Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Sci Total Environ ; 951: 175738, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182777

RESUMEN

Climate change and the associated increased frequency of extreme weather events are likely to alter the emissions of biogenic volatile organic compounds (BVOCs) from boreal peatlands. Hydrologically sensitive Sphagnum mosses are keystone species in boreal peatland ecosystems that are known to emit various BVOCs. However, it is not known how their emissions respond to seasonal droughts. In this study, we quantified the effect of severe drought, and subsequent recovery, on the BVOC emissions from Sphagnum mosses using mesocosms originating from wet open and naturally drier treed boreal fens and bogs. Here we report the emissions of 30 detected BVOCs, of which isoprene was the most abundant with an average flux rate of 5.6 µg m-2 h-1 (range 0-31.9 µg m-2 h-1). The experimental 43-day ecohydrological drought reduced total BVOC and isoprene emissions. In addition, in mesocosms originating from bogs, sesquiterpene emissions decreased with the drought, while the emissions of green leaf volatiles were induced. Sesquiterpene emissions remained low even six weeks after rewetting, indicating a long and limited recovery from the drought. Our results further imply that long-term exposure to deep water tables does not decrease sensitivity of Sphagnum to an extreme drought; we did not detect differences in the emission rates or drought responses between Sphagna originating from wet open and naturally drier treed habitats. Yet, the differences between fen and bog originating Sphagna indicate local variability in the BVOC quality changes following drought, potentially altering the climate feedback of boreal peatland BVOC emissions.


Asunto(s)
Cambio Climático , Sequías , Monitoreo del Ambiente , Sphagnopsida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Humedales , Taiga , Butadienos , Hemiterpenos
2.
Nature ; 631(8021): 563-569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020035

RESUMEN

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Internacionalidad , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Taiga , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Clima Tropical
3.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976011

RESUMEN

In forests, a significant proportion of the carbon fixed by trees during photosynthesis is transported belowground along the conducting phloem, so variations in phloem anatomy can lead to variations in transport capacity. Phloem conductance at tree level (Ktree) is also affected by tree height. Both the phloem anatomy and the tree size change during ontogeny, and also differ under different environmental conditions. The goal of our work was to identify the main drivers of variation in Ktree in Scots pine trees growing in natural boreal forests. We conducted a phloem anatomical study and calculated Ktree in trees of three age groups growing in different climatic conditions along a latitudinal gradient from south to north. We found that Ktree was maintained at the same level in actively growing pine trees (25-80-years-old) but increased in old-aged trees (180-190-years-old), possibly reflecting the shift in source-sink relationships of aboveground and belowground parts of trees. Trees of the same age group growing in different climatic conditions demonstrated similar values of Ktree due to coordinated changes in the phloem anatomy and the tree height. In general, the negative influence of tree height on Ktree is offset by the positive influence of phloem width (or trunk diameter) and sieve cell diameter. The exception was young trees growing in the transition zone of the northern taiga subzone to the tundra, where Ktree was the highest in its age group and even exceeded Ktree of middle-aged trees.


Asunto(s)
Clima , Floema , Pinus sylvestris , Floema/fisiología , Floema/anatomía & histología , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/fisiología , Pinus sylvestris/anatomía & histología , Árboles/fisiología , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Bosques , Taiga
4.
Nature ; 631(8022): 796-800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39048683

RESUMEN

Methane is an important greenhouse gas1, but the role of trees in the methane budget remains uncertain2. Although it has been shown that wetland and some upland trees can emit soil-derived methane at the stem base3,4, it has also been suggested that upland trees can serve as a net sink for atmospheric methane5,6. Here we examine in situ woody surface methane exchange of upland tropical, temperate and boreal forest trees. We find that methane uptake on woody surfaces, in particular at and above about 2 m above the forest floor, can dominate the net ecosystem contribution of trees, resulting in a net tree methane sink. Stable carbon isotope measurement of methane in woody surface chamber air and process-level investigations on extracted wood cores are consistent with methanotrophy, suggesting a microbially mediated drawdown of methane on and in tree woody surfaces and tissues. By applying terrestrial laser scanning-derived allometry to quantify global forest tree woody surface area, a preliminary first estimate suggests that trees may contribute 24.6-49.9 Tg of atmospheric methane uptake globally. Our findings indicate that the climate benefits of tropical and temperate forest protection and reforestation may be greater than previously assumed.


Asunto(s)
Atmósfera , Bosques , Metano , Árboles , Madera , Atmósfera/química , Metano/metabolismo , Metano/análisis , Taiga , Árboles/química , Árboles/metabolismo , Árboles/microbiología , Clima Tropical , Madera/química , Madera/metabolismo , Madera/microbiología , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Isótopos de Carbono , Agricultura Forestal , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos
5.
PLoS One ; 19(7): e0306018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39083498

RESUMEN

Reclamation of disturbances from oil sands mining requires effective soil management to ensure successful plant establishment and to promote recovery of native plant communities. In this study we investigated the effects of salvage depths (shallow vs. deep) and placement depths (shallow vs. deep) of forest topsoil on plant establishment, species richness, and soil properties in two substrate types (sand and peat-mineral). Shallow salvage led to greater tree stem densities and higher canopy cover for most plant groups, although there was no significant difference in species richness between shallow and deep salvages. Deep placement generally resulted in greater canopy cover, while its effect on plant density was very small for most plant groups. On peat-mineral substrate, fewer differences were detected between shallow and deep salvage, and multiple treatments resulted in greater cover. Findings suggest that a balance between maximizing the area over which propagules are redistributed and providing sufficient resources for successful plant establishment is necessary. Forest topsoil from shallow salvages and deep placements is recommended when targeting increased site productivity and species diversity. In contrast, deep salvage should be used when the primary objective is to obtain maximum reclamation material volume. Salvage depth effects may be influenced by substrate type, with peat-mineral substrate providing more favourable conditions for plant establishment. Further research is needed to assess the long-term impacts of different salvage and placement depths on plant community development and the potential effects of substrate properties on soil and plant response.


Asunto(s)
Arena , Suelo , Suelo/química , Taiga , Yacimiento de Petróleo y Gas , Árboles/crecimiento & desarrollo , Bosques , Conservación de los Recursos Naturales/métodos , Minería , Biodiversidad
6.
Glob Chang Biol ; 30(7): e17424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044435

RESUMEN

Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.


Asunto(s)
Sequías , Bosques , Estaciones del Año , Suelo , Suelo/química , Agua/análisis , Taiga , Reproducción , Árboles/crecimiento & desarrollo
7.
Environ Pollut ; 357: 124430, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925213

RESUMEN

Large volumes of pesticides are applied every year to support agricultural production. The intensive use of pesticides affects soil quality and health, but soil surveys on pesticide residues are scarce, especially for northern Europe. We investigated the occurrence of 198 pesticide residues, including both banned and currently used substances in 148 field sites in Finland. Results highlight that pesticide residues are common in the agricultural soils of Finland. A least one residue was found in 82% of the soils, and of those 32% contained five or more residues. Maximum total residue concentration among the conventionally farmed soils was 3043 µg/kg, of which AMPA and glyphosate contributed the most. Pesticide residues were also found from organically farmed soils, although at 75-90% lower concentrations than in the conventionally farmed fields. Thus, despite the application rates of pesticides in Finland being generally much lower than in most parts of central and southern Europe, the total residue concentrations in the soils occurred at similar or at higher levels. We also established that AMPA and glyphosate residues in soil are significantly higher in fields with cereal dominated rotations than in grass dominated or cereal-grass rotations. However, risk analyses for individual substances indicated low ecological risk for most of the fields. Furthermore, the total ecological risk associated with the mixtures of residues was mostly low except for 21% of cereal dominated fields with medium risk. The results showed that the presence of mixtures of pesticide residues in soils is a rule rather than an exception also in boreal soils. In highly chemicalized modern agriculture, the follow-up of the residues of currently used pesticides in national and international soil monitoring programs is imperative to maintain soil quality and support sustainable environment policies.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Residuos de Plaguicidas , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Residuos de Plaguicidas/análisis , Finlandia , Suelo/química , Medición de Riesgo , Taiga , Glicina/análogos & derivados , Glicina/análisis , Glifosato
8.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836563

RESUMEN

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Asunto(s)
Bosques , Nitrógeno , Fósforo , Suelo , Suelo/química , Nitrificación , Taiga , China , Incendios
9.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863181

RESUMEN

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Asunto(s)
Imágenes Satelitales , Tundra , Alaska , Regiones Árticas , Tecnología de Sensores Remotos/métodos , Taiga , Monitoreo del Ambiente/métodos
10.
Tree Physiol ; 44(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38769900

RESUMEN

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.


Asunto(s)
Betula , Larix , Hielos Perennes , Agua , Larix/crecimiento & desarrollo , Larix/fisiología , Betula/crecimiento & desarrollo , Betula/fisiología , Agua/metabolismo , China , Cambio Climático , Taiga , Calentamiento Global
11.
Environ Sci Process Impacts ; 26(5): 942-956, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38690707

RESUMEN

Small headwater streams can mobilize large amounts of terrestrially derived dissolved organic matter (DOM). While the molecular composition of DOM has important controls on biogeochemical cycles and carbon cycling, how stationary landscape metrics affect DOM composition is poorly understood, particularly in relation to non-stationary effects from hydrological changes across seasons. Here, we apply a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and absorbance spectroscopy to characterize stream DOM from 13 diverse watersheds across the central Canadian boreal forests and statistically relate DOM compositional characteristics to landscape topography and hydrological metrics. We found that watershed runoff across different surface physiographies produced DOM with distinctly different chemical compositions related to runoff pH. Specifically, streams in sandy soil watersheds contained more abundant aromatic, nitrogenated and sulfurized fractions of DOM, likely due to a combination of lower soil capacity to absorb DOM than other soil types and high conifer forest coverage that generated acidic litterfall in more sandy watersheds. In contrast, streams with more neutral pH in watersheds with shallow soils had DOM resembling low oxidized phenolic molecules mainly due to increased brush/alder and deciduous vegetation coverage in relatively steeper watersheds. However, as precipitation and flows increased in the fall, the overall water chemistry of streams became more similar as runoff pH increased, the overall chemical diversity of DOM in streams decreased, and stream DOM resembled fresher, lower molecular weight lignin material likely originating from freshly produced leaf litter. Together, our findings show that during hydrologically disconnected periods, pH and landscape characteristics have important controls on the mobilization of aromatic DOM but that many landscape-specific characteristics in the Canadian boreal forest are less influential on DOM processing during wetter conditions where chemically similar, plant-derived DOM signatures are preferentially mobilized. These findings collectively help predict the composition of DOM across diverse watersheds in the Canadian boreal to inform microbial and contaminant biogeochemical processes in downstream ecosystems.


Asunto(s)
Monitoreo del Ambiente , Bosques , Ríos , Monitoreo del Ambiente/métodos , Canadá , Ríos/química , Taiga , Sustancias Húmicas/análisis
12.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728227

RESUMEN

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Asunto(s)
Bosques , Nitrógeno , Hojas de la Planta , Árboles , Nitrógeno/metabolismo , Nitrógeno/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Árboles/metabolismo , Carbono/metabolismo , Carbono/química , Ecosistema , Taiga , Ciclo del Carbono
13.
Sci Rep ; 14(1): 10611, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38719887

RESUMEN

Forest growth varies across landscapes due to the intricate relationships between various environmental drivers and forest management. In this study, we analysed the variation of tree growth potential across a landscape scale and its relation to soil moisture. We hypothesised that soil moisture conditions drive landscape-level variation in site quality and that intermediate soil moisture conditions demonstrate the highest potential forest production. We used an age-independent difference model to estimate site quality in terms of maximum achievable tree height by measuring the relative change in Lorey's mean height for a five year period across 337 plots within a 68 km2 boreal landscape. We achieved wall-to-wall estimates of site quality by extrapolating the modelled relationship using repeated airborne laser scanning data collected in connection to the field surveys. We found a clear decrease in site quality under the highest soil moisture conditions. However, intermediate soil moisture conditions did not demonstrate clear site quality differences; this is most likely a result of the nature of the modelled soil moisture conditions and limitations connected to the site quality estimation. There was considerable unexplained variation in the modelled site quality both on the plot and landscape levels. We successfully demonstrated that there is a significant relationship between soil moisture conditions and site quality despite limitations associated with a short study period in a low productive region and the precision of airborne laser scanning measurements of mean height.


Asunto(s)
Suelo , Árboles , Suelo/química , Árboles/crecimiento & desarrollo , Agua , Bosques , Taiga
14.
Sci Total Environ ; 938: 173389, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810743

RESUMEN

Climate change has profoundly affected the synchrony of tree growth at multiple scales, thereby altering the structure and function of forest ecosystems. The Asian boreal forests extend southward to the Greater Khingan Range in northeast China. Given the ecological importance and susceptibility to climate change, the impacts of warming on this marginal forest community have been extensively investigated. Nonetheless, how tree growth synchrony changes across this region remains less understood. Focusing on this knowledge gap, we compiled a contiguously-distributed tree-ring network, containing 18 sampling populations and 475 individual larch trees, to explore the changes in multiple-scale growth synchrony across this region. We found increasing growth synchrony at both the individual and population levels over the past decades. The increasing trend of the regional inter-population growth synchrony was well in line with the increasing temperature and PDSI. Furthermore, 11 of the 18 sampling populations showed significant increases in their intra-population growth synchrony. We further associated the sliding intra-population growth synchrony with local climates. Intra-population growth synchrony of 13 and 11 sampling populations were significantly positively correlated with local temperature, and negatively correlated with local PDSI, respectively, demonstrating the driving role of warming-induced drought on growth synchrony. The linear regression model quantifying this relationship suggested that an increase of 1 °C in annual mean temperature would drive the intra-population growth synchrony to increase by 0.047. As warming trends in the study area are projected to continue over this century, our study warns of the further consequences of the increasing growth synchrony may have on the functioning, resilience, and persistence of forests.


Asunto(s)
Cambio Climático , Árboles , China , Árboles/crecimiento & desarrollo , Taiga , Bosques , Calentamiento Global , Temperatura , Ecosistema
15.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38624252

RESUMEN

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Asunto(s)
Ecosistema , Taiga , Bosques , Atmósfera , Carbono
16.
Sci Total Environ ; 928: 172265, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621534

RESUMEN

Extensive unforested sandy areas on the margins of floodplains and riverbeds, formed by dunes, barchans, and accumulation berms, are a ubiquitous feature across northern Eurasia and Alaska. These dynamic landscapes, which bear witness to the complex Holocene and modern climatic fluctuations, provide a unique opportunity to study ecosystem evolution. Within this heterogeneous assemblage, active dunes, characterized by their very sparse plant communities, contrast sharply with the surrounding taiga (boreal) forests common for the stabilized dunes. This juxtaposition makes these regions to natural laboratories to study vegetation succession and soil development. Through a comprehensive analysis of climate, geomorphology, vegetation, soil properties, and microbiome composition, we elucidate the intricacies of cyclic and linear ecosystem evolution within a representative sandy area located along the lower Nadym River in Siberia, approximately 100 km south of the Arctic Circle. The shift in the Holocene wind regime and the slow development of vegetation under harsh climatic conditions promoted cyclical ecosystem dynamics that precluded the attainment of a steady state. This cyclical trajectory is exemplified by Arenosols, characterized by extremely sparse vegetation and undifferentiated horizons. Conversely, accelerated vegetation growth within wind-protected enclaves on marginally stabilized soils facilitated sand stabilization and subsequent pedogenesis towards Podzols. Based on soil acidification due to litter input (mainly needles, lichens, and mosses) and the succession of microbial communities, we investigated constraints on carbon and nutrient availability during the initial stages of pedogenesis. In summary, the comprehensive study of initial ecosystem development on sand dunes within taiga forests has facilitated the elucidation of both common phases and spatiotemporal dynamics of vegetation and soil succession. This analysis has further clarified the existence of both cyclic and linear trajectories within the successional processes of ecosystem evolution.


Asunto(s)
Ecosistema , Suelo , Taiga , Siberia , Suelo/química , Arena , Monitoreo del Ambiente , Microbiota , Microbiología del Suelo
17.
Glob Chang Biol ; 30(5): e17276, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683126

RESUMEN

Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha-1 year-1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.


Asunto(s)
Carbono , Suelo , Taiga , Incendios Forestales , Suelo/química , Carbono/metabolismo , Carbono/análisis , Bosques , Micorrizas/fisiología , Microbiología del Suelo , Agricultura Forestal
18.
J Environ Manage ; 356: 120576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513585

RESUMEN

Lakes in taiga and tundra regions may be silently undergoing changes due to global warming. One of those changes is browning in lake color. The browning interacts with the carbon cycle, ecosystem dynamics, and water quality in freshwater systems. However, spatiotemporal variabilities of browning in these regions have not been well documented. Using MODIS remote sensing reflectance at near ultraviolet wavelengths from 2002 to 2021 on the Google Earth Engine platform, we quantified long-term browning trends across 7616 lakes (larger than 10 km2) in taiga and tundra biomes. These lakes showed an overall decreased trend in browning (Theil-Sen Slope = 0.00015), with ∼36% of these lakes showing browning trends, and ∼1% of these lakes showing statistically significant (p-value <0.05) browning trends. The browning trends more likely occurred in small lakes in high latitude, low ground ice content regions, where air temperature increased and precipitation decreased. While temperature is projected to increase in response to climate change, our results provide one means to understand how biogeochemical cycles and ecological dynamics respond to climate change.


Asunto(s)
Ecosistema , Lagos , Taiga , Tundra , Cambio Climático
19.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502702

RESUMEN

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Asunto(s)
Manganeso , Taiga , Carbono , Suelo , Secuestro de Carbono , Bosques
20.
Ecol Appl ; 34(3): e2958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425036

RESUMEN

The boreal forest is one of the world's largest terrestrial biome and plays crucial roles in global biogeochemical cycles, such as carbon (C) sequestration in vegetation and soil. However, the impacts of decades of N deposition on N-limited ecosystems, like the eastern Canadian boreal forest, remain unclear. For 13 years, N deposition was simulated by periodically adding ammonium nitrate on soils of two boreal coniferous forests (i.e., balsam fir and black spruce) of eastern Canada, at low (LN) and high (HN) rates, corresponding to 3 and 10 times the ambient N deposition, respectively. We show that more than a decade of N addition had no strong effects on mineral soil C, N, P, and cation concentrations and on foliar total Ca, K, Mg, and Mn concentrations. In organic soil, C stock was not affected by N addition while N stock increased, and exchangeable Ca2+ and Mg2+ decreased at the balsam fir site under HN treatment. At both sites, LN treatment had nearly no impact on foliage and soil chemistry but foliar N and N:P significantly increased under HN treatment, potentially leading to foliar nutrient imbalance. Overall, our work indicates that, in the eastern Canadian boreal forest, soil and foliar nutrient concentrations and stocks are resilient to increasing N deposition potentially because, in the context of N limitation, extra N would be rapidly immobilized by soil micro-organisms and vegetation. These findings could improve modeling future boreal forest soil C stocks and biomass growth and could help in planning forest management strategies in eastern Canada.


Asunto(s)
Nitrógeno , Resiliencia Psicológica , Nitrógeno/análisis , Ecosistema , Taiga , Suelo/química , Canadá , Bosques , Carbono/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA