Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 613(7945): 775-782, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442503

RESUMEN

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Asunto(s)
Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Edición Génica , Holoenzimas , Complejos Multiproteicos , ARN Guía de Sistemas CRISPR-Cas , Transposasas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Edición Génica/métodos , Transposasas/química , Transposasas/metabolismo , Transposasas/ultraestructura , ARN Guía de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Microscopía por Crioelectrón , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura
2.
Nature ; 607(7917): 185-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732735

RESUMEN

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , ARN de Transferencia de Metionina , Subunidades Ribosómicas , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042777

RESUMEN

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Fosforilación Oxidativa , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas/química , Línea Celular , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
São Paulo; s.n; s.n; 2022. 263 p. tab, graf.
Tesis en Portugués | LILACS | ID: biblio-1379332

RESUMEN

Os ribossomos são complexos ribonucleoproteicos conservados formados por duas subunidades assimétricas (40S e 60S em eucariotos) responsáveis pela tradução da informação genética e catálise da síntese proteica. A montagem destes complexos em eucariotos é mais bem descrita em S. cerevisiae, constituindo um processo celular energeticamente dispendioso e com múltiplas etapas. Ela tem origem no nucléolo com a transcrição do pré-rRNA 35S e requer o recrutamento hierárquico e transiente de cerca de 200 fatores de montagem para garantir a formação correta dos centros funcionais aptos à tradução. Neste processo, que se estende no núcleo e citoplasma, 79 proteínas ribossomais associam-se gradativamente à medida que o prérRNA é dobrado, modificado e processado. O processamento do pré-rRNA 35S consiste na remoção progressiva de espaçadores internos (ITS1 e ITS2) e externos (5ETS e 3ETS), que separam e flanqueiam os rRNAs maduros componentes de ambas subunidades ribossomais. A clivagem do ITS1 separa as vias de maturação do pré-60S e do pré-40S. O ITS2, que, em associação a fatores de montagem, forma uma estrutura denominada ITS2-foot, é o último espaçador do pré-60S a ser removido. A composição do ITS2-foot permanece inalterada no nucléolo até a transição entre o estado E nucleolar e a formação da partícula Nog2 nuclear. Nesta etapa, a liberação do fator Erb1 permite o recrutamento do fator de montagem conservado e essencial Nop53. Na base do ITS2-foot, Nop53 recruta o exossomo via RNA helicase Mtr4 para a clivagem 3-5 exonucleolítica de parte do ITS2 levando à desmontagem do ITS2-foot. O fato de Nop53 atuar como ponte entre dois grandes complexos e apresentar uma estrutura flexível e estendida nos levou a aprofundar a caracterização de seu papel durante a maturação do pré60S. Neste trabalho, usando análise proteômica quantitativa label-free baseada em espectrometria de massas, caracterizou-se o interactoma de Nop53, e avaliou-se o impacto da depleção de Nop53 no interactoma da subunidade catalítica do exossomo Rrp6 e na composição de pré-ribossomos representativos de quase todas as etapas de maturação do pré-60S. Em paralelo, foram caracterizados mutantes truncados de Nop53 e avaliada por pull-down a interação de Nop53 com componentes do exossomo. Os resultados obtidos mostraram que Nop53 é capaz de interagir com o cofator do exossomo Mpp6, sugerindo pontos adicionais de interação durante o recrutamento do exossomo ao pré-60S. A análise do interactoma de Rrp6 mostrou uma associação precoce do exossomo aos intermediários pré-ribossomais nucleolares mais iniciais, anteriores aos previamente descritos. Mudanças na composição dos intermediários pré-60S revelaram que a depleção de Nop53 afeta a transição entre o estado E e a partícula Nog2, afetando eventos tardios de maturação como o recrutamento de Yvh1. Comparando-se o efeito da depleção de Nop53 com o de mutantes nop53 desprovidos da região de recrutamento do exossomo, obtivemos evidências bioquímicas do papel estrutural de Nop53 na base do ITS2- foot. Em conjunto, estas observações, à luz de estruturas de intermediários pré-ribossomais recentemente descritas, nos permitiram concluir que o recrutamento de Nop53 ao pré-60S contribui para a estabilização de eventos de remodelamento do rRNA que antecedem a formação da partícula Nog2


Ribosomes are conserved ribonucleoprotein complexes formed by two asymmetric subunits (the 40S and the 60S in eukaryotes) responsible for translating the genetic information and catalyzing protein synthesis. The assembly of these complexes in eukaryotes is best described in S. cerevisiae. It is an energetically demanding, multi-step cellular process, that starts in the nucleolus with the transcription of the 35S pre-rRNA. It requires the hierarchical and transient recruitment of about 200 assembly factors to ensure the correct formation of the functional centers suitable for translation. In this process, which extends into the nucleus and cytoplasm, 79 ribosomal proteins gradually associate as the pre-rRNA is folded, modified, and processed. The 35S pre-rRNA processing happens with the progressive removal of internal (ITS1 and ITS2) and external (5'ETS and 3'ETS) transcribed spacers, which separate and flank the mature rRNA components of both ribosomal subunits. The cleavage at the ITS1 separates the pre-60S and pre40S maturation pathways. The ITS2, which in association with assembly factors constitutes a structure called ITS2-foot, is the last pre-60S spacer to be removed. The composition of the ITS2- foot remains unchanged in the nucleolus until the transition between the nucleolar state E and the nuclear Nog2 particle. At this stage, the release of Erb1 allows the recruitment of the conserved and essential assembly factor Nop53. At the base of the ITS2-foot, Nop53 recruits the exosome via the RNA helicase Mtr4 for the ITS2 3'-5' exonucleolytic cleavage leading to the ITS2-foot disassembly. The fact that Nop53 acts as a bridge between these two large complexes and exhibits a flexible and extended structure led us to further characterize its role in the pre-60S maturation. In this work, using mass spectrometry-based label-free quantitative proteomics, we characterized the interactome of Nop53, as well as the impact of the depletion of Nop53 on the interactome of the exosome catalytic subunit Rrp6 and on the composition of pre-ribosomes representative of almost all pre-60S maturation stages. In parallel, we characterized nop53 truncated mutants and evaluated the interaction of Nop53 with exosome components by pulldown assays. The results showed that Nop53 can interact with the exosome cofactor Mpp6, suggesting the contribution of additional points of interaction during the exosome recruitment to the pre-60S. The analysis of the Rrp6 interactome revealed an early association of the exosome with pre-ribosomal intermediates at very early nucleolar stages, before those previously described. Changes in the composition of pre-60S intermediates revealed that Nop53 depletion affects the transition between the state E and the Nog2 particle, affecting late pre-60S maturation events, such as the Yvh1 recruitment. Comparing the effect of Nop53 depletion with that of nop53 mutants lacking the exosome interacting region, we obtained biochemical evidence of the structural role of Nop53 at the base of the ITS2-foot. Altogether, and in light of recently described structures of pre-ribosomal intermediates, these observations allowed us to conclude that the recruitment of Nop53 to the pre-60S contributes to the stabilization of rRNA remodeling events that precede the formation of the Nog2 particle


Asunto(s)
Saccharomyces cerevisiae/clasificación , Subunidades Ribosómicas/química , Ribonucleoproteínas , Proteínas Ribosómicas , Espectrometría de Masas/métodos , Nucléolo Celular , Subunidades Ribosómicas Grandes , Eucariontes
5.
mBio ; 12(6): e0267921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749534

RESUMEN

During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5'-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control. IMPORTANCE The stringent response is a bacterial signaling network that utilizes the nucleotides pppGpp and ppGpp to reprogram cells in order to survive nutritional stresses. However, much about how these important nucleotides control cellular reprogramming is unknown. Our previous work revealed that (p)ppGpp can bind to and inhibit the enzymatic activity of four ribosome-associated GTPases (RA-GTPases), enzymes that facilitate maturation of the 50S and 30S ribosomal subunits. Here, we examine how this occurs mechanistically and demonstrate that this interaction prevents the accommodation of RA-GTPases on ribosomal subunits both in vitro and within bacterial cells, with the ppGpp-bound state structurally mimicking the inactive GDP-bound conformation of the enzyme. We additionally reveal that these GTPase enzymes have a greater affinity for OFF-state-inducing nucleotides, which is a mechanism likely to control ribosome assembly during growth. With this, we further our understanding of how ribosome function is controlled by (p)ppGpp, enabling bacterial survival during stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Subunidades Ribosómicas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Pentafosfato/química , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Moleculares , Unión Proteica , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética
6.
Biochemistry (Mosc) ; 86(9): 1053-1059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565311

RESUMEN

"Would it be possible to analyze molecular mechanisms and structural organisation of polyribosome assemblies using cryo electron tomography?" - we asked through a longstanding collaboration between my research group and that of Alexander S. Spirin. Indeed, it was: we found that double-row polyribosomes can have both circular and linear arrangements of their mRNA [Afonina, Z. A., et al. (2013) Biochemistry (Moscow)], we figured out how eukaryotic ribosomes assemble on an mRNA to form supramolecular left-handed helices [Myasnikov, A. G., et al. (2014) Nat. Commun.], that the circularization of polyribosomes is poly-A and cap-independent [Afonina, Z. A., et al. (2014) Nucleic Acids Res.], and that intermediary polyribosomes with open structures exist after a transition from a juvenile phase to strongly translating polysomes of medium size [Afonina, Z. A., et al. (2015) Nucleic Acids Res.] until they form densely packed helical structures with reduced activity. Our joint fruitful exchanges, hence, led to major advances in the field, which are reviewed here from a personal and historical perspective in memory of Alexander S. Spirin.


Asunto(s)
Polirribosomas/química , Microscopía por Crioelectrón , Eucariontes/química , Eucariontes/genética , Eucariontes/metabolismo , Conformación de Ácido Nucleico , Poli A/química , Poli A/metabolismo , Polirribosomas/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo
7.
J Struct Biol ; 213(2): 107712, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676034

RESUMEN

Cryo Electron Microscopy (Cryo-EM) is currently one of the main tools to reveal the structural information of biological specimens at high resolution. Despite the great development of the techniques involved to solve the biological structures with Cryo-EM in the last years, the reconstructed 3D maps can present lower resolution due to errors committed while processing the information acquired by the microscope. One of the main problems comes from the 3D alignment step, which is an error-prone part of the reconstruction workflow due to the very low signal-to-noise ratio (SNR) common in Cryo-EM imaging. In fact, as we will show in this work, it is not unusual to find a disagreement in the alignment parameters in approximately 20-40% of the processed images, when outputs of different alignment algorithms are compared. In this work, we present a novel method to align sets of single particle images in the 3D space, called DeepAlign. Our proposal is based on deep learning networks that have been successfully used in plenty of problems in image classification. Specifically, we propose to design several deep neural networks on a regionalized basis to classify the particle images in sub-regions and, then, make a refinement of the 3D alignment parameters only inside that sub-region. We show that this method results in accurately aligned images, improving the Fourier shell correlation (FSC) resolution obtained with other state-of-the-art methods while decreasing computational time.


Asunto(s)
Microscopía por Crioelectrón/métodos , Aprendizaje Profundo , Imagenología Tridimensional/métodos , Subunidades Ribosómicas/química , Glicoproteína de la Espiga del Coronavirus/química , Redes Neurales de la Computación , Plasmodium falciparum/química , Relación Señal-Ruido , Flujo de Trabajo
8.
Structure ; 28(10): 1087-1100.e3, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32857965

RESUMEN

Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.


Asunto(s)
Acinetobacter baumannii/citología , Amicacina/química , Antibacterianos/química , Ribosomas/química , Tigeciclina/química , Acinetobacter baumannii/química , Sitios de Unión , Microscopía por Crioelectrón , Modelos Moleculares , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/metabolismo
9.
Elife ; 92020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286223

RESUMEN

Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.


Asunto(s)
Dicistroviridae , Factor 3 de Iniciación Eucariótica/ultraestructura , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , ARN Viral/ultraestructura , Regiones no Traducidas 5' , Animales , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Biosíntesis de Proteínas/fisiología , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Mensajero/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura
10.
Nat Commun ; 11(1): 776, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034140

RESUMEN

Human Ebp1 is a member of the proliferation-associated 2G4 (PA2G4) family and plays an important role in cancer regulation. Ebp1 shares the methionine aminopeptidase (MetAP) fold and binds to mature 80S ribosomes for translational control. Here, we present a cryo-EM single particle analysis reconstruction of Ebp1 bound to non-translating human 80S ribosomes at a resolution range from 3.3 to ~8 Å. Ebp1 blocks the tunnel exit with major interactions to the general uL23/uL29 docking site for nascent chain-associated factors complemented by eukaryote-specific eL19 and rRNA helix H59. H59 is defined as dynamic adaptor undergoing significant remodeling upon Ebp1 binding. Ebp1 recruits rRNA expansion segment ES27L to the tunnel exit via specific interactions with rRNA consensus sequences. The Ebp1-ribosome complex serves as a template for MetAP binding and provides insights into the structural principles for spatial coordination of co-translational events and molecular triage at the ribosomal tunnel exit.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas/química
11.
mBio ; 11(1)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964740

RESUMEN

Antimicrobial resistance is a major health threat as it limits treatment options for infection. At the forefront of this serious issue is Acinetobacter baumannii, a Gram-negative opportunistic pathogen that exhibits the remarkable ability to resist antibiotics through multiple mechanisms. As bacterial ribosomes represent a target for multiple distinct classes of existing antimicrobial agents, we here use single-particle cryo-electron microscopy (cryo-EM) to elucidate five different structural states of the A. baumannii ribosome, including the 70S, 50S, and 30S forms. We also determined interparticle motions of the 70S ribosome in different tRNA bound states using three-dimensional (3D) variability analysis. Together, our structural data further our understanding of the ribosome from A. baumannii and other Gram-negative pathogens and will enable structure-based drug discovery to combat antibiotic-resistant bacterial infections.IMPORTANCEAcinetobacter baumannii is a severe nosocomial threat largely due to its intrinsic antibiotic resistance and remarkable ability to acquire new resistance determinants. The bacterial ribosome serves as a major target for modern antibiotics and the design of new therapeutics. Here, we present cryo-EM structures of the A. baumannii 70S ribosome, revealing several unique species-specific structural features that may facilitate future drug development to combat this recalcitrant bacterial pathogen.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , Acinetobacter baumannii/ultraestructura , Microscopía por Crioelectrón , Subunidades Ribosómicas/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desarrollo de Medicamentos , Humanos , Modelos Moleculares , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/química
12.
PLoS One ; 14(12): e0226177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31834895

RESUMEN

Mammalian and bird ribosomes are nearly twice the mass of prokaryotic ribosomes in part because of their extraordinarily long rRNA tentacles. Human rRNA tentacles are not fully observable in current three-dimensional structures and their conformations remain to be fully resolved. In previous work we identified sequences that favor G-quadruplexes in silico and in vitro in rRNA tentacles of the human large ribosomal subunit. We demonstrated by experiment that these sequences form G-quadruplexes in vitro. Here, using a more recent motif definition, we report additional G-quadruplex sequences on surfaces of both subunits of the human ribosome. The revised sequence definition reveals expansive arrays of potential G-quadruplex sequences on LSU tentacles. In addition, we demonstrate by a variety of experimental methods that fragments of the small subunit rRNA form G-quadruplexes in vitro. Prior to this report rRNA sequences that form G-quadruplexes were confined to the large ribosomal subunit. Our combined results indicate that the surface of the assembled human ribosome contains numerous sequences capable of forming G-quadruplexes on both ribosomal subunits. The data suggest conversion between duplexes and G-quadruplexes in response to association with proteins, ions, or other RNAs. In some systems it seems likely that the integrated population of RNA G-quadruplexes may be dominated by rRNA, which is the most abundant cellular RNA.


Asunto(s)
G-Cuádruplex , ARN Mensajero/química , ARN Ribosómico/química , Subunidades Ribosómicas/química , Ribosomas/química , Animales , Secuencia de Bases , Humanos , Conformación de Ácido Nucleico , Filogenia , Homología de Secuencia
13.
Genetics ; 213(4): 1329-1339, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31649153

RESUMEN

Ribosomes of Archaea and Eukarya share higher homology with each other than with bacterial ribosomes. For example, there is a set of 35 r-proteins that are specific only for archaeal and eukaryotic ribosomes. Three of these proteins-eL19, eL24, and eL41-participate in interactions between ribosomal subunits. The eukaryote-specific extensions of r-proteins eL19 and eL24 form two intersubunit bridges eB12 and eB13, which are present only in eukaryotic ribosomes. The third r-protein, eL41, forms bridge eB14. Notably, eL41 is found in all eukaryotes but only in some Archaea. It has been shown that bridges eB12 and eB13 are needed for efficient translation, while r-protein eL41 plays a minor role in ribosome function. Here, the functional interactions between intersubunit bridges were studied using budding yeast strains lacking different combinations of the abovementioned bridges/proteins. The growth phenotypes, levels of in vivo translation, ribosome-polysome profiles, and in vitro association of ribosomal subunits were analyzed. The results show a genetic interaction between r-protein eL41 and the eB12 bridge-forming region of eL19, and between r-proteins eL41 and eL24. It was possible to construct viable yeast strains with Archaea-like ribosomes lacking two or three eukaryote-specific bridges. These strains display slow growth and a poor translation phenotype. In addition, bridges eB12 and eB13 appear to cooperate during ribosome subunit association. These results indicate that nonessential structural elements of r-proteins become highly important in the context of disturbed subunit interactions. Therefore, eukaryote-specific bridges may contribute to the evolutionary success of eukaryotic translation machinery.


Asunto(s)
Subunidades Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Mutación/genética , Fenotipo , Polirribosomas/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas/química , Ribosomas/química , Saccharomyces cerevisiae/crecimiento & desarrollo
14.
J Struct Biol ; 208(3): 107397, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568828

RESUMEN

Structural information from macromolecules provides key insights into the way complexes perform their biological functions. The reconstruction process leading to the final three-dimensional (3D) map is iterative and requires an initial volume to prime the refinement procedure. Particle images are aligned to this first reference and subsequently a new map is calculated from these particles. The accurate determination of an ab initio initial volume is still a challenging and open problem in cryo-electron microscopy (cryo-EM). Different algorithms are available to estimate an initial volume from the dataset. Some of these methods provide multiple candidate initial maps and users looking for robustness typically run different approaches. In this case, users arbitrarily evaluate the different obtained candidate maps, as we lack robust methods to objectively assess the accuracy of initial references. This workflow is subjective and error-prone preventing implementation of high-throughput data processing procedures. In this work, we present a robust method to determine the best initial map or maps from a set of ab initio initial volumes obtained from one or multiple different approaches. The method is based on evaluating multiple small subsets of candidate initial volumes and particle images through reference-based 3D classifications. Obtained 3D classes of accurate initial maps will result majoritarian and the respective attracted particles will be aligned with high angular accuracies. We have tested the proposed approach with structurally homogeneous and heterogeneous datasets providing satisfactory results with both type of data.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Apoferritinas/química , Imagenología Tridimensional/métodos , Complejos Multiproteicos/química , Subunidades Ribosómicas/química , Empalmosomas/química
15.
Phys Chem Chem Phys ; 21(35): 19192-19200, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31436279

RESUMEN

Despite advances, tuberculosis remains a significant infectious disease, whose mortality presents alarming numbers. Although it can be cured, the number of cases of antimicrobial resistant strains is increasing, requiring the use of less efficient second-line drugs. Capreomycin and streptomycin are part of this group, being antibiotics whose mechanism of action is the inhibition of protein synthesis when interacting with the tuberculosis bacterial ribosome. Their binding mechanisms are distinct: capreomycin is able to bind to both ribosomal (30S and 50S) subunits, whereas streptomycin binds only to the smaller one (30S). In this context, the biochemical characterization of these binding sites for a proper understanding of their complex interactions is of crucial importance to increase their efficacy. Through crystallographic data and computer simulations, in this work we calculated the interaction binding energies of capreomycin and streptomycin in complex with the tuberculosis bacterial ribosome subunits, by using density functional theory (DFT) within the molecular fractionation with conjugated caps (MFCC) approach. For capreomycin in the 30S (50S) subunit, we investigated the binding energies of 44 (30) residues presented within a pocket radius of 14 Å (30 Å). Regarding streptomycin, 60 nucleotide (25 amino acid) residues distributed up to 12.5 Å (15 Å) away from the drug in the 30S subunit (S12 protein) were taken into account. We also identify the contributions of hydrogen bonds and hydrophobic interactions in the drug-receptor complex, and the regions of the drugs that most contributed to the anchorages of them in their binding sites, as well as identify residues that are most associated with mutations.


Asunto(s)
Antibacterianos/química , Capreomicina/química , Metabolismo Energético , Mycobacterium tuberculosis/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Estreptomicina/química , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Capreomicina/metabolismo , Capreomicina/uso terapéutico , Simulación por Computador , Cristalización , Humanos , Mutación , Mycobacterium tuberculosis/química , Receptores de Droga/genética , Receptores de Droga/metabolismo , Estreptomicina/metabolismo , Estreptomicina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
16.
Nat Commun ; 10(1): 930, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804338

RESUMEN

Ribo-T is an engineered ribosome whose small and large subunits are tethered together by linking 16S rRNA and 23S rRNA in a single molecule. Although Ribo-T can support cell proliferation in the absence of wild type ribosomes, Ribo-T cells grow slower than those with wild type ribosomes. Here, we show that cell growth defect is likely explained primarily by slow Ribo-T assembly rather than its imperfect functionality. Ribo-T maturation is stalled at a late assembly stage. Several post-transcriptional rRNA modifications and some ribosomal proteins are underrepresented in the accumulated assembly intermediates and rRNA ends are incompletely trimmed. Ribosome profiling of Ribo-T cells shows no defects in translation elongation but reveals somewhat higher occupancy by Ribo-T of the start codons and to a lesser extent stop codons, suggesting that subunit tethering mildly affects the initiation and termination stages of translation. Understanding limitations of Ribo-T system offers ways for its future development.


Asunto(s)
Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Codón Iniciador/genética , Codón Iniciador/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/genética
17.
J Mol Microbiol Biotechnol ; 28(4): 179-182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566952

RESUMEN

Escherichia coli 16S, 23S, and 5S ribosomal RNAs (rRNAs) are transcribed as a single primary transcript, which is subsequently processed into mature rRNAs by several RNases. Three RNases (RNase III, RNase E, and RNase G) were reported to function in processing the 5'-leader of precursor 16S rRNA (pre-16S rRNA). Previously, we showed that a novel essential YqgF is involved in that processing. Here we investigated the ribosome subunits of the yqgFts mutant by LC-MS/MS. The mutant ribosome had decreased copy numbers of ribosome protein S1, suggesting that the yqgF gene enables incorporation of ribosomal protein S1 into ribosome by processing of the 5'-end of pre-16S rRNA. The ribosome protein S1 is essential for translation in E. coli; therefore, our results suggest that YqgF converts the inactive form of newly synthesized ribosome into the active form at the final step of ribosome assembly.


Asunto(s)
Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Precursores del ARN/genética , ARN Ribosómico 16S/genética , Ribosomas/química , Ribosomas/genética , Cromatografía Liquida/métodos , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Genes Esenciales/genética , Ribonucleasas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Espectrometría de Masas en Tándem/métodos
18.
Nature ; 564(7736): 444-448, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518861

RESUMEN

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón , Escherichia coli/clasificación , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas/química , Ribosomas/química , Ribosomas/genética
19.
Mol Microbiol ; 110(2): 262-282, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30107639

RESUMEN

The organization of the chromosomal DNA and ribosomes in living Escherichia coli is compared under two growth conditions: 'fast' (50 min doubling time) and 'slow' (147 min doubling time). Superresolution fluorescence microscopy reveals strong DNA-ribosome segregation in both cases. In both fast and slow growth, free ribosomal subunits evidently must circulate between the nucleoid (where they initiate co-transcriptional translation) and ribosome-rich regions (where most translation occurs). Single-molecule diffusive behavior dissects the ribosome copies into translating 70S polysomes and free 30S subunits, providing separate spatial distributions for each. In slow growth, ~21,000 total 30S copies/cell comprise ~65% translating 70S ribosomes and ~35% free 30S subunits. The ratio of 70S ribosomes to free 30S subunits is ~2.5 outside the nucleoid and ~0.50 inside the nucleoid. This new level of quantitative detail may motivate development of comprehensive, three-dimensional reaction-diffusion models of ribosome, DNA, mRNA and RNAP spatial distributions and dynamics within the E. coli cytoplasm.


Asunto(s)
ADN Bacteriano/metabolismo , Escherichia coli/fisiología , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Polirribosomas/química , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética
20.
J Eukaryot Microbiol ; 65(6): 783-791, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29611243

RESUMEN

The redescription of Opalina undulata Nie 1932, collected from the rectum of the frog Fejervarya limnocharis, is presented in this paper based on detailed morphological information and molecular data. Our results revealed that specimens collected from Diaocha Lake in late August were larger and had more nuclei than those collected from the same site in early May. We sequenced their SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA (5' end) and found that they were completely identical, which means that the two populations belonged to the same species. These facts gave us a hint that body dimension and number of nuclei are not reliable taxonomic parameters for opalinids during their life cycle. Therefore, we recommended that the specific identification of opalinids based on morphological features should be carried out during seasons except spring. Meanwhile, our molecular phylogenetic analysis confirmed the monophyly of Opalinata. Within Opalinata, Opalinea were monophyletic with all opalinid species grouping together. Karotomorpha and Proteromonas did not group together confirming the paraphyly of Proteromonadea.


Asunto(s)
Anuros/parasitología , Estramenopilos/clasificación , Estramenopilos/citología , Estramenopilos/genética , Animales , Secuencia de Bases , China , ADN Ribosómico/química , ADN Ribosómico/clasificación , ADN Ribosómico/genética , Estadios del Ciclo de Vida , Filogenia , Subunidades Ribosómicas/química , Subunidades Ribosómicas/clasificación , Subunidades Ribosómicas/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA