Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.384
Filtrar
1.
BMC Urol ; 24(1): 141, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977987

RESUMEN

BACKGROUND: The literature on nephron-sparing surgery (NSS) in children with bilateral Wilms' tumors (BWT) involving the collection system is mostly comprised of case reports. The present study aimed to summarize the clinical characteristics, treatments, and prognosis of children with BWT involving the collecting system admitted to our pediatric surgery center compared with those whose tumors did not involve the collecting system. A secondary aim was to discuss how to preserve more kidney parenchyma and prevent long-term renal failure under the premise of preventing tumor recurrence. METHODS: Patients with BWT admitted to our pediatric surgery center between January 2008 and June 2022 were reviewed. All included patients were grouped according to the relationship between the tumor and collecting system according to the intraoperative findings. Group I included children with tumor infiltrating the collecting system, group II included children with tumor growing into the collecting system, and group III included children whose tumor did not involve the collecting system. The clinical features, treatments and prognosis of the patients were analyzed. RESULTS: Seventy patients were enrolled, including 20 patients with 25 sides of tumors infiltrating the collecting system in group I,10 patients with 13 sides of tumors growing into the collecting system in group II, and 40 patients in group III. There was no significant difference in patients age and gender between group I and group II. In total, 20 patients in group I and 9 patients in group II had partial response (PR) after neoadjuvant chemotherapy. In group I, 22 of 25 sides of tumors underwent NSS; in group II, 11 of 13 sides of tumors underwent NSS. During an average follow-up of 47 months, in group I, 6/20 patients relapsed and 2/20 patients died; in group II, 3/10 patients relapsed and 1/10 patient died. There was no significant difference in 4-year overall survival (OS) rate among groups I, II and III (86.36% vs. 85.71%vs. 91.40%, P = 0.902). CONCLUSIONS: To preserve renal parenchyma, NSS is feasible for children with BWT involving the collecting system. There was no significant difference in postoperative long-term OS between patients with BWT involving the collecting system and not involving the collecting system.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Tumor de Wilms/patología , Tumor de Wilms/cirugía , Masculino , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Femenino , Pronóstico , Preescolar , Estudios Retrospectivos , Lactante , Niño , Túbulos Renales Colectores/patología , Invasividad Neoplásica , Tratamientos Conservadores del Órgano/métodos
2.
Proc Natl Acad Sci U S A ; 121(29): e2400666121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976738

RESUMEN

Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.


Asunto(s)
Ratones Noqueados , Receptor de Insulina , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Humanos , Ratones , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Inmunidad Innata , Riñón/metabolismo , Túbulos Renales Colectores/metabolismo , Ratones Endogámicos C57BL , Receptor de Insulina/metabolismo , Transducción de Señal , Infecciones Urinarias/microbiología , Infecciones Urinarias/metabolismo , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/inmunología
3.
PLoS One ; 19(7): e0306479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959226

RESUMEN

The histomorphological features of normal kidneys in cats and dogs have been revealed despite the high susceptibility of cats to tubulointerstitial damage. Herein, the histological characteristics of the two species were compared. Cytoplasmic lipid droplets (LDs) were abundant in the proximal convoluted tubules (PCTs) of cats aged 23-27 months but scarce in dogs aged 24-27 months. LDs were rarely observed in the distal tubules (DTs) and collecting ducts (CDs) of either species, as visualized by the expression of Tamm-Horsfall protein 1, calbindin-D28K, and aquaporin 2. The occupational area ratio of proximal tubules (PTs) in the renal cortex was higher, but that of DTs or CDs was significantly lower in adult cats than in dogs. Single PT epithelial cells were larger, but PCT, DT, and CD lumens were significantly narrower in adult cats than in dogs. Unlike adults, young cats at 6 months exhibited significantly abundant cytoplasmic LDs in proximal straight tubules, indicating lipid metabolism-related development. Histochemistry of the 21 lectins also revealed variations in glycosylation across different renal tubules and CDs in both species. Sodium-glucose cotransporter 2 was expressed only in PTs, excluding the proximal straight tubules with few LDs in adult cats or the PCTs of young cats and adult dogs. These findings are crucial for understanding species-specific characteristics of renal histomorphology and pathogenesis.


Asunto(s)
Túbulos Renales Colectores , Especificidad de la Especie , Animales , Perros , Gatos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Femenino , Gotas Lipídicas/metabolismo
4.
Arch Pharm (Weinheim) ; 357(8): e2400063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38704748

RESUMEN

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.


Asunto(s)
Amilorida , Acuaporina 2 , Diabetes Insípida Nefrogénica , Modelos Animales de Enfermedad , Túbulos Renales Colectores , Animales , Diabetes Insípida Nefrogénica/inducido químicamente , Diabetes Insípida Nefrogénica/prevención & control , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/patología , Túbulos Renales Colectores/metabolismo , Masculino , Ratas , Acuaporina 2/metabolismo , Amilorida/farmacología , Ratas Wistar , Factores de Tiempo , Insuficiencia Renal Crónica/prevención & control , Insuficiencia Renal Crónica/inducido químicamente , Litio/farmacología , Relación Dosis-Respuesta a Droga
6.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695074

RESUMEN

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Asunto(s)
Desamino Arginina Vasopresina , Túbulos Renales Colectores , Ratones Noqueados , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Desamino Arginina Vasopresina/farmacología , Capacidad de Concentración Renal/efectos de los fármacos , Arginina Vasopresina/metabolismo , Masculino , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Ratones , Acuaporina 2/metabolismo , Acuaporina 2/genética , Fármacos Antidiuréticos/farmacología , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Ratones Endogámicos C57BL , Privación de Agua , Concentración Osmolar , Sodio/orina , Sodio/metabolismo , Vasopresinas/metabolismo , Benzazepinas
7.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634134

RESUMEN

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Asunto(s)
Canales Epiteliales de Sodio , Proteolisis , Sodio , Animales , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Masculino , Femenino , Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Homeostasis , Furina/metabolismo , Furina/genética , Ratones , Colon/metabolismo , Potasio/metabolismo , Dieta Hiposódica , Ratones de la Cepa 129 , Mutación , Amilorida/farmacología
8.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634131

RESUMEN

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Asunto(s)
Acuaporina 2 , Benzoxazinas , Diuresis , Túbulos Renales Colectores , Morfolinas , Naftalenos , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Diuresis/efectos de los fármacos , Benzoxazinas/farmacología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Acuaporina 2/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Masculino , Diabetes Insípida Neurogénica/metabolismo , Diabetes Insípida Neurogénica/fisiopatología , Ratones Endogámicos C57BL , Agonistas de Receptores de Cannabinoides/farmacología , Ratones , Modelos Animales de Enfermedad
10.
Am J Physiol Renal Physiol ; 326(5): F814-F826, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545647

RESUMEN

Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.


Asunto(s)
Acuaporina 2 , Proteínas Cullin , Ciclopentanos , Túbulos Renales Colectores , Pirimidinas , Ubiquitinación , Acuaporina 2/metabolismo , Proteínas Cullin/metabolismo , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/enzimología , Ubiquitinación/efectos de los fármacos , Fosforilación , Ratones , Vasopresinas/metabolismo , Vasopresinas/farmacología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Calcio/metabolismo
11.
J Clin Invest ; 134(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426496

RESUMEN

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.


Asunto(s)
Túbulos Renales Colectores , Masculino , Ratones , Animales , Túbulos Renales Colectores/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Calcio/metabolismo , Nefronas/metabolismo , Riñón/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
13.
Sci Adv ; 10(6): eadi7840, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324689

RESUMEN

Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.


Asunto(s)
Túbulos Renales Colectores , Túbulos Renales Colectores/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
14.
Pediatr Res ; 95(7): 1754-1757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38287105

RESUMEN

BACKGROUND: The prorenin receptor (PRR) plays a critical role in ureteric bud (UB) branching morphogenesis. DOT1 Like (DOT1L), a histone methyltransferase specific for Histone 3 lysine 79 (H3K79), is important for differentiation of the UB-derived renal collecting duct cells. In this study, we tested whether DOT1L/H3 dimethyl K79 (H3m2K79) are regulated by PRR deletion in the UB and UB-derived collecting ducts in the embryonic mouse kidneys. METHODS: Mutant Hoxb7Cre+/PRRflox/flox (PRRUB-/-) and control PRRUB+/+, mice were studied on embryonic (E) day E17.5. DOT1L mRNA and protein expression in the kidney was examined by real-time qRT-PCR and immunohistochemistry, respectively. H3m2K79 protein expression was determined by immunohistochemistry and Western blot analysis. RESULTS: DOT1L mRNA levels were decreased in mutant compared to control mice (0.68 ± 0.06 vs. 1.0 ± 0.01, p < 0.01). DOT1L and H3m2K79 immunostaining was reduced in the mutant vs. control kidneys (Dot1: 0.62 ± 0.03 vs. 1.0 ± 0.01, p < 0.05; H3m2K79: 0.64 ± 0.04 vs.1.1 ± 0.01. p < 0.05.). Western blot analysis revealed decreased H3m2K79 protein levels in mutant compared to control kidneys (1.0 ± 0.06 vs. 1.5 ± 0.02, p < 0.05). CONCLUSION: Targeted deletion of the PRR in the UB and UB-derived collecting ducts results in reduced DOT1L gene/protein and H3m2K79 protein expression in the embryonic mouse metanephroi in vivo. IMPACT: The role of histone methylation in mediating the effect of the prorenin receptor on the ureteric bud branching (UB) morphogenesis and urine acidification during kidney development is unknown. We demonstrate that histone H3 lysine (K) 79 dimethylation by methyltransferase Dot1 is reduced in the embryonic kidney of mice that lack the prorenin receptor in the UB lineage.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Receptor de Prorenina , Receptores de Superficie Celular , Uréter , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Histonas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Uréter/embriología , Uréter/metabolismo , Transducción de Señal , Ratones Noqueados , Eliminación de Gen , Metilación , Riñón/metabolismo , Riñón/embriología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Estructuras Embrionarias
15.
Am J Physiol Renal Physiol ; 326(3): F545-F559, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205543

RESUMEN

Prior studies showed that epidermal growth factor (EGF) inhibits vasopressin-stimulated osmotic water permeability in the renal collecting duct. Here, we investigated the underlying mechanism. Using isolated perfused rat inner medullary collecting ducts (IMCDs), we found that the addition of EGF to the peritubular bath significantly decreased 1-deamino-8-d-arginine vasopressin (dDAVP)-stimulated water permeability, confirming prior observations. The inhibitory effect of EGF on water permeability was associated with a reduction in intracellular cAMP levels and protein kinase A (PKA) activity. Using phospho-specific antibodies and immunoblotting in IMCD suspensions, we showed that EGF significantly reduces phosphorylation of AQP2 at Ser264 and Ser269. This effect was absent when 8-cpt-cAMP was used to induce AQP2 phosphorylation, suggesting that EGF's inhibitory effect was at a pre-cAMP step. Immunofluorescence labeling of microdissected IMCDs showed that EGF significantly reduced apical AQP2 abundance in the presence of dDAVP. To address what protein kinase might be responsible for Ser269 phosphorylation, we used Bayesian analysis to integrate multiple-omic datasets. Thirteen top-ranked protein kinases were subsequently tested by in vitro phosphorylation experiments for their ability to phosphorylate AQP2 peptides using a mass spectrometry readout. The results show that the PKA catalytic-α subunit increased phosphorylation at Ser256, Ser264, and Ser269. None of the other kinases tested phosphorylated Ser269. In addition, H-89 and PKI strongly inhibited dDAVP-stimulated AQP2 phosphorylation at Ser269. These results indicate that EGF decreases the water permeability of the IMCD by inhibiting cAMP production, thereby inhibiting PKA and decreasing AQP2 phosphorylation at Ser269, a site previously shown to regulate AQP2 endocytosis.NEW & NOTEWORTHY The authors used native rat collecting ducts to show that inhibition of vasopressin-stimulated water permeability by epidermal growth factor involves a reduction of aquaporin 2 phosphorylation at Ser269, a consequence of reduced cAMP production and PKA activity.


Asunto(s)
Acuaporina 2 , Túbulos Renales Colectores , Ratas , Animales , Fosforilación , Acuaporina 2/metabolismo , Desamino Arginina Vasopresina/farmacología , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Agua/metabolismo , Ratas Sprague-Dawley , Teorema de Bayes , Túbulos Renales Colectores/metabolismo , Vasopresinas/farmacología , Proteínas Quinasas/metabolismo , Permeabilidad
16.
Pflugers Arch ; 476(4): 555-564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195948

RESUMEN

The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and ß-intercalated cells accomplish urinary base (HCO3-) secretion. ß-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of ß-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.


Asunto(s)
Túbulos Renales Colectores , Animales , Ratones , Antiportadores de Cloruro-Bicarbonato/metabolismo , Riñón/metabolismo , Túbulos Renales Colectores/metabolismo
17.
Pflugers Arch ; 476(4): 565-578, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227050

RESUMEN

Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.


Asunto(s)
Infecciones Bacterianas , Túbulos Renales Colectores , Infecciones Urinarias , Niño , Ratones , Humanos , Animales , Escherichia coli , Riñón/metabolismo , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Túbulos Renales Colectores/metabolismo , Inmunidad Innata , Infecciones Bacterianas/metabolismo
19.
Am J Physiol Cell Physiol ; 326(1): C229-C251, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899748

RESUMEN

This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.


Asunto(s)
Túbulos Renales Colectores , Túbulos Renales Colectores/metabolismo , Cultivo Primario de Células , Riñón/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Organoides
20.
Am J Physiol Renal Physiol ; 326(1): F143-F151, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942538

RESUMEN

There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.


Asunto(s)
Acidosis , Túbulos Renales Colectores , Ratones , Animales , Porcinos , Trimetoprim/farmacología , Trimetoprim/metabolismo , Túbulos Renales Colectores/metabolismo , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Antibacterianos/farmacología , Acidosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA