Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.261
Filtrar
1.
J Breath Res ; 18(3)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38744271

RESUMEN

Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H2S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H2S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H2S concentrations compared to the negative control. The H2S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H2S concentrations or release times. The study reveals variations in H2S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H2S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.


Asunto(s)
Materiales Dentales , Halitosis , Sulfuro de Hidrógeno , Humanos , Halitosis/terapia , Sulfuro de Hidrógeno/análisis , Materiales Dentales/química , Técnicas In Vitro , Restauración Dental Permanente/métodos , Resinas Compuestas/química , Ensayo de Materiales , Amalgama Dental/química , Propiedades de Superficie
2.
Molecules ; 29(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38792250

RESUMEN

Monitoring hydrogen sulfide (H2S) in living organisms is very important because H2S acts as a regulator in many physiological and pathological processes. Upregulation of endogenous H2S concentration has been shown to be closely related to the occurrence and development of tumors, atherosclerosis, neurodegenerative diseases and diabetes. Herin, a novel fluorescent probe HND with aggregation-induced emission was designed. Impressively, HND exhibited a high selectivity, fast response (1 min) and low detection limit (0.61 µM) for H2S in PBS buffer (10 mM, pH = 7.42). Moreover, the reaction mechanism between HND and H2S was conducted by Job's plot, HR-MS, and DFT. In particular, HND was successfully employed to detect H2S in HeLa cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Humanos , Colorantes Fluorescentes/química , Células HeLa , Imagen Óptica/métodos , Espectrometría de Fluorescencia/métodos , Límite de Detección
3.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693877

RESUMEN

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Asunto(s)
Imagen Óptica , Puntos Cuánticos , Compuestos de Plata , Puntos Cuánticos/química , Compuestos de Plata/química , Humanos , Animales , Ratones , Rayos Infrarrojos , Nanomedicina Teranóstica , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/química , Concentración de Iones de Hidrógeno
4.
J Agric Food Chem ; 72(19): 11051-11061, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698723

RESUMEN

Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.


Asunto(s)
Cobre , Odorantes , Compuestos de Sulfhidrilo , Vino , Vino/análisis , Odorantes/análisis , Compuestos de Sulfhidrilo/análisis , Humanos , Cobre/análisis , Cromatografía de Gases/métodos , Gusto , Sulfuro de Hidrógeno/análisis , Femenino , Masculino , Adulto , Oxidación-Reducción , Persona de Mediana Edad , Olfato , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688210

RESUMEN

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Sulfuro de Hidrógeno , Fenotiazinas , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Fenotiazinas/química , Fenotiazinas/síntesis química , Cumarinas/química , Cumarinas/síntesis química , Sulfuro de Hidrógeno/análisis , Ratones , Espectrometría de Fluorescencia/métodos , Humanos
6.
Chemosphere ; 358: 141959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608772

RESUMEN

The sulfate-reduction process plays a crucial role in the biological valorization of SOx gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using H2S microsensors to monitor H2S production in real-time within a biofilm. To replace natural immobilization through extracellular polymeric substance production, sulfidogenic sludge was artificially immobilized using polymers. Physical and sulfate-reducing activity studies were performed to select a polymer-biomass matrix that maintained sulfate-reducing activity of biomass while providing strong microbial retention and mechanical strength. Several operational conditions of the sulfidogenic reactor allowed to obtain a H2S profiles under different inlet sulfate loads and, additionally, 3D mapping was assessed in order to perform a hydraulic characterization. Besides, the effects of artificial immobilization on biodiversity were investigated through the characterization of microbial communities. This study demonstrated the appropriateness of immobilized-biomass for characterization of sulfidogenic biomass in FCB using H2S electrochemical microsensors, and beneficial microbiological communities shifts as well as enrichment of sulfate-reducing bacteria have been confirmed.


Asunto(s)
Reactores Biológicos , Sulfuro de Hidrógeno , Aguas del Alcantarillado , Sulfatos , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Sulfuro de Hidrógeno/análisis , Sulfatos/metabolismo , Sulfatos/análisis , Biomasa , Biopelículas , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Bacterias/metabolismo , Oxidación-Reducción
7.
Sci Rep ; 14(1): 9308, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654035

RESUMEN

Over the recent years, ever-increasing population growth and higher wastewater production has been a challenge for decentralized wastewater treatment plants (WWTPs). In addition, sludge treatment due to high cost for equipment and place make authorities to find a sustainable approach in both of economical and technical perspectives. One of the proposed solutions is transferring the sludge produced from decentralized WWTP to centralized WWTP. However, the appropriate proportional ratio of raw sludge to raw sewage is a challenge, otherwise, it make anaerobic conditions and sewage rotting along the sewer network based on permissible limit of dihydrogen sulfide (H2S) gas (5 ppm). In the present study, seven reactors with different ratios of sludge to raw sewage (0, 15, 20, 25, 50, 75, 100) were used to stimulate the feasibility of transferring Shahrake Gharb WWTP sludge along the wastewater transfer pipe to the centralized sewage treatment south Tehran WWTP plant in Tehran, Iran. The septic situation and H2S emission of different reactors within 7 h (Time to reach the compound in the south treatment plant) was analyzed by gas meter. The results indicated that the optimum ratio of sludge to raw sewage was 15% without H2S production during 7 h. In addition, due to the high volume of sludge produced by the Shahrake Gharb WWTP, the optimal ratio of lime to total solids (TS) in sludge (gr/gr) (0.6) increased the sludge loading rate from 15 to 30% without any H2S emission during the stimulation study period. Therefore, the lime stabilization and transfer of sludge from a decentralized WWTP to a centralized WWTP is a feasible way to manage the sludge and enhance the treatment capacity in local WWTP.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Irán , Eliminación de Residuos Líquidos/métodos , Sulfuro de Hidrógeno/análisis , Estudios de Factibilidad , Reactores Biológicos
8.
ACS Sens ; 9(4): 2000-2009, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38584366

RESUMEN

This study presents a colorimetric/electrical dual-sensing system (CEDS) for low-power, high-precision, adaptable, and real-time detection of hydrogen sulfide (H2S) gas. The lead acetate/poly(vinyl alcohol) (Pb(Ac)2/PVA) nanofiber film was transferred onto a polyethylene terephthalate (PET) flexible substrate by electrospinning to obtain colorimetric/electrical sensors. The CEDS was constructed to simultaneously record both the visual and electrical response of the sensor, and the improved Manhattan segmentation algorithm and deep neural network (DNN) were used as its intelligent algorithmic aids to achieve quantitative exposure to H2S. By exploring the mechanism of color change and resistance response of the sensor, a dual-sensitivity mechanism explanation model was proposed to verify that the system, as a dual-mode parallel system, can adequately solve the sensor redundancy problem. The results show that the CEDS can achieve a wide detection range of H2S from 0.1-100 ppm and identify the H2S concentration in 4 s at the fastest. The sensor can be stabilized for 180 days with excellent selectivity and a low limit of detection (LOD) to 0.1 ppm of H2S. In addition, the feasibility of the CEDS for measuring H2S levels in underground waterways was validated. This work provides a new method for adaptable, wide range of applications and low-power, high-precision H2S gas detection.


Asunto(s)
Colorimetría , Aprendizaje Profundo , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Colorimetría/métodos , Límite de Detección , Nanofibras/química , Alcohol Polivinílico/química , Plomo/análisis , Plomo/química , Acetatos/química
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124341, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676987

RESUMEN

Hydrogen sulfide (H2S) is a common toxic gas that threatens the quality and safety of environmental water and food. Herein, a new near-infrared fluorescent probe DTCM was synthesized and characterized by single crystal X-ray diffraction for sensing H2S. It exhibited a remarkable "turn-on" near-infrared (NIR) emission response at 665 nm with a remarkably massive Stokes shift of 175 nm, super-rapid detection ability (within 30 s), excellent photostability, high selectivity and sensitivity (limit of detection, LOD = 58 nM). Additionally, the probe was successfully utilized for the detection of H2S in environmental water samples. The DTCM-loaded test papers enabled convenient and real-time monitoring of H2S produced by food spoilage.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Límite de Detección , Espectrometría de Fluorescencia , Agua , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Agua/química , Contaminación de Alimentos/análisis , Espectroscopía Infrarroja Corta/métodos , Análisis de los Alimentos/métodos , Contaminantes Químicos del Agua/análisis
10.
Anal Chem ; 96(19): 7342-7347, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38683890

RESUMEN

Photoacoustic (PA) tomography has shown many promising aspects in noninvasive and precise imaging of deep-localized biomarkers. However, these traditional single-locked PA probes always face challenges in precise PA imaging with high specificity. Here, we report a novel AND-gate photoacoustic probe, BAE, to improve tumor imaging accuracy via the combination of two tumor-associated biomarkers, cysteine (Cys) and hydrogen sulfide (H2S). Only when Cys and H2S are concurrently introduced into the detection system does the absorption of BAE red-shift from the initial 680 to 810 nm, thereby showing a 5.29-fold enhancement in its PA signal at 810 nm. The good specificity of BAE is proven, since an obvious PA signal could be observed only in the solution containing both Cys and H2S and was not affected by other reactive sulfur species. After being taken up by tumors with the assistance of a nanomicelle, the AND-gate PA probe BAE was applied for dynamic real-time monitoring of Cys and H2S in vivo, achieving precise identification of tumors. This AND-gate PA probe provides a potential technical tool for precise sensing analysis of deep-seated diseases.


Asunto(s)
Cisteína , Sulfuro de Hidrógeno , Técnicas Fotoacústicas , Sulfuro de Hidrógeno/análisis , Técnicas Fotoacústicas/métodos , Cisteína/análisis , Cisteína/química , Animales , Humanos , Ratones , Neoplasias/diagnóstico por imagen , Ratones Desnudos , Ratones Endogámicos BALB C
11.
J Environ Manage ; 358: 120852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608577

RESUMEN

Hydrogen sulfide (H2S) is one of the sewer gases commonly found in wastewater collection systems. This anaerobic degradation product causes issues, ranging from odor nuisances and health hazards to pipe corrosion. Several studies have provided an understanding of H2S formation mechanism, including simulations of H2S emissions in sewers, especially in pressurized systems. However, the present models necessitate a large amount of data due to the complexity of the H2S processes and common routine-monitoring water quality parameters may not fit the requirements. This study aims to simulate the fate and transport of H2S in both air and water phases in combined sewers, with a realization of practicableness of the application. The study case is centered around a fresh market in Bangkok, where the sewers are commonly plagued with garbage-related issues. These challenges pose difficulties for site monitoring across various aspects, necessitating the application of unconventional methods. On-site hydrodynamics, wastewater quality, and H2S gas concentration data were monitored on hourly and daily bases. It was found that the sulfides in the combined sewerage were correlated with sewage quality, e.g., COD, sulfate (SO42-), and pH concentrations in particular. The model results were in an acceptable range of accuracy (R2 = 0.63; NSE = 0.52; RMSE = 1.18) after being calibrated with the measured hydrogen sulfide gas concentration. The results lead to the conclusion that the simplified model is practical and remains effective even in sewers with untraditional conditions. This could hold promise as a fundamental tool in shaping effective H2S mitigation strategies.


Asunto(s)
Sulfuro de Hidrógeno , Aguas del Alcantarillado , Sulfuro de Hidrógeno/análisis , Aguas del Alcantarillado/química , Aguas Residuales/química , Modelos Teóricos , Eliminación de Residuos Líquidos/métodos , Monitoreo del Ambiente
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124250, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603958

RESUMEN

Hydrogen sulfide (H2S), as a biomarker signaling gas, is not only susceptible to food spoilage, but also plays a key function in many biological processes. In this work, an activated near infrared (NIR) H2S fluorescent probe was designed and synthesized with quinoline-conjugated Rhodols dye as fluorophore skeleton and a dinitrophenyl group as the responsive moiety. Due to the quenching effect of dinitrophenyl group and the closed-loop structure of Rhodols fluorophore, probe itself has a very weak absorption and fluorescence background signal. After the H2S-induced thiolysis reaction, the probe exhibits a remarkable colormetric change and NIR fluorescent enhancement response at 716 nm with large Stokes shift (116 nm), and possesses high sensing selectivity and sensitivity with a low detection limits of 330 nM. The response mechanism is systematically characterized by 1H NMR, MS and DFT calculations. The colorimetric change allows the probe to be used as a test strips to detect H2S in food spoilage, while NIR fluorescent response helps the probe monitor intracellular H2S.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Espectrometría de Fluorescencia , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Espectrometría de Fluorescencia/métodos , Xantonas/química , Límite de Detección
13.
Chem Commun (Camb) ; 60(37): 4918-4921, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38628069

RESUMEN

To avoid the unexpected aggregation and reduce the cytotoxicity of nanomaterials as optical probes in cell imaging applications, we propose a programmed DNA-cube as a carrier for silver nanoparticles (Ag NPs) to construct a specific hydrogen sulfide (H2S) responsive platform (Ag NP@DNA-cube) for diagnosing colorectal cancer (CRC) in this study. The DNA-cube maintains good dispersion of Ag NPs while providing excellent biocompatibility. Based on the characteristic overexpression of endogenous H2S in CRC cells, the Ag NPs are etched by H2S within target cells into silver sulfide quantum dots, thereby selectively illuminating the target cells. The Ag NP@DNA-cube exhibits a specific fluorescence response to CRC cells and achieves satisfactory imaging.


Asunto(s)
Neoplasias Colorrectales , ADN , Sulfuro de Hidrógeno , Nanopartículas del Metal , Plata , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/química , Humanos , Nanopartículas del Metal/química , Neoplasias Colorrectales/patología , Plata/química , ADN/química , Imagen Óptica , Puntos Cuánticos/química , Línea Celular Tumoral
14.
Anal Chem ; 96(18): 7005-7013, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657082

RESUMEN

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Asunto(s)
Arilamina N-Acetiltransferasa , Carcinoma Hepatocelular , Colorantes Fluorescentes , Sulfuro de Hidrógeno , Neoplasias Hepáticas , Fotones , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Arilamina N-Acetiltransferasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Animales , Ratones , Células Hep G2 , Imagen Óptica
15.
ACS Sens ; 9(4): 1682-1705, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593007

RESUMEN

Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.


Asunto(s)
Monóxido de Carbono , Técnicas Electroquímicas , Gasotransmisores , Sulfuro de Hidrógeno , Óxido Nítrico , Gasotransmisores/análisis , Técnicas Electroquímicas/métodos , Monóxido de Carbono/análisis , Óxido Nítrico/análisis , Sulfuro de Hidrógeno/análisis , Humanos , Técnicas Biosensibles/métodos , Animales
16.
Mar Pollut Bull ; 202: 116330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636340

RESUMEN

This study aimed to geochemically investigate the sediments of the south Caspian Sea at different depths in summer and winter 2020. Sampling was conducted in 5 transects along the south coastline of the Caspian Sea and sediment grain size, hydrogen sulfide, Oxidation-reduction potential (Eh), total nitrogen, nitrite, nitrate, ammonium, total phosphorus, organic and inorganic phosphorous were measured. Eh values showed significant differences between seasons and between different transects (p < 0.05). Hydrogen sulfide ranged from 1.87 to 307.00 ppm. No significant difference was observed in hydrogen sulfide between seasons and among depths (p > 0.05). Total, inorganic and organic phosphorus contents were 782.96-1335.79 ppm, 639.66-1183.60 ppm, and 42.58-205.46 ppm, respectively. Total nitrogen revealed significant differences among transects (p < 0.05). Based on sediment quality guidelines, most sampling sites had alerting conditions for organic matter, and phosphorous contamination was detected at all stations. Anoxic condition was seen at most sites according to sedimentary Eh.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Sulfuro de Hidrógeno , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Sedimentos Geológicos/química , Sulfuro de Hidrógeno/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Océanos y Mares , Estaciones del Año
17.
Ann Work Expo Health ; 68(4): 387-396, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38527239

RESUMEN

Over the past 15 years, there have been numerous fatalities related to working with animal slurry. Working with cattle slurry releases toxic gases, in particular, hydrogen sulphide (H2S), which can cause acute central nervous system toxicity, breathing difficulties, and death if exposed to high concentrations. Real-time measurements of H2S gas were taken over distance and time, during the stirring of cattle slurry on farms. Gas was measured at eight slurry stores with differing typical configurations of indoor or outdoor stores and with or without slatted flooring. Highest H2S gas levels were measured from indoor stores under slatted floors, and generally at positions closest to the stirrer or the point of maximum stirring, with levels decreasing with distance from source. Most of the data indicate H2S gas levels increase very rapidly after stirring starts, and mostly decline to baseline levels within 30 min post start of stirring. There were, however, circumstances where gas levels remained high and only started to decline once the stirrer had stopped. H2S gas levels at all farms, at all positions measured were consistently below 10 ppm within 30 min of the stirrer being stopped. The current data highlight areas of the farm and ways of working that have the potential for workers and others to be at risk of exposure to toxic slurry gases. The area should be left to ventilate naturally for at least 30 min after the stirrer has been stopped before re-entering buildings. Influencing the design of stirring equipment and future slurry stores would likely reduce the risk of worker exposure to slurry gases.


Asunto(s)
Sulfuro de Hidrógeno , Exposición Profesional , Sulfuro de Hidrógeno/análisis , Animales , Bovinos , Exposición Profesional/análisis , Humanos , Contaminantes Ocupacionales del Aire/análisis , Crianza de Animales Domésticos/métodos , Estiércol/análisis , Granjas , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Ventilación/métodos
18.
ACS Appl Mater Interfaces ; 16(12): 14467-14473, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38491944

RESUMEN

Surface-enhanced Raman scattering (SERS) has great potential in biological analysis due to its specificity, sensitivity, and non-invasive nature. However, effectively extracting Raman information and avoiding spectral overlapping from biological background interference remain major challenges. In this study, we developed a background-free SERS nanosensor consisting of gold nanobipyramids (Au NBPs) core-Prussian blue (PB) shell (Au NBPs@PB), for endogenous H2S detection. The PB shell degraded quickly upon contact with endogenous H2S, generating a unique Raman signal response in the Raman silent region (1800-2800 cm-1). By taking advantage of the high SERS-activity of Au NBPs and H2S-triggered spectral changes of PB, these SERS nanosensors effectively minimize potential biological interferences. The nanosensor exhibits a detection range of 2.0 µM to 250 µM and a limit of detection (LOD) of 0.34 µM, with good reproducibility and minimal interference. We successfully applied this background-free SERS platform to monitor endogenous H2S concentrations in human serum samples with satisfied results.


Asunto(s)
Ferrocianuros , Sulfuro de Hidrógeno , Nanopartículas del Metal , Humanos , Sulfuro de Hidrógeno/análisis , Oro , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
19.
Talanta ; 274: 125982, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554483

RESUMEN

Hydrogen sulfide exhibits crucial functions in many biological and physiological processes. The abnormal levels of H2S have been revealed to be associated with numerous human diseases. The majority of existing fluorescent probes toward H2S may still need to be improved in terms of single output signal, water solubility, biotoxicity and photostability. The construction of a ratiometric fluorescent probe based on metal complex is one effective strategy for avoiding the mentioned problems for precisely detecting H2S. Herein, we report an iridium(III) complex-based ratiometric luminescence probe (Ir-PNBD), which is designed by coupling the 7-nitro-2,1,3-benzoxadiazoles (NBD) to one of the bipyridine ligands of Ir (III) complex luminophore through a piperazition moiety. Ir-PNBD owns high selectivity and sensitivity toward H2S, and an excellent ability to target mitochondria. Moreover, Ir-PNBD was further successfully utilized to visualize exogenous and endogenous H2S in HeLa cells and zebrafish. Our work offers new opportunities to gain deeper insights into the construction of transition metal complex-based ratiometric luminescent probes and expands their applications in biomedical imaging and disease diagnosis.


Asunto(s)
Complejos de Coordinación , Colorantes Fluorescentes , Sulfuro de Hidrógeno , Iridio , Pez Cebra , Sulfuro de Hidrógeno/análisis , Iridio/química , Animales , Humanos , Células HeLa , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Estructura Molecular
20.
Analyst ; 149(5): 1489-1495, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38314794

RESUMEN

A novel cyclooxygenase-2 (COX-2) targeted H2S-activated cancer-specific fluorescent probe, namely, COX2-H2S, was designed and synthesized, with naphthalimide as the fluorophore and indomethacin as the targeting group. This H2S-sensing probe was developed to differentiate tumor cells from normal cells and was tested in living cells, Caenorhabditis elegans (C. elegans), and zebrafish. The probe could successfully be used for imaging endogenous and exogenous H2S in living cells, demonstrating high sensitivity and specificity and strong anti-interference. COX2-H2S had the ability to not only discern cancer cells from normal cells but also specifically recognize 9L/lacZ cells from other glioblastoma cells (U87-MG and LN229). It could also be successfully applied for the fluorescent live imaging of H2S in both C. elegans and zebrafish.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias , Animales , Humanos , Caenorhabditis elegans , Ciclooxigenasa 2 , Colorantes Fluorescentes , Sulfuro de Hidrógeno/análisis , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Pez Cebra , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA