. A/bat/Egypt/381OP/2017 replicates in the upper respiratory tract of experimentally-infected male ferrets featuring direct-contact and airborne transmission. These data suggest that the bat A(H9N2) virus has features associated with increased risk to humans without a shift to a preference for α2,6 sialic acid receptors.


Asunto(s)
Quirópteros , Patos , Hurones , Subtipo H9N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Receptores de Superficie Celular , Animales , Quirópteros/virología , Humanos , Hurones/virología , Femenino , Masculino , Subtipo H9N2 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Ratones , Patos/virología , Replicación Viral , Gripe Humana/virología , Gripe Humana/transmisión , Pulmón/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Neuraminidasa/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473897

RESUMEN

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Pollos/metabolismo , Subtipo H9N2 del Virus de la Influenza A/fisiología , Sistema de Señalización de MAP Quinasas , Línea Celular , Macrófagos/metabolismo , Factores de Transcripción/metabolismo
4.
J Virol ; 98(3): e0151223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38415626

RESUMEN

H9N2 avian influenza is a low-pathogenic avian influenza circulating in poultry and wild birds worldwide and frequently contributes to chicken salpingitis that is caused by avian pathogenic Escherichia coli (APEC), leading to huge economic losses and risks for food safety. Currently, how the H9N2 virus contributes to APEC infection and facilitates salpingitis remains elusive. In this study, in vitro chicken oviduct epithelial cell (COEC) model and in vivo studies were performed to investigate the role of H9N2 viruses on secondary APEC infection, and we identified that H9N2 virus enhances APEC infection both in vitro and in vivo. To understand the mechanisms behind this phenomenon, adhesive molecules on the cell surface facilitating APEC adhesion were checked, and we found that H9N2 virus could upregulate the expression of fibronectin, which promotes APEC adhesion onto COECs. We further investigated how fibronectin expression is regulated by H9N2 virus infection and revealed that transforming growth factor beta (TGF-ß) signaling pathway is activated by the NS1 protein of the virus, thus regulating the expression of adhesive molecules. These new findings revealed the role of H9N2 virus in salpingitis co-infected with APEC and discovered the molecular mechanisms by which the H9N2 virus facilitates APEC infection, offering new insights to the etiology of salpingitis with viral-bacterial co-infections.IMPORTANCEH9N2 avian influenza virus (AIV) widely infects poultry and is sporadically reported in human infections. The infection in birds frequently causes secondary bacterial infections, resulting in severe symptoms like pneumonia and salpingitis. Currently, the mechanism that influenza A virus contributes to secondary bacterial infection remains elusive. Here we discovered that H9N2 virus infection promotes APEC infection and further explored the underlying molecular mechanisms. We found that fibronectin protein on the cell surface is vital for APEC adhesion and also showed that H9N2 viral protein NS1 increased the expression of fibronectin by activating the TGF-ß signaling pathway. Our findings offer new information on how AIV infection promotes APEC secondary infection, providing potential targets for mitigating severe APEC infections induced by H9N2 avian influenza, and also give new insights on the mechanisms on how viruses promote secondary bacterial infections in animal and human diseases.


Asunto(s)
Infecciones por Escherichia coli , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Salpingitis , Animales , Femenino , Humanos , Pollos , Escherichia coli , Fibronectinas/metabolismo , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/complicaciones , Oviductos/metabolismo , Aves de Corral , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/virología , Salpingitis/metabolismo , Salpingitis/veterinaria , Salpingitis/virología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Virales/metabolismo , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/veterinaria
5.
Microb Pathog ; 175: 105983, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36641002

RESUMEN

The H9N2 subtype of avian influenza virus (AIV) is common in poultry production. It causes mild clinical signs but rarely leads to poultry mortalities. However, higher mortality can occur in chickens with co-infections, especially avian pathogenic Escherichia coli (APEC), which results in huge economic losses for the poultry industry. Unfortunately, the mechanism of co-infection remains unknown. Our previous studies screened several proteins associated with bacterial adhesion, including transforming growth factor beta-1 (TGF-ß1), integrins, cortactin, E-cadherin, vinculin, and fibromodulin. Herein, we investigated the contribution of TGF-ß1 to APEC adhesion after H9N2 infection. We first infected H9N2 and APEC in chicken, chicken embryo and DF-1 cells, and demonstrated that H9N2 infection promotes APEC adhesion to hosts in vitro and in vivo by plate count method. Through real-time fluorescence quantification and enzyme-linked immunosorbent assay, it was demonstrated that H9N2 infection not only increases TGF-ß1 expression but also its activity in a time-dependent manner. Then, through exogenous addition of TGF-ß1 and overexpression, we further demonstrated that TGF-ß1 can increase the adhesion of endothelial cells to DF-1 cells. Furthermore, the capacity of APEC adhesion to DF-1 cells was significantly decreased either by adding a TGF-ß1 receptor inhibitor or using small interfering RNAs to interfere with the expression of TGF-ß1. To sum up, H9N2 infection can promote the upregulation of TGF-ß1 and then increase the adhesion ability of APEC. Targeting TGF-ß1 and its associated pathway will provide valuable insights into the clinical treatment of E. coli secondary infection induced by H9N2 infection.


Asunto(s)
Coinfección , Infecciones por Escherichia coli , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Embrión de Pollo , Animales , Pollos , Subtipo H9N2 del Virus de la Influenza A/fisiología , Coinfección/veterinaria , Escherichia coli/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células Endoteliales , Infecciones por Escherichia coli/veterinaria
6.
FASEB J ; 36(10): e22537, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070077

RESUMEN

Influenza A viruses (IAVs) rely on viral ribonucleoprotein (vRNP) complexes to control transcription and replication. Each vRNP consists of one viral genomic RNA segment associated with multiple nucleoproteins (NP) and a trimeric IAV RNA polymerase complex. Previous studies showed that post-translational modifications of vRNP components, such as NP, by host factors would in turn affect the IAV life cycle or modulate host anti-viral response. In this study, we found host E3 ubiquitin ligase Pirh2 interacted with NP and mediated short-chain ubiquitination of NP at lysine 351, which suppressed NP-PB2 interaction and vRNP formation. In addition, we showed that knockdown of Pirh2 promoted IAV replication, whereas overexpression of Pirh2 inhibited IAV replication. However, Pirh2-ΔRING lacking E3 ligase activity failed to inhibit IAV infection. Moreover, we showed that Pirh2 had no effect on the replication of a rescued virus, WSN-K351R, carrying lysine-to-arginine substitution at residue 351. Interestingly, by analyzing human and avian IAVs from 2011 to 2020 in influenza research databases, we found that 99.18% of 26 977 human IAVs encode lysine, but 95.3% of 9956 avian IAVs encode arginine at residue 351 of NP protein. Consistently, knockdown of Pirh2 failed to promote propagation of two avian-like influenza viruses, H9N2-W1 and H9N2-C1, which naturally encode arginine at residue 351 of NP. Taken together, we demonstrated that Pirh2 is a host factor restricting IAV infection by modulating short-chain ubiquitination of NP. Meanwhile, it is noteworthy that residue 351 of NP targeted by Pirh2 may associate with the evasion of human anti-viral response against avian-like influenza viruses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Replicación Viral , Arginina/metabolismo , Interacciones Microbiota-Huesped , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Lisina/metabolismo , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Vet Microbiol ; 272: 109499, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35835006

RESUMEN

Respiratory viral infections are among the major causes of disease in poultry. While viral dual infections are known to occur, viral interference in chicken airways is mechanistically hardly understood. The effects of infectious bronchitis virus (IBV) infection on tissue morphology, sialic acid (sia) expression and susceptibility of the chicken trachea for superinfection with IBV or avian influenza virus (AIV) were studied. In vivo, tracheal epithelium of chickens infected with IBV QX showed marked inflammatory cell infiltration and loss of cilia and goblet cells five days post inoculation. Plant lectin staining indicated that sialic acids redistributed from the apical membrane of the ciliated epithelium and the goblet cell cytoplasm to the basement membrane region of the epithelium. After administration of recombinant viral attachment proteins to slides of infected tissue, retained binding of AIV hemagglutinin, absence of binding of the receptor binding domain (RBD) of IBV M41 and partial reduction of IBV QX RBD were observed. Adult chicken trachea rings were used as ex vivo model to study the effects of IBV QX-induced pathological changes and receptor redistribution on secondary viral infection. AIV H9N2 infection after primary IBV infection was delayed; however, final viral loads reached similar levels as in previously uninfected trachea rings. In contrast, IBV M41 superinfection resulted in 1000-fold lower viral titers over the course of 48 h. In conclusion, epithelial changes in the chicken trachea after viral infection coincide with redistribution and likely specific downregulation of viral receptors, with the extend of subsequent viral interference dependent on viral species.


Asunto(s)
Coinfección , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Subtipo H9N2 del Virus de la Influenza A , Enfermedades de las Aves de Corral , Sobreinfección , Animales , Pollos , Coinfección/veterinaria , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/fisiología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Sobreinfección/veterinaria , Tráquea
8.
Virology ; 574: 25-36, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878455

RESUMEN

H9N2 avian influenza virus causes significant economic losses to the poultry industry, due to its wide-spread prevalence and propensity to induce secondary and mixed infections. Antigenic drift limits vaccine efficacy. New anti-viral therapies are needed to complement existing control measures. At the maximum non-cytotoxic concentration (25 mg/mL), cedar pine needle extract inhibited H9N2 avian influenza virus proliferation in vitro and in vivo. Cedar pine needle extract reduced the haemagglutinin titre, inhibited H9N2 avian influenza virus nucleocapsid protein expression, and indirectly regulate type I and II interferon expression. Interleukin-6 expression increased during the pre-infection period but decreased during the mid-to-late stages of infection. Cedar pine needle extract may inhibit the proliferation of pathogens, regulate the immune response, and reduce host tissue damage and may serve as a potential target for drug development against H9N2 avian influenza virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Subtipo H9N2 del Virus de la Influenza A/fisiología , Aves de Corral
9.
Vet Microbiol ; 264: 109303, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923246

RESUMEN

In this study, whether H9N2 influenza A virus (IAV) infection contributed to secondary Klebsiella pneumoniae infection was investigated. From post-infection onwards, clinical symptoms were monitored, examined and recorded daily for 11 days. As a result, no clinical signs were observed in the mice infected with single H9N2 IAV, implying that H9N2 IAV was less pathogenic to mice. Compared to single K. pneumonia infection, K. pneumoniae infection following H9N2 IAV infection exacerbates lung histopathological lesions and apoptosis, resulting in more severe diseases. Lung index of the mice with H9N2 IAV and K. pneumoniae co-infection was significantly higher than those in the other groups. Bacterial loads in the tissues in H9N2 IAV and K. pneumoniae co-infection group were significantly higher than those in the single K. pneumoniae infection group at 7 dpi. It demonstrated that prior H9N2 IAV infection contributed to K. pneumonia proliferation and delayed bacterial clearance in mice. Secondary K. pneumoniae infection influences seroconversion of anti-H9N2 antibody titers and the cytokine profiles. The findings demonstrated that H9N2 IAV infection facilitated secondary K. pneumonia infection, causing severe the diseases in mice.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Klebsiella pneumoniae , Infecciones por Orthomyxoviridae , Neumonía , Animales , Coinfección , Subtipo H9N2 del Virus de la Influenza A/fisiología , Klebsiella pneumoniae/fisiología , Ratones , Infecciones por Orthomyxoviridae/microbiología , Infecciones por Orthomyxoviridae/virología , Neumonía/microbiología , Neumonía/virología
10.
Emerg Microbes Infect ; 10(1): 2223-2234, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34753400

RESUMEN

Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating high levels of virus circulation in chicken farms despite the low number of reported outbreaks. Co-circulation of both subtypes was common in farms, with our findings suggest that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Bangladesh/epidemiología , Pollos , Estudios Transversales , Brotes de Enfermedades , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Epidemiología Molecular , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Conformación Proteica
11.
Mol Immunol ; 140: 106-119, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678620

RESUMEN

The recent advances in our understanding of the host factors in orchestrating qualitatively different immune responses against influenza Type A virus (IAV) have changed the perception of conventional approaches for controlling avian influenza virus (AIV) infection in chickens. Given that infection-induced pathogenicity and replication of influenza virus largely rely on regulating host immune responses, immunoregulatory cytokine profiles often determine the disease outcomes. However, in contrast to the function of other inflammatory cytokines, interleukin-17A (IL-17A) has been described as a 'double-edged sword', indicating that in addition to antiviral host responses, IL-17A has a distinct role in promoting viral infection. Therefore, in the present study, we investigated the chicken IL-17A mediated antiviral immune effects on IAVs infection in primary chicken embryo fibroblasts cells (CEFs). To this end, we first bioengineered a food-grade Lactic Acid Producing Bacteria (LAB), Lactococcus lactis (L. lactis), secreting bioactive recombinant chicken IL-17A (sChIL-17A). Next, the functionality of sChIL-17A was confirmed by transcriptional upregulation of several genes associated with antiviral host responses, including granulocyte-monocyte colony-stimulating factor (GM-CSF) (CSF3 in the chickens), interleukin-6 (IL-6), interferon-α (IFN-α), -ß and -γ genes in primary CEFs cells. Consistent with our hypothesis that such a pro-inflammatory state may translate to immunoprotection against IAVs infection, we observed that sChIL-17A pre-treatment could significantly limit the viral replication and protect the primary CEFs cells against two heterotypic IAVs such as A/turkey/Wisconsin/1/1966(H9N2) and A/PR/8/1934(H1N1). Together, the data presented in this work suggest that exogenous application of sChIL-17A secreted by modified LAB vector may represent an alternative strategy for improving antiviral immunity against avian influenza virus infection in chickens.


Asunto(s)
Bioingeniería , Citoprotección , Fibroblastos/virología , Vectores Genéticos/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Interleucina-17/farmacología , Lactobacillales/genética , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Pollos/virología , Efecto Citopatogénico Viral/efectos de los fármacos , Citoprotección/efectos de los fármacos , Perros , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Perfilación de la Expresión Génica , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Interleucina-17/genética , Células de Riñón Canino Madin Darby , Nisina/farmacología , Fenotipo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
12.
Emerg Microbes Infect ; 10(1): 2098-2112, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34709136

RESUMEN

H9N2 avian influenza viruses are widely prevalent in birds and pose an increasing threat to humans because of their enhanced virulence and transmissibility in mammals. Active surveillance on the prevalence and evolution of H9N2 viruses in different avian hosts will help develop eradication measures. We isolated 16 H9N2 viruses from chickens, green peafowls, and wild birds in eastern China from 2017 to 2019 and characterized their comparative genetic evolution, receptor-binding specificity, antigenic diversity, replication, and transmission in chickens and mice. The phylogenetic analysis indicated that the green peafowl viruses and swan reassortant shared the same ancestor with the poultry H9N2 viruses prevalent in eastern China, while the seven wild bird viruses belonged to wild bird lineage. The chicken, peafowl, and swan H9N2 viruses that belonged to the poultry lineage preferentially recognized α-2, 6-linked sialic acids (human-like receptor), but the wild bird lineage viruses can bind both α-2, 3 (avian-like receptor) and human-like receptor similarly. Interestingly, the H9N2 viruses of poultry lineage replicated well and transmitted efficiently, but the viruses of wild bird lineage replicated and transmitted with low efficiency. Importantly, the H9N2 viruses of poultry lineage replicated in higher titer in mammal cells and mice than the viruses of wild birds lineage. Altogether, our study indicates that co-circulation of the H9N2 viruses in poultry, wild birds, and ornamental birds increased their cross-transmission risk in different birds because of their widespread dissemination.


Asunto(s)
Aves/virología , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Receptores Virales/metabolismo , Replicación Viral , Animales , Animales Salvajes/virología , Pollos , China , Humanos , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/genética , Gripe Aviar/metabolismo , Ratones , Filogenia , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Receptores Virales/genética
13.
Emerg Microbes Infect ; 10(1): 2030-2041, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34666614

RESUMEN

The segmented genome of influenza A virus has conferred significant evolutionary advantages to this virus through genetic reassortment, a mechanism that facilitates the rapid expansion of viral genetic diversity upon influenza co-infections. Therefore, co-infection of genetically diverse avian influenza viruses in poultry may pose a significant public health risk in generating novel reassortants with increased zoonotic potential. This study investigated the reassortment patterns of a Pearl River Delta-lineage avian influenza A(H7N9) virus and four genetically divergent avian influenza A(H9N2) viruses upon co-infection in embryonated chicken eggs and chickens. To characterize "within-host" and "between-host" genetic diversity, we further monitored the viral genotypes that were subsequently transmitted to contact chickens in serial transmission experiments. We observed that co-infection with A(H7N9) and A(H9N2) viruses may lead to the emergence of novel reassortant viruses in ovo and in chickens, albeit with different reassortment patterns. Novel reassortants detected in donor chickens co-infected with different combinations of the same A(H7N9) virus and different A(H9N2) viruses showed distinct onward transmission potential to contact chickens. Sequential transmission of novel reassortant viruses was only observed in one out of four co-infection combinations. Our results demonstrated different patterns by which influenza viruses may acquire genetic diversity through co-infection in ovo, in vivo, and under sequential transmission conditions.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/virología , Enfermedades de las Aves de Corral/virología , Animales , Embrión de Pollo , Pollos , Coinfección/transmisión , Coinfección/virología , Genotipo , Humanos , Subtipo H7N9 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/transmisión , Gripe Humana/transmisión , Filogenia , Enfermedades de las Aves de Corral/transmisión , Virus Reordenados/genética , Virus Reordenados/fisiología , Recombinación Genética , Zoonosis Virales/transmisión , Zoonosis Virales/virología
14.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061017

RESUMEN

Avian H9N2 influenza viruses in East Asia are genetically diversified and multiple genotypes (A-W) have been established in poultry. Genotype S strains are currently the most prevalent strains, have caused many human infections and pose a public health threat. In this study, human adaptation mutations in the PB2 polymerase in genotype S strains were identified by database screening. Several PB2 double mutations were identified that acted cooperatively to produce higher genotype S virus polymerase activity and replication in human cells than in avian cells and to increase viral growth and virulence in mice. These mutations were chronologically and phylogenetically clustered in a new group within genotype S viruses. Most of the relevant human virus isolates carry the PB2-A588V mutation together with another PB2 mutation (i.e. K526R, E627V or E627K), indicating a host adaptation advantage for these double mutations. The prevalence of PB2 double mutations in human H9N2 virus isolates has also been found in genetically related human H7N9 and H10N8 viruses. These results suggested that PB2 double mutations in viruses in the field acted cooperatively to increase human adaptation of the currently prevalent H9N2 genotype S strains. This may have contributed to the recent surge of H9N2 infections and may be applicable to the human adaptation of several other avian influenza viruses. Our study provides a better understanding of the human adaptation pathways of genetically related H9N2, H7N9 and H10N8 viruses in nature.


Asunto(s)
Adaptación al Huésped , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral , Animales , Aves , Línea Celular , Genes Virales , Genotipo , Células HEK293 , Humanos , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Mutación , Infecciones por Orthomyxoviridae/virología , Filogenia , Aves de Corral , ARN Polimerasa Dependiente del ARN/química , Virus Reordenados/genética , Proteínas Virales/química , Zoonosis Virales , Virulencia/genética
15.
Emerg Microbes Infect ; 10(1): 753-761, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33754959

RESUMEN

Sub-Saharan Africa was historically considered an animal influenza cold spot, with only sporadic highly pathogenic H5 outbreaks detected over the last 20 years. However, in 2017, low pathogenic avian influenza A(H9N2) viruses were detected in poultry in Sub-Saharan Africa. Molecular, phylogenetic, and antigenic characterization of isolates from Benin, Togo, and Uganda showed that they belonged to the G1 lineage. Isolates from Benin and Togo clustered with viruses previously described in Western Africa, whereas viruses from Uganda were genetically distant and clustered with viruses from the Middle East. Viruses from Benin exhibited decreased cross-reactivity with those from Togo and Uganda, suggesting antigenic drift associated with reduced replication in Calu-3 cells. The viruses exhibited mammalian adaptation markers similar to those of the human strain A/Senegal/0243/2019 (H9N2). Therefore, viral genetic and antigenic surveillance in Africa is of paramount importance to detect further evolution or emergence of new zoonotic strains.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , África del Sur del Sahara , Animales , Anticuerpos Antivirales/inmunología , Variación Antigénica , Pollos/virología , Reacciones Cruzadas , Evolución Molecular , Humanos , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Filogenia , Virulencia , Replicación Viral
16.
Virol J ; 18(1): 22, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461581

RESUMEN

BACKGROUND: Oxidative stress is an important pathogenic factor in influenza A virus infection. It has been found that reactive oxygen species induced by the H9N2 influenza virus is associated with viral replication. However, the mechanisms involved remain to be elucidated. METHODS: In this study, the role of autophagy was investigated in H9N2 influenza virus-induced oxidative stress and viral replication in A549 cells. Autophagy induced by H9N2 was inhibited by an autophagy inhibitor or RNA interference, the autophagy level, viral replication and the presence of oxidative stress were detected by western blot, TCID50 assay, and Real-time PCR. Then autophagy and oxidative stress were regulated, and viral replication was determined. At last, the Akt/TSC2/mTOR signaling pathways was detected by western blot. RESULTS: Autophagy was induced by the H9N2 influenza virus and the inhibition of autophagy reduced the viral titer and the expression of nucleoprotein and matrix protein. The blockage of autophagy suppressed the H9N2 virus-induced increase in the presence of oxidative stress, as evidenced by decreased reactive oxygen species production and malonaldehyde generation, and increased superoxide dismutase 1 levels. The changes in the viral titer and NP mRNA level caused by the antioxidant, N-acetyl-cysteine (NAC), and the oxidizing agent, H2O2, confirmed the involvement of oxidative stress in the control of viral replication. NAC plus transfection with Atg5 siRNA significantly reduced the viral titer and oxidative stress compared with NAC treatment alone, which confirmed that autophagy was involved in the replication of H9N2 influenza virus by regulating oxidative stress. Our data also revealed that autophagy was induced by the H9N2 influenza virus through the Akt/TSC2/mTOR pathway. The activation of Akt or the inhibition of TSC2 suppressed the H9N2 virus-induced increase in the level of LC3-II, restored the decrease in the expression of phospho-pAkt, phospho-mTOR and phospho-pS6 caused by H9N2 infection, suppressed the H9N2-induced increase in the presence of oxidative stress, and resulted in a decrease in the viral titer. CONCLUSION: Autophagy is involved in H9N2 virus replication by regulating oxidative stress via the Akt/TSC2/mTOR signaling pathway. Thus, autophagy maybe a target which may be used to improve antiviral therapeutics.


Asunto(s)
Células Epiteliales Alveolares/virología , Autofagia/genética , Regulación de la Expresión Génica , Subtipo H9N2 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Estrés Oxidativo/genética , Replicación Viral , Células A549 , Animales , Humanos , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Transducción de Señal , Porcinos
17.
Transbound Emerg Dis ; 68(1): 21-36, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31297991

RESUMEN

For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.


Asunto(s)
Pollos , Coinfección/veterinaria , Patos , Subtipo H5N8 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Pavos , Animales , Coinfección/epidemiología , Coinfección/virología , Egipto/epidemiología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología
18.
Biomed Res Int ; 2020: 2524314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294434

RESUMEN

H9N2 subtype avian influenza virus (H9N2 AIV) is a low pathogenic virus that is widely prevalent all over the world. H9N2 AIV causes immunosuppression in the host and often leads to high rates of mortality due to secondary infection with Escherichia. Due to the drug resistance of bacteria, many antibiotics are not effective in the treatment of secondary bacterial infection. Therefore, the purpose of this study is to find effective nonantibiotic drugs for the treatment of H9N2 AIV infection-induced secondary bacterial infection and inflammation. This study proves, for the first time, that baicalin, a Chinese herbal medicine, can regulate Lactobacillus to replace Escherichia induced by H9N2 AIV, so as to resolve the intestinal flora disorder. In addition, baicalin can effectively prevent intestinal bacterial translocation of SPF chickens' post-H9N2 AIV infection, thus inhibiting secondary bacterial infection. Furthermore, baicalin can effectively treat H9N2 AIV-induced inflammation by inhibiting intestinal structural damage, inhibiting damage to ileal mucus layer construction and tight junctions, improving antioxidant capacity, affecting blood biochemical indexes, and inhibiting the production of inflammatory cytokines. Taken together, these results provide a new theoretical basis for clinical prevention and control of H9N2 AIV infection-induced secondary bacterial infection and inflammation.


Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Pollos/microbiología , Pollos/virología , Coinfección/microbiología , Flavonoides/uso terapéutico , Inflamación/virología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Animales , Antioxidantes/metabolismo , Infecciones Bacterianas/complicaciones , Traslocación Bacteriana/efectos de los fármacos , Coinfección/complicaciones , Coinfección/tratamiento farmacológico , Coinfección/virología , Citocinas/genética , Citocinas/metabolismo , Flavonoides/farmacología , Microbioma Gastrointestinal , Regulación de la Expresión Génica/efectos de los fármacos , Estado de Salud , Inflamación/complicaciones , Inflamación/patología , Moco/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Organismos Libres de Patógenos Específicos , Uniones Estrechas/metabolismo
19.
Emerg Microbes Infect ; 9(1): 2622-2631, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33179567

RESUMEN

Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin (HA) protein, the primary influenza immunogen, using one of four molecular mechanisms. Two prominent mechanisms are: (1) enhancing binding avidity of HA toward cellular receptors to outcompete antibody binding and (2) amino acid substitutions that introduce an N-linked glycan on HA that sterically block antibody binding. In this study we investigate the impact that adsorptive mutation and N-linked glycosylation have on receptor-binding, viral fitness, and antigenicity. We utilize the H9N2 A/chicken/Pakistan/SKP-827/16 virus which naturally contains HA residue T180 that we have previously shown to be an adsorptive mutant relative to virus with T180A. We find that the addition of N-linked glycans can be beneficial or deleterious to virus replication depending on the background receptor binding avidity. We also find that in some cases, an N-linked glycan can trump the effect of an avidity enhancing substitution with respect to antigenicity. Taken together these data shed light on a potential route to the generation of a virus which is "fit" and able to overcome vaccine pressure.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Adsorción , Animales , Células Cultivadas , Pollos , Perros , Aptitud Genética , Glicosilación , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H9N2 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Mutagénesis Sitio-Dirigida , Replicación Viral
20.
Arch Razi Inst ; 75(3): 339-348, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33025774

RESUMEN

In recent years, the H9N2 influenzavirus has been circulating widely in poultry farms causing extensive damage. The hemagglutinin (HA) genes of the two virus isolates of H9N2 subtype in specific pathogen-free chickens were studied to determine the shedding rate in the host’s oropharyngeal and cloacal routes and their genetic relationship. The sequence analysis and phylogenetic study of the samples were performed by comparing each isolate with other H9N2 isolates in the gene bank. In the present study, the chickens were inoculated with low pathogenic avian influenza virus (LPAIV) (A/Chicken/Iran/ZMT-101/1998 [H9N2]) through the intranasal route. Oropharyngeal and cloacal swabs were collected from the chickens within 1-10 days after inoculation. The rate of viral shedding was measured within the previous 10 days by the real-time reverse transcriptase polymerase chain reaction molecular technique. No clinical symptoms were observed during the experiment in the chickens. The results obtained from this technique showed that the main route of shedding for LPAIV was oropharyngeal areas (p <0.05). Both isolates had a similar proteolytic R-S-S-R sequence at the cleavage site of the HA gene and contained glutamine (Q) amino acid at position 226 of the HA receptor-binding site, indicating that these isolates were nonpathogenic. Phylogenetic analysis demonstrated that both isolates belonged to the Eurasian clade. The comparison of these isolates with other isolates in the gene bank showed that they had the greatest similarity with the isolates in clade 1 and the least homology with the isolates in clade 4.


Asunto(s)
Pollos , Hemaglutininas/análisis , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Proteínas Virales/análisis , Esparcimiento de Virus , Animales , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA