Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.990
Filtrar
1.
Int J Mol Med ; 54(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994762

RESUMEN

Age­related macular degeneration (AMD) is an ocular disease that threatens the visual function of older adults worldwide. Key pathological processes involved in AMD include oxidative stress, inflammation and choroidal vascular dysfunction. Retinal pigment epithelial cells and Müller cells are most susceptible to oxidative stress. Traditional herbal medicines are increasingly being investigated in the field of personalized medicine in ophthalmology. Triptonide (Tn) is a diterpene tricyclic oxide, the main active ingredient in the extract from the Chinese herbal medicinal plant Tripterygium wilfordii, and is considered an effective immunosuppressant and anti­inflammatory drug. The present study investigated the potential beneficial role of Tn in retinal oxidative damage in order to achieve personalized treatment for early AMD. An oxidative stress model of retinal cells induced by H2O2 and a retinal injury model of mice induced by light and N­Methyl­D­aspartic acid were constructed. In vitro, JC­1 staining, flow cytometry and apoptosis assay confirmed that low concentrations of Tn effectively protected retinal cells from oxidative damage, and reverse transcription­quantitative PCR and western blotting analyses revealed that Tn reduced the expression of retinal oxidative stress­related genes and inflammatory factors, which may depend on the PI3K/AKT/mTOR­induced Nrf2 signaling pathway. In vivo, by retinal immunohistochemistry, hematoxylin and eosin staining and electroretinogram assay, it was found that retinal function and structure improved and choroidal neovascularization was significantly inhibited after Tn pretreatment. These results suggested that Tn is an efficient Nrf2 activator, which can be expected to become a new intervention for diseases such as AMD, to inhibit retinal oxidative stress damage and pathological neovascularization.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Retina , Transducción de Señal , Estrés Oxidativo/efectos de los fármacos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Triterpenos/farmacología , Masculino , Apoptosis/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Línea Celular , Peróxido de Hidrógeno
2.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999046

RESUMEN

Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS. The extracts' toxicity and impact on the erythrocytes' osmotic fragility were measured spectrophotometrically. The antioxidant activity was determined based on the inhibition of oxidation of erythrocytes and their membrane induced by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH),measured spectrophotometrically and using fluorimetry. To find the possible mechanism of the extracts' action, extract-modified cells were observed under a microscope, and the potential localization of the extract's phytochemical composition was checked using fluorescent probes. The results showed that the used extracts are not toxic to erythrocytes, increase their osmotic resistance, and successfully protect them against free radicals. Extract components localize on the outer part of the membrane, where they can scavenge the free radicals from the environment. Altogether, the presented extracts can greatly protect living organisms against free radicals and can be used to support the treatment of diseases caused by excess free radicals.


Asunto(s)
Membrana Eritrocítica , Hippophae , Extractos Vegetales , Polifenoles , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Polifenoles/farmacología , Polifenoles/química , Membrana Eritrocítica/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Hojas de la Planta/química , Animales , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Fragilidad Osmótica/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954907

RESUMEN

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Asunto(s)
Aflatoxina B1 , Ferroptosis , Flavonoides , Hepatocitos , Proteína p53 Supresora de Tumor , Flavonoides/farmacología , Aflatoxina B1/toxicidad , Ferroptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Animales , Proteína p53 Supresora de Tumor/metabolismo , Ratas , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Masculino , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Humanos , Especies Reactivas de Oxígeno/metabolismo
4.
Food Funct ; 15(14): 7441-7451, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38904342

RESUMEN

Liver injury is a life-threatening condition, and the hepatoprotective potential of cyanidin-3-glucoside (C3G) has been previously demonstrated. However, due to the low bioavailability, it has been doubtful that relatively low concentrations of intact C3G in vivo could account for these bioactivities. In this study, the hepatoprotective effects of intragastric and intravenous administration of C3G were investigated in a CCl4 induced liver injury model. Intragastric C3G administration was more effective than intravenous C3G injection in reducing serum damage biomarkers, oxidative stress, and inflammatory responses, indicating that absorption of C3G into the bloodstream does not fully account for its observed benefits in vivo. Furthermore, intragastric C3G administration modulated the gut microbiota structure and increased the contents of five metabolites in the feces and serum with high inter-individual variation, indicating the key role of the interaction between C3G and the gut microbiota. At equivalent doses, the metabolites cyanidin and protocatechuic acid exhibited greater efficacy than C3G in reducing apoptosis and ROS production by activating the Nrf2 pathway in an AAPH-induced oxidative stress model. To achieve the desired health effects via C3G-rich food intake, more attention should be paid to microbially derived catabolites. Screening of specific metabolite-producing strains will help overcome individual differences and enhance the health-promoting effects of C3G.


Asunto(s)
Antocianinas , Microbioma Gastrointestinal , Glucósidos , Estrés Oxidativo , Microbioma Gastrointestinal/efectos de los fármacos , Antocianinas/farmacología , Antocianinas/administración & dosificación , Animales , Glucósidos/farmacología , Glucósidos/administración & dosificación , Masculino , Estrés Oxidativo/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratas , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ratones , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Ratas Sprague-Dawley , Administración Intravenosa
5.
Adv Food Nutr Res ; 110: 243-274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38906588

RESUMEN

Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.


Asunto(s)
Hepatopatías Alcohólicas , Péptidos , Humanos , Hepatopatías Alcohólicas/prevención & control , Péptidos/farmacología , Péptidos/química , Sustancias Protectoras/farmacología , Animales , Relación Estructura-Actividad , Hígado/efectos de los fármacos
6.
Toxicon ; 246: 107795, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38849008

RESUMEN

Amphotericin B (AmB) induced liver and kidney injury is often responsible for hepatic and renal dysfunction. Therefore, the protection strategy on liver and renal functions in patients treated with AmB should be emphasized. In this paper, diammonium glycyrrhizinate (DG) and piperazine ferulate (PF) were taken as the research object to study its hepatoprotective and neuroprotective effect on AmB-induced liver and kidney damage in vitro and in vivo. The microplate method and ELISA kits were employed for the biochemical detection in the serum and urine of mice. Flow cytometric analysis and western blotting analysis were conducted to study the mechanism of DG and PF. Our results confirmed the prevention capacity of DG and PF on AmB-induced liver and kidney injury through the alleviation of pathological changes and enzyme reducing action. Furthermore, DG and PF suppressed ROS-mediated mitochondrial apoptosis in AmB-treated mice and cells through Caspase pathway and Caspase-independent AIF pathway. In summary, DG and PF could protect AmB-induced hepatotoxicity and nephrotoxicity by disrupting oxidative stress and apoptosis.


Asunto(s)
Anfotericina B , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Ácido Glicirrínico , Fármacos Neuroprotectores , Animales , Apoptosis/efectos de los fármacos , Ratones , Ácido Glicirrínico/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Anfotericina B/toxicidad , Masculino , Hígado/efectos de los fármacos , Hígado/patología , Riñón/efectos de los fármacos , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Piperazinas/farmacología , Piperazina/farmacología , Sustancias Protectoras/farmacología
7.
J Org Chem ; 89(12): 8871-8877, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38837353

RESUMEN

Magterpenes A-C (1-3), three unprecedented meroterpenoids featuring a unique 6/6/6/6/6 polycyclic skeleton, were isolated from the ethanol extract of Magnolia officinalis Rehd. et Wils. The compounds were obtained as racemic mixtures that were completely resolved through chiral columns. Their structures were elucidated by extensive analyses of one-dimensional (1D) and 2D nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, chemical calculations of 1H/13C NMR, and electronic circular dichroism calculations. The compounds were constructed via two Diels-Alder reactions in the proposed biosynthetic pathway. All isolates were evaluated for their nephroprotective and hepatoprotective activities. The results demonstrated that (+)-1 and (-)-1 possessed promising nephroprotective activities in a dose-dependent manner, while (-)-2 and (+)-3 exhibited moderate hepatoprotective activities.


Asunto(s)
Magnolia , Terpenos , Magnolia/química , Terpenos/química , Terpenos/farmacología , Terpenos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
8.
Drug Des Devel Ther ; 18: 2125-2142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882050

RESUMEN

Background: Aconitum carmichaelii (Fuzi) has been conventionally used to cure a variety of ailments, such as pain, cold sensations, and numbness of limb muscles (Bi Zheng) in China. Our prior investigations identified Benzoylaconine (BAC) as a bioactive alkaloid derived from Aconitum carmichaelii, with other studies also demonstrating its significant pharmacological potential. Purpose: This study aimed to explore the potential of BAC as a protective agent against skeletal muscle ischemia-reperfusion (I/R) injury and to elucidate the underlying mechanisms. Methods: In vivo models involved subjecting Sprague-Dawley rats to I/R through femoral artery ligation followed by reperfusion, while in vitro models utilized C2C12 cells subjected to hypoxia/reoxygenation (H/R). CCK-8 assay was used to assess cell viability. TUNEL staining and flow cytometric analysis were used to measure cell apoptosis. Biochemical assay was used to assess skeletal muscle injury and oxidative stress. Immunofluorescence and Western blot were performed to determine protein levels. Results: BAC effectively protected muscle tissue from I/R injury, enhancing cell viability (p<0.01), elevating SOD levels (p<0.05), and reducing CK (p<0.01), LDH (p<0.01), ROS (p<0.01), MDA (p<0.01), and apoptosis-related molecules in vivo and in vitro (p<0.05, p<0.01). Mechanistically, BAC increased the expression of IF1, phosphorylated AMPK, facilitated the translocation of nuclear Nrf2, and induced the expression of HO-1 (p<0.01). Notably, AMPK inhibitor Compound C significantly hindered the ability of BAC to ameliorate H/R-induced cell injury (p<0.05), oxidative stress(p<0.01), and apoptosis (p<0.05), as well as promote Nrf2 nuclear translocation (p<0.01). Moreover, silencing of IF1 with siRNA abolished BAC-induced activation of AMPK/Nrf2 axis (p<0.01). Conclusion: Our study provides novel evidence supporting the potential of BAC as a myocyte-protective agent against I/R injury, and we establish a previously unknown mechanism involving the activation of the IF1-dependent AMPK/Nrf2 axis in mediating the protective effects of BAC.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Factor 2 Relacionado con NF-E2 , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Masculino , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Células Cultivadas , Relación Dosis-Respuesta a Droga
9.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893475

RESUMEN

Oxidative stress significantly contributes to ageing and disease, with antioxidants holding promise in mitigating its effects. Functional foods rich in flavonoids offer a potential strategy to mitigate oxidative damage by free radicals. We investigated the protective effects of mulberry leaf flavonoids (MLF) against H2O2-induced oxidative damage in HepG2 cells. It assessed the inhibitory effect of MLF (62.5-500 µg/mL) on H2O2-induced oxidative damage by analyzing cellular morphology and oxidative stress markers, including ROS production, mitochondrial membrane potential, antioxidant enzyme levels, MDA, and apoptosis-related proteins. The results demonstrated that MLF prevented spiny cell formation triggered by 750 µM H2O2 and significantly reduced ROS levels, restored mitochondrial membrane potential, decreased lactate dehydrogenase and alanine transaminase leakage, and reduced MDA content induced by H2O2. MLF also modulated antioxidant enzymes and attenuated oxidative damage to HepG2 cell DNA, as confirmed by staining techniques. These findings indicate the potential of MLF as a hepatoprotective agent against oxidative damage in HepG2 cells.


Asunto(s)
Antioxidantes , Flavonoides , Peróxido de Hidrógeno , Potencial de la Membrana Mitocondrial , Morus , Estrés Oxidativo , Hojas de la Planta , Especies Reactivas de Oxígeno , Humanos , Morus/química , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Flavonoides/farmacología , Hojas de la Planta/química , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
10.
Cell Biochem Funct ; 42(4): e4076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895919

RESUMEN

Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.


Asunto(s)
Bromatos , Ácidos Cumáricos , Hígado , Propionatos , Animales , Ratones , Ácidos Cumáricos/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Sustancias Protectoras/farmacología
11.
Phytomedicine ; 130: 155731, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824824

RESUMEN

BACKGROUND: Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE: The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS: The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS: Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION: SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.


Asunto(s)
Isotiocianatos , Sulfóxidos , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Humanos , Animales , Brassica/química , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/farmacología
12.
Cells ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891033

RESUMEN

Helicobacter pylori has been implicated in various gastrointestinal disorders, including functional dyspepsia. This study aimed to compare the anti-H. pylori activity and gastroprotective effects of three typical herbal formulas used for gastrointestinal disorders in Korea: Shihosogan-tang (ST), Yijung-tang (YT), and Pyeongwi-san (PS). Firstly, we assessed the total phenolic and flavonoid contents, as well as the antioxidative capacity. Additionally, we evaluated the antibacterial effect on H. pylori using an ammonia assay, minimum inhibitory concentration (MIC) test, and the disk agar diffusion method. Furthermore, we examined alterations in the gene expression of tight junction proteins, pro-inflammatory cytokines, and cellular vacuolation using an AGS cell model infected with H. pylori. While ST exhibited a higher total phenolic content, superior free radical scavenging, and inhibition of H. pylori compared to YT and PS, YT more evidently inhibited gastric cellular morphological changes such as vacuolation. All formulations significantly ameliorated changes in inflammatory and gastric inflammation-related genes and cellular morphological alterations induced by H. pylori infection. Overall, the present in vitro study suggests that all three herbal formulas possess potential for ameliorating gastrointestinal disorders, with ST relatively excelling in inhibiting H. pylori infection and inflammation, while YT potentially shows greater efficacy in directly protecting the gastric mucosa.


Asunto(s)
Dispepsia , Helicobacter pylori , Helicobacter pylori/efectos de los fármacos , Dispepsia/tratamiento farmacológico , Dispepsia/patología , Humanos , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Antioxidantes/farmacología , Flavonoides/farmacología , Pruebas de Sensibilidad Microbiana , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
13.
Cells ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891089

RESUMEN

Inflammatory bowel disease (IBD) is a chronic gut disorder that also elevates the risk of colorectal cancer (CRC). The global incidence and severity of IBD are rising, yet existing therapies often lead to severe side effects. Curcumin offers potent anti-inflammatory and chemotherapeutic properties. However, its clinical translation is hindered by rapid metabolism, as well as poor water solubility and stability, which limits its bioavailability. To address these challenges, we developed OC-S, a water-soluble and colon-targeted curcumin formulation that protects against colitis in mice. The current study advances OC-S as a dietary supplement by establishing its stability and compatibility with various commercial dietary products. Further, OC-S exhibited specific binding to inflamed colon tissue, potentially aiding in targeted drug retention at the inflammation site in colitis with diarrhea symptoms. We further investigated its efficacy in vivo and in vitro using a murine model of colitis and tumoroids from APCmin mice. OC-S significantly reduced colitis severity and pro-inflammatory cytokine expression compared with curcumin, even at very low doses (5 mg/kg/day). It also demonstrated higher anti-proliferative activity in CRC cells and colon cancer tumoroids vs. curcumin. Overall, this study demonstrated that OC-S effectively targets and retains water-soluble curcumin at the inflamed colon sites, while showing promise in addressing both colitis and colorectal cancer, which potentially paves the way for OC-S to advance into clinical development as a dietary product for both IBD and CRC.


Asunto(s)
Colitis , Neoplasias Colorrectales , Curcumina , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Colitis/tratamiento farmacológico , Colitis/patología , Colitis/inducido químicamente , Ratones , Humanos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Masculino , Sustancias Protectoras/farmacología
14.
Sci Rep ; 14(1): 14924, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942824

RESUMEN

Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.


Asunto(s)
Berberina , Disponibilidad Biológica , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Ratones , Berberina/farmacología , Berberina/química , Berberina/uso terapéutico , Masculino , Solubilidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Lipopolisacáridos , Polvos , Sistemas de Liberación de Medicamentos
15.
Food Funct ; 15(13): 7093-7107, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873879

RESUMEN

Heat stress can impair the male reproductive function. L-Theanine and dihydromyricetin have biological activities against heat stress; however, their effects on reproductive function in heat-stressed males are unclear. In this study, male mice were given L-theanine, dihydromyricetin, or a combination of both for 28 days, followed by 2 h of heat stress daily for 7 days. All interventions alleviated heat stress-induced testicular damage, improving the testicular organ index, sperm density, acrosome integrity, sperm deformity rate, and hormone levels. Treatment increased the antioxidant enzyme activity and decreased the markers of oxidative and inflammatory stress in the testes. A combination dose of 200 + 200 mg kg-1 d-1 showed the best protective effect. The potential mechanism involves the regulation of HSP27 and HSP70, which regulate the levels of reproductive hormones through the StAR/Cyp11a1/Hsd3b1/Cyp17a1/Hsd17b3 pathway, alleviate inflammation and oxidative stress through the P38/NF-κB/Nrf2/HO-1 pathway, and regulate the Bcl-2/Fas/Caspase3 apoptotic pathway. Overall, L-theanine and dihydromyricetin may play a protective role against heat stress-induced reproductive dysfunction, suggesting their potential use in heat stress-resistant foods.


Asunto(s)
Flavonoles , Glutamatos , Estrés Oxidativo , Testículo , Animales , Masculino , Flavonoles/farmacología , Ratones , Testículo/efectos de los fármacos , Testículo/metabolismo , Glutamatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Reproducción/efectos de los fármacos , Antioxidantes/farmacología , Sustancias Protectoras/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Apoptosis/efectos de los fármacos
16.
Int J Med Mushrooms ; 26(7): 67-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884264

RESUMEN

Mushrooms have been used as medicine by humans for more than 5000 years. They have had a successful role in treating immune deficiencies. Nowadays, some extracts and compounds obtained from medicinal mushrooms have increased a great prospect of treating many disorders by having a great role in modulation of immune system, cancer inhibiting, cardio-vascular health, antiviral, antibacterial, antioxidant and protective effects against hepatitis and diabetes. In this study, we evaluated the antioxidant effect of methanol and hot water extract of the Trametes gibbosa (Pers.) Fr. mushroom and hepatoprotective effect of the extract with the most radical scavenging potency. To assess the antioxidant properties of different extracts of the mushroom, DPPH method was used. For assessing the hepatoprotective properties, a seven-day experiment was designed, and liver toxicity was induced by carbon tetrachloride [intraperitoneal (ip) for 7 consecutive days, 0.5 mL/kg body weight (BW)]. Rats were simultaneously fed with aqueous extract of the mushroom with the dose of 250, 500, and 1000 mg/kg BW and silymarin (100 mg/kg BW) as positive control. At the end of the experiment, blood serums of the rats were collected for quantification of major liver factors (e.g., aspartate aminotransferase, alanine aminotransferase, alanine phosphatase, bilirubin, etc.). Tissue samples were obtained for pathological examination. Based on the results, the aqueous extract showed more potent radical scavenging activity (half-maximal inhibitory concentration = 414.33 µg/mL, compared with 936.92 µg/mL for methanolic extract). Indeed, hepatoprotective properties of the aqueous extract of the mushroom (500 and 1000 mg/kg BW) were comparable with those of silymarin and even showed superior protective effects in histopathological examination. It seems that with further complementary studies, T. gibbosa could be considered a potential candidate for hepatoprotection.


Asunto(s)
Antioxidantes , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Sustancias Protectoras , Trametes , Animales , Ratas , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Masculino , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Antioxidantes/farmacología , Antioxidantes/química , Trametes/química , Hígado/efectos de los fármacos , Hígado/patología , Ratas Wistar , Silimarina/farmacología
17.
Biochem Biophys Res Commun ; 725: 150258, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897041

RESUMEN

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.


Asunto(s)
Arsenitos , Enfermedad Hepática Inducida por Sustancias y Drogas , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Transducción de Señal , Compuestos de Sodio , Factor de Necrosis Tumoral alfa , Animales , Masculino , Transducción de Señal/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Caspasa 3/metabolismo , Caspasa 3/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas , Complejos Multienzimáticos , Proteínas Serina-Treonina Quinasas
18.
Mol Nutr Food Res ; 68(12): e2300833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850176

RESUMEN

SCOPE: Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS: This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION: Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.


Asunto(s)
Factores de Transcripción ARNTL , Flavonas , Lipogénesis , Hepatopatías Alcohólicas , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Animales , Flavonas/farmacología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Hepatopatías Alcohólicas/prevención & control , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Lipogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones , Sustancias Protectoras/farmacología , Etanol , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos
19.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840216

RESUMEN

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Asunto(s)
Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , FN-kappa B , Fosforilación Oxidativa , Síndrome de Dificultad Respiratoria , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Inflamación/patología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , FN-kappa B/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Sustancias Protectoras/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores
20.
Photodermatol Photoimmunol Photomed ; 40(4): e12985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845468

RESUMEN

BACKGROUND: Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS: A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS: Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION: Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.


Asunto(s)
Sustancias Protectoras , Rayos Ultravioleta , Humanos , Administración Oral , Antioxidantes/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Piel/efectos de los fármacos , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos , Sustancias Protectoras/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA