Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.742
Filtrar
1.
Mol Cancer ; 23(1): 106, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760832

RESUMEN

Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.


Asunto(s)
Envejecimiento , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/etiología , Animales , Susceptibilidad a Enfermedades , Factores de Riesgo
2.
J Math Biol ; 89(1): 1, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709376

RESUMEN

In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number R 0 < 1 . For R 0 > 1 , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing "adopting the best response" with "adapting toward the best response", we also explore the adaptive long-term dynamics.


Asunto(s)
Número Básico de Reproducción , Enfermedades Transmisibles , Epidemias , Conceptos Matemáticos , Modelos Biológicos , Humanos , Número Básico de Reproducción/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Epidemias/prevención & control , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Susceptibilidad a Enfermedades/epidemiología , Modelos Epidemiológicos , Evolución Biológica , Simulación por Computador
3.
J Biol Dyn ; 18(1): 2352359, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38717930

RESUMEN

This article proposes a dispersal strategy for infected individuals in a spatial susceptible-infected-susceptible (SIS) epidemic model. The presence of spatial heterogeneity and the movement of individuals play crucial roles in determining the persistence and eradication of infectious diseases. To capture these dynamics, we introduce a moving strategy called risk-induced dispersal (RID) for infected individuals in a continuous-time patch model of the SIS epidemic. First, we establish a continuous-time n-patch model and verify that the RID strategy is an effective approach for attaining a disease-free state. This is substantiated through simulations conducted on 7-patch models and analytical results derived from 2-patch models. Second, we extend our analysis by adapting the patch model into a diffusive epidemic model. This extension allows us to explore further the impact of the RID movement strategy on disease transmission and control. We validate our results through simulations, which provide the effects of the RID dispersal strategy.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Modelos Biológicos , Humanos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Susceptibilidad a Enfermedades/epidemiología , Simulación por Computador , Modelos Epidemiológicos , Dinámica Poblacional
4.
Function (Oxf) ; 5(3): zqae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706961

RESUMEN

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Asunto(s)
Eritrocitos , Hipertensión , Malaria , Plasmodium yoelii , Animales , Malaria/inmunología , Malaria/parasitología , Malaria/complicaciones , Malaria/sangre , Malaria/fisiopatología , Ratones , Eritrocitos/parasitología , Eritrocitos/metabolismo , Susceptibilidad a Enfermedades , Masculino , Anemia/parasitología , Modelos Animales de Enfermedad , Hemólisis
5.
Sleep Med Clin ; 19(2): 219-228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692747

RESUMEN

Obstructive sleep apnea is a prevalent sleep disorder characterized by recurrent episodes of partial or complete upper airway collapse during sleep, leading to disrupted breathing patterns and intermittent hypoxia. OSA results in systemic inflammation but also directly affects the upper and lower airways leading to upregulation of inflammatory pathways and alterations of the local microbiome. These changes result in increased susceptibility to respiratory infections such as influenza, COVID-19, and bacterial pneumonia. This relationship is more complex and bidirectional in individuals with chronic lung disease such as chronic obstructive lung disease, interstitial lung disease and bronchiectasis.


Asunto(s)
Infecciones del Sistema Respiratorio , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/inmunología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/complicaciones , Susceptibilidad a Enfermedades/inmunología , COVID-19/inmunología , COVID-19/complicaciones
7.
Braz J Infect Dis ; 28(2): 103742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670166

RESUMEN

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Asunto(s)
Huésped Inmunocomprometido , Trasplante de Órganos , Receptores de Trasplantes , Humanos , Trasplante de Órganos/efectos adversos , Animales , Virosis/transmisión , Virosis/virología , Susceptibilidad a Enfermedades , Zoonosis/transmisión , Zoonosis/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Factores de Riesgo
8.
Curr Treat Options Oncol ; 25(5): 644-658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656686

RESUMEN

OPINION STATEMENT: Leiomyosarcoma (LMS) is one of the more common subtypes of soft tissue sarcomas (STS), accounting for about 20% of cases. Differences in anatomical location, risk of recurrence and histomorphological variants contribute to the substantial clinical heterogeneity in survival outcomes and therapy responses observed in patients. There is therefore a need to move away from the current one-size-fits-all treatment approach towards a personalised strategy tailored for individual patients. Over the past decade, tissue profiling studies have revealed key genomic features and an additional layer of molecular heterogeneity among patients, with potential utility for optimal risk stratification and biomarker-matched therapies. Furthermore, recent studies investigating intratumour heterogeneity and tumour evolution patterns in LMS suggest some key features that may need to be taken into consideration when designing treatment strategies and clinical trials. Moving forward, national and international collaborative efforts to aggregate expertise, data, resources and tools are needed to achieve a step change in improving patient survival outcomes in this disease of unmet need.


Asunto(s)
Biomarcadores de Tumor , Heterogeneidad Genética , Leiomiosarcoma , Medicina de Precisión , Humanos , Leiomiosarcoma/genética , Leiomiosarcoma/terapia , Leiomiosarcoma/diagnóstico , Leiomiosarcoma/patología , Leiomiosarcoma/mortalidad , Medicina de Precisión/métodos , Pronóstico , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Terapia Molecular Dirigida
9.
Curr Treat Options Oncol ; 25(5): 659-678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656685

RESUMEN

OPINION STATEMENT: Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/sangre , Linfoma de Células B Grandes Difuso/genética , Humanos , ADN Tumoral Circulante/sangre , Biomarcadores de Tumor/sangre , Biopsia Líquida/métodos , Manejo de la Enfermedad , Investigación Biomédica Traslacional , Medicina de Precisión/métodos , Pronóstico , Toma de Decisiones Clínicas , Susceptibilidad a Enfermedades
10.
Viruses ; 16(4)2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675911

RESUMEN

Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.


Asunto(s)
Pollos , Inmunidad Innata , Enfermedades de las Aves de Corral , Infección por el Virus Zika , Virus Zika , Animales , Pollos/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Susceptibilidad a Enfermedades , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Factores de Edad , Anticuerpos Antivirales/sangre , ARN Viral/genética
11.
Gene ; 918: 148459, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608794

RESUMEN

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.


Asunto(s)
Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía , Piroptosis , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Neumonía/inducido químicamente , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Susceptibilidad a Enfermedades , Inflamasomas/metabolismo , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
12.
PLoS One ; 19(4): e0301473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630650

RESUMEN

BACKGROUND: Emerging epidemiological evidence indicates nature exposure could be associated with greater health benefits among groups in lower versus higher socioeconomic positions. One possible mechanism underpinning this evidence is described by our framework: (susceptibility) adults in low socioeconomic positions face higher exposure to persistent psychosocial stressors in early life, inducing a pro-inflammatory phenotype as a lifelong susceptibility to stress; (differential susceptibility) susceptible adults are more sensitive to the health risks of adverse (stress-promoting) environments, but also to the health benefits of protective (stress-buffering) environments. OBJECTIVE: Experimental investigation of a pro-inflammatory phenotype as a mechanism facilitating greater stress recovery from nature exposure. METHODS: We determined differences in stress recovery (via heart rate variability) caused by exposure to a nature or office virtual reality environment (10 min) after an acute stressor among 64 healthy college-age males with varying levels of susceptibility (socioeconomic status, early life stress, and a pro-inflammatory state [inflammatory reactivity and glucocorticoid resistance to an in vitro bacterial challenge]). RESULTS: Findings for inflammatory reactivity and glucocorticoid resistance were modest but consistently trended towards better recovery in the nature condition. Differences in recovery were not observed for socioeconomic status or early life stress. DISCUSSION: Among healthy college-age males, we observed expected trends according to their differential susceptibility when assessed as inflammatory reactivity and glucocorticoid resistance, suggesting these biological correlates of susceptibility could be more proximal indicators than self-reported assessments of socioeconomic status and early life stress. If future research in more diverse populations aligns with these trends, this could support an alternative conceptualization of susceptibility as increased environmental sensitivity, reflecting heightened responses to adverse, but also protective environments. With this knowledge, future investigators could examine how individual differences in environmental sensitivity could provide an opportunity for those who are the most susceptible to experience the greatest health benefits from nature exposure.


Asunto(s)
Glucocorticoides , Estrés Psicológico , Masculino , Adulto , Humanos , Estrés Psicológico/psicología , Ambiente , Susceptibilidad a Enfermedades , Clase Social
13.
PLoS One ; 19(4): e0299813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593169

RESUMEN

Many countries have experienced multiple waves of infection during the COVID-19 pandemic. We propose a novel but parsimonious extension of the SIR model, a CSIR model, that can endogenously generate waves. In the model, cautious individuals take appropriate prevention measures against the virus and are not exposed to infection risk. Incautious individuals do not take any measures and are susceptible to the risk of infection. Depending on the size of incautious and susceptible population, some cautious people lower their guard and become incautious-thus susceptible to the virus. When the virus spreads sufficiently, the population reaches "temporary" herd immunity and infection subsides thereafter. Yet, the inflow from the cautious to the susceptible eventually expands the susceptible population and leads to the next wave. We also show that the CSIR model is isomorphic to the SIR model with time-varying parameters.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Susceptibilidad a Enfermedades/epidemiología , Inmunidad Colectiva
14.
Nature ; 629(8010): 154-164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649488

RESUMEN

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Asunto(s)
Envejecimiento , Músculo Esquelético , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Fragilidad/genética , Fragilidad/patología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/patología , Transcriptoma
15.
Sci Rep ; 14(1): 9699, 2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678053

RESUMEN

Clinical depression is characterized by multiple concurrent symptoms, manifesting as a complex heterogeneous condition. Although some well-established classical behavioral assessments are widespread in rodent models, it remains uncertain whether rats also display stress-induced depression-related phenotypes in a multidimensional manner, i.e., simultaneous alterations in multiple behavioral tests. Here, we investigated multivariate patterns and profiles of depression-related behavioral traits in male Wistar rats subjected to inescapable footshocks (IS) or no-shocks (NS), followed by a comprehensive battery of behavioral tests and ethological characterization. We observed generalized stronger intra-test but weaker inter-test correlations. However, feature clustering of behavioral measures successfully delineated variables linked to resilience and susceptibility to stress. Accordingly, a noteworthy covariation pattern emerged, characterized by increased open field locomotion, reduced time in the elevated plus maze open arms, lower sucrose preference, and increased shuttle box escape failures that consistently differentiated IS from NS. Surprisingly there is little contribution from forced swim. In addition, individual clustering revealed a diversity of behavioral profiles, naturally separating NS and IS, including subpopulations entirely characterized by resilience or susceptibility. In conclusion, our study elucidates intricate relationships among classical depression-related behavioral measures, highlighting multidimensional individual variability. Our work emphasizes the importance of a multivariate framework for behavioral assessment in animal models to understand stress-related neuropsychiatric disorders.


Asunto(s)
Conducta Animal , Depresión , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Ratas , Resiliencia Psicológica , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades
16.
Proc Biol Sci ; 291(2021): 20240103, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628126

RESUMEN

Within-host interactions among coinfecting parasites can have major consequences for individual infection risk and disease severity. However, the impact of these within-host interactions on between-host parasite transmission, and the spatial scales over which they occur, remain unknown. We developed and apply a novel spatially explicit analysis to parasite infection data from a wild wood mouse (Apodemus sylvaticus) population. We previously demonstrated a strong within-host negative interaction between two wood mouse gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the coccidian Eimeria hungaryensis, using drug-treatment experiments. Here, we show this negative within-host interaction can significantly alter the between-host transmission dynamics of E. hungaryensis, but only within spatially restricted neighbourhoods around each host. However, for the closely related species E. apionodes, which experiments show does not interact strongly with H. polygyrus, we did not find any effect on transmission over any spatial scale. Our results demonstrate that the effects of within-host coinfection interactions can ripple out beyond each host to alter the transmission dynamics of the parasites, but only over local scales that likely reflect the spatial dimension of transmission. Hence there may be knock-on consequences of drug treatments impacting the transmission of non-target parasites, altering infection risks even for non-treated individuals in the wider neighbourhood.


Asunto(s)
Coinfección , Eimeria , Parasitosis Intestinales , Parásitos , Animales , Ratones , Interacciones Huésped-Parásitos , Murinae/parasitología , Susceptibilidad a Enfermedades
17.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574898

RESUMEN

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Asunto(s)
Conexina 43 , Inflamación , Corteza Prefrontal , Estrés Psicológico , Animales , Corteza Prefrontal/metabolismo , Conexina 43/metabolismo , Ratones , Estrés Psicológico/metabolismo , Masculino , Inflamación/metabolismo , Resiliencia Psicológica , Ratones Endogámicos C57BL , Depresión/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Conducta Animal
18.
Immunol Rev ; 323(1): 227-240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577999

RESUMEN

Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.


Asunto(s)
Selección Genética , Humanos , Animales , Predisposición Genética a la Enfermedad , Inmunidad/genética , Variación Genética , Genética de Población , Fenotipo , Susceptibilidad a Enfermedades/inmunología
19.
Curr Treat Options Oncol ; 25(5): 679-701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676836

RESUMEN

OPINION STATEMENT: Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.


Asunto(s)
Cardiotoxicidad , Enfermedades Cardiovasculares , Genómica , Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias/diagnóstico , Neoplasias/complicaciones , Neoplasias/terapia , Genómica/métodos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/terapia , Cardiotoxicidad/etiología , Cardiotoxicidad/diagnóstico , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Biomarcadores , Metabolómica/métodos , Proteómica/métodos , Oncología Médica/métodos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Cardiooncología
20.
J Infect Public Health ; 17(5): 889-896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564817

RESUMEN

BACKGROUND: Households are considered ideal settings for studying the transmission dynamics of an infectious disease. METHODS: A prospective study was conducted, based on the World Health Organization FFX protocol from October 2020 to January,2021. Household contacts of laboratory-confirmed index cases were followed up for their symptomatic history, nasal swabs for RT-PCR,and blood samples for anti-SARS CoV-2 antibodies were collected at enrollment and days 7, 14 and 28. We estimated secondary attack rate (SAR), effective household case cluster size and determinants of secondary infection among susceptible household contacts using multivariable logistic regression. RESULTS: We enrolled 77 index cases and their 543 contacts. Out of these, 252 contacts were susceptible at the time of enrollment. There were 77 household clusters, out of which, transmission took place in 20 (25.9%) giving rise to 34 cases. The acquired secondary attack rate (SAR) was 14.0% (95% CI 9.0-18.0). The effective household case cluster size was 0.46 (95%CI 0.33,0.56). Reported symptoms of nausea and vomiting (aOR, 7.9; 95% CI, 1.4-45.5) and fatigue (aOR, 9.3; 95% CI, 3.8-22.7) were associated with SARS-CoV-2 transmission. CONCLUSIONS: We observed a low SARS-CoV-2 secondary attack rate in the backdrop of high seroprevalence and asymptomatic transmission among households in Karachi, Pakistan.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Estudios Prospectivos , Incidencia , Pakistán/epidemiología , Estudios Longitudinales , Estudios Seroepidemiológicos , Susceptibilidad a Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA