Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.678
Filtrar
1.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760680

RESUMEN

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Asunto(s)
Clima , Picea , Madera , Xilema , Picea/anatomía & histología , Picea/fisiología , Picea/crecimiento & desarrollo , Madera/anatomía & histología , Xilema/anatomía & histología , Xilema/fisiología , China , Especificidad de la Especie , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología , Tallos de la Planta/crecimiento & desarrollo
2.
Food Res Int ; 183: 114180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760124

RESUMEN

Platostoma palustre (Mesona chinensis Benth or Hsian-tsao, also known as "Xiancao" in China), is an edible and medicinal plant native to India, Myanmar, and Indo-China. It is the main ingredient in the popular desserts Hsian-tsao tea, herbal jelly, and sweet herbal jelly soup. P. palustre is found abundantly in nutrient-rich substances and possesses unique aroma compounds. Variations in the contents of volatile compounds among different germplasms significantly affect the quality and flavor of P. palustre, causing contradiction in demand. This study investigates the variation in the volatile compound profiles of distinct ploidy germplasms of P. palustre by utilising headspace gas chromatography-mass spectrometry (HS-GC-MS) and an electronic nose (e-nose). The results showed significant differences in the aroma characteristics of stem and leaf samples in diverse P. palustre germplasms. A total of sixty-seven volatile compounds have been identified and divided into ten classes. Six volatile compounds (caryophyllene, α-bisabolol, benzaldehyde, ß-selinene, ß-elemene and acetic acid) were screened as potential marker volatile compounds to discriminate stems and leaves of P. palustre. In this study, leaves of P. palustre showed one odor pattern and stems showed two odor patterns under the influence of α-bisabolol, acetic acid, and butyrolactone. In addition, a correlation analysis was conducted on the main volatile compounds identified by HS-GC-MS and e-nose. This analysis provided additional insight into the variations among samples resulting from diverse germplasms. The present study provides a valuable volatilome, and flavor, and quality evaluation for P. palustre, as well as new insights and scientific basis for the development and use of P. palustre germplasm resources.


Asunto(s)
Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Hojas de la Planta/química , Gusto , Tallos de la Planta/química
3.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739736

RESUMEN

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Asunto(s)
Medicago sativa , Tallos de la Planta , Almidón , Sacarosa , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Almidón/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Metabolismo de los Hidratos de Carbono/genética , Perfilación de la Expresión Génica
4.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696364

RESUMEN

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Asunto(s)
Modelos Biológicos , Árboles , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/anatomía & histología , Quercus/crecimiento & desarrollo , Quercus/anatomía & histología , Quercus/fisiología , Picea/crecimiento & desarrollo , Picea/anatomía & histología , Picea/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Pinus/crecimiento & desarrollo , Pinus/anatomía & histología , Simulación por Computador
5.
Sci Data ; 11(1): 476, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724536

RESUMEN

Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner.


Asunto(s)
Árboles , Suiza , Tallos de la Planta/anatomía & histología , Bosques
6.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731544

RESUMEN

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Asunto(s)
Antioxidantes , Berberis , Corteza de la Planta , Extractos Vegetales , Berberis/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Corteza de la Planta/química , Humanos , Línea Celular Tumoral , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Supervivencia Celular/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Cromatografía Líquida de Alta Presión , Tallos de la Planta/química
7.
BMC Plant Biol ; 24(1): 382, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724900

RESUMEN

The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC1 artificial hybrid populations. Our genetic analysis revealed the zigzag-shaped trait as a qualitative trait. Utilizing whole-genome resequencing, we constructed a high-density genetic map from the BC1 population, incorporating 5,250 SNP markers across 15 linkage groups, covering 3,328.51 cM with an average marker interval distance of 0.68 cM. A quantitative trait locus (QTL) for the zigzag-shaped trait was identified on chromosome 4, within a 61.2 to 97.2 Mb range, accounting for a phenotypic variation explained (PVE) value of 13.62%. Within this QTL, six candidate genes were pinpointed. To better understand their roles, we analyzed gene expression in various tissues and individuals with erect and zigzag-shaped stems. The results implicated CsXTH (CSS0035625) and CsCIPK14 (CSS0044366) as potential key contributors to the zigzag-shaped stem formation. These discoveries lay a robust foundation for future functional genetic mapping and tea plant genetic enhancement.


Asunto(s)
Camellia sinensis , Tallos de la Planta , Camellia sinensis/genética , Camellia sinensis/crecimiento & desarrollo , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Proteínas de Plantas/genética , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Genes de Plantas , Sitios de Carácter Cuantitativo
8.
BMC Plant Biol ; 24(1): 453, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789944

RESUMEN

BACKGROUND: Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS: Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS: This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.


Asunto(s)
Impatiens , Lignina , Tallos de la Planta , Lignina/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Impatiens/genética , Impatiens/metabolismo , Impatiens/crecimiento & desarrollo , Ecosistema , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Especificidad de la Especie , Genes de Plantas , Pared Celular/metabolismo , Pared Celular/genética
9.
J Ethnopharmacol ; 331: 118330, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740109

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chromolaenaodorata (L.) R.M. King & H. Rob, a perennial herb, has been traditionally utilized as a herbal remedy for treating leech bites, soft tissue wounds, burn wounds, skin infections, and dento-alveolitis in tropical and subtropical regions. AIM OF THE STUDY: The present study was to analyze the active fraction of C. odorata ethanol extract and investigate its hemostatic, anti-inflammatory, wound healing, and antimicrobial properties. Additionally, the safety of the active fraction as an external preparation was assessed through skin irritation and allergy tests. MATERIALS AND METHODS: The leaves and stems of C. odorata were initially extracted with ethanol, followed by purification through AB-8 macroporous adsorption resin column chromatography to yield different fractions. These fractions were then screened for hemostatic activity in mice and rabbits to identify the active fraction. Subsequently, the hemostatic effect of the active fraction was assessed through the bleeding time of the rabbit ear artery in vivo and the coagulant time of rabbit blood in vitro. The anti-inflammatory activity of the active fraction was tested on mice ear edema induced by xylene and rat paw edema induced by carrageenin. Furthermore, the active fraction's promotion effect on wound healing was evaluated using a rat skin injury model, and skin safety tests were conducted on rabbits and guinea pigs. Lastly, antimicrobial activities against two Gram-positive bacteria (G+, Staphylococcus aureus and S. epidermidis) and three Gram-negative bacteria (G-, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined using the plate dilution method. RESULTS: The ethanol extract of C. odorata leaves and stems was fractionated into 30%, 60%, and 90% ethanol eluate fractions. These fractions demonstrated hemostatic activity, with the 30% ethanol eluate fraction (30% EEF) showing the strongest effect, significantly reducing bleeding time (P < 0.05). A concentration of 1.0 g/mL of the 30% EEF accelerated cutaneous wound healing in rats on the 3rd, 6th, and 9th day post-operation, with the healing effect increasing over time. No irritation or allergy reactions were observed in rabbits and guinea pigs exposed to the 30% EEF. Additionally, the 30% EEF exhibited mild inhibitory effect on mice ear and rat paw edema, as well as antimicrobial activity against tested bacteria, with varying minimal inhibitory concentration (MIC) values. CONCLUSIONS: The 30% EEF demonstrated a clear hemostatic effect on rabbit bleeding time, a slight inhibitory effect on mice ear edema and rat paw edema, significant wound healing activity in rats, and no observed irritation or allergic reactions. Antibacterial activity was observed against certain clinically isolated bacteria, particularly the G- bacteria. This study lays the groundwork for the potential development and application of C. odorata in wound treatment.


Asunto(s)
Antiinflamatorios , Chromolaena , Edema , Etanol , Hemostáticos , Extractos Vegetales , Cicatrización de Heridas , Animales , Conejos , Cicatrización de Heridas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Ratones , Masculino , Hemostáticos/farmacología , Etanol/química , Chromolaena/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Ratas , Piel/efectos de los fármacos , Femenino , Antiinfecciosos/farmacología , Antiinfecciosos/aislamiento & purificación , Hojas de la Planta/química , Hipersensibilidad/tratamiento farmacológico , Xilenos , Tallos de la Planta/química
10.
Phytochemistry ; 223: 114131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705264

RESUMEN

Four undescribed homoisoflavanoids (1-4), one homoflavonoid (5), ten dibenzoxocin derivatives (6a-10a and 6b-10b), one dibenzoxocin-derived phenolic compound (11), one diterpenoid (13), three aliphatic dicarboxylic acid derivatives (14-16), together with the known diterpenoid 12-O-ethylneocaesalpin B (12) were obtained from the branches and leaves of Hultholia mimosoides. Their structures were elucidated by extensive spectroscopic techniques. Notably, each of the dibenzoxocins 6-10 existed as a pair of interconvertible atropisomers and the conformation for these compounds was clarified by NMR and ECD analyses. Protosappanin F (11) was a previously undescribed dibenzoxocin-derived compound in which one of the benzene rings was hydrogenated to a polyoxygenated cyclohexane ring and an ether linkage was established between C-6 and C-12a. The isolated polyphenols were tested for induction of quinone reductase and compounds 3 and 8 showed potent QR-inducing activity in Hepa-1c1c7 cells.


Asunto(s)
Antioxidantes , Hojas de la Planta , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Estructura Molecular , Salicaceae/química , Tallos de la Planta/química
11.
Nat Prod Res ; 38(11): 1864-1873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739563

RESUMEN

Phytochemical studies of the stems and leaves of Stephania dielsiana Y.C.Wu yielded two new aporphine alkaloids (1 and 5), along with six known alkaloids (2-4 and 6-8). Their structures were characterised based on analyses of spectroscopic data, including one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS). The cytotoxic activities of the isolated compounds against a small panel of tumour cell lines were assessed by MTS assay. Interestingly, compound 2 exhibited particularly strong cytotoxic activities against HepG2, MCF7 and OVCAR8 cancer cell lines, with IC50 values of 3.20 ± 0.18, 3.10 ± 0.06 and 3.40 ± 0.007 µM, respectively. Furthermore, molecular docking simulations were carried out to explore the interactions and binding mechanisms of the most active compound (compound 2) with proteins. Our results contribute to understanding the secondary metabolites produced by S. dielsiana and provide a scientific rationale for further investigations of cytotoxicity of this valuable medicinal plant.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Aporfinas , Simulación del Acoplamiento Molecular , Hojas de la Planta , Tallos de la Planta , Stephania , Aporfinas/química , Aporfinas/farmacología , Humanos , Hojas de la Planta/química , Tallos de la Planta/química , Alcaloides/química , Alcaloides/farmacología , Stephania/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Estructura Molecular , Línea Celular Tumoral , Células Hep G2 , Células MCF-7 , Ensayos de Selección de Medicamentos Antitumorales , Espectroscopía de Resonancia Magnética , Plantas Medicinales/química
12.
Fitoterapia ; 175: 105938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565379

RESUMEN

Five new B-seco-limonoids, namely toonanoronoids A-E (1-5), in conjunction with three previously reported compounds, were isolated from the EtOAc extract of the twigs and leaves of Toona ciliata var. yunnanensis. Their structures were elucidated through comprehensive spectroscopic and X-ray crystallographic analysis. The cytotoxic activities of new compounds against five human tumor cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480) were screened, Compounds 4 and 5 exerted inhibition toward two tumor cell lines (HL-60, SW-480) with IC50 values between 1.7 and 5.9 µM.


Asunto(s)
Antineoplásicos Fitogénicos , Limoninas , Fitoquímicos , Hojas de la Planta , Toona , Humanos , Estructura Molecular , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Hojas de la Planta/química , Limoninas/aislamiento & purificación , Limoninas/farmacología , Limoninas/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , China , Toona/química , Tallos de la Planta/química
13.
Phytochemistry ; 223: 114106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657885

RESUMEN

Daphmacrimines A-K (1-11) were isolated from the leaves and stems of Daphniphyllum macropodum Miq. Their structures and stereochemistries were determined by extensive techniques, including HRESIMS, NMR, ECD, IR, and single-crystal X-ray crystallography. Daphmacrimines A-D (1-4) are unprecedented Daphniphyllum alkaloids with a 2-oxazolidinone ring. Daphmacrimine I (9) contains a nitrile group, which is relatively rare in naturally occurring alkaloids. The abilities of daphmacrimines A-D and daphmacrimines G-K to enhance lysosomal biogenesis were evaluated through LysoTracker Red staining. Daphmacrimine K (11) can induce lysosomal biogenesis and promote autophagic flux.


Asunto(s)
Alcaloides , Daphniphyllum , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Estructura Molecular , Daphniphyllum/química , Hojas de la Planta/química , Humanos , Cristalografía por Rayos X , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Tallos de la Planta/química , Conformación Molecular
14.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676919

RESUMEN

Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.


Asunto(s)
Cadmio , Pinus , Plantones , Xilema , Cadmio/metabolismo , Xilema/metabolismo , Xilema/fisiología , Pinus/fisiología , Pinus/anatomía & histología , Pinus/metabolismo , Pinus/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/anatomía & histología , Reguladores del Crecimiento de las Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Estrés Fisiológico , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 587-596, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646745

RESUMEN

To investigate the longitudinal variation patterns of sapwood, heartwood, bark and stem moisture content along the trunk of artificial Larix olgensis, we constructed mixed effect models of moisture content based on beta regression by combining the effects of sampling plot and sample trees. We used two sampling schemes to calibrate the model, without limiting the relative height (Scheme Ⅰ) and with a limiting height of less than 2 m (Scheme II). The results showed that sapwood and stem moisture content increased gradually along the trunk, heartwood moisture content decreased slightly and then increased along the trunk, and bark moisture content increased along the trunk and then levelled off before increasing. Relative height, height to crown base, stand area at breast height per hectare, age, and stand dominant height were main factors driving moisture content of L. olgensis. Scheme Ⅰ showed the stable prediction accuracy when randomly sampling moisture content measurements from 2-3 discs to calibrate the model, with the mean absolute percentage error (MAPE) of up to 7.2% for stem moisture content (randomly selected 2 discs), and the MAPE of up to 7.4%, 10.5% and 10.5% for sapwood, heartwood and bark moisture content (randomly selected 3 discs), respectively. Scheme Ⅱ was appropriate when sampling moisture content measurements from discs of 1.3 and 2 m height and the MAPE of sapwood, heartwood, bark and stem moisture content reached 7.8%, 11.0%, 10.4% and 7.1%, respectively. The prediction accuracies of all mixed effect beta regression models were better than the base model. The two-level mixed effect beta regression models, considering both plot effect and tree effect, would be suitable for predicting moisture content of each part of L. olgensis well.


Asunto(s)
Larix , Tallos de la Planta , Agua , Larix/crecimiento & desarrollo , Larix/química , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Agua/análisis , Agua/química , Análisis de Regresión , Madera/química , Modelos Teóricos , Predicción
16.
BMC Plant Biol ; 24(1): 323, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658848

RESUMEN

BACKGROUND: Water stress seriously affects the survival of plants in natural ecosystems. Plant resistance to water stress relies on adaptive strategies, which are mainly based on plant anatomy with following relevant functions: (1) increase in water uptake and storage; (2) reduction of water loss; and (3) mechanical reinforcement of tissues. We measured 15 leaf-stem anatomical traits of five dominant shrub species from 12 community plots in the eastern Qaidam Basin to explore adaptive strategies based on plant leaf-stem anatomy at species and community levels. and their relationship with environmental stresses were tested. RESULTS: Results showed that the combination of leaf-stem anatomical traits formed three types of adaptive strategies with the drought tolerance of leaf and stem taken as two coordinate axes. Three types of water stress were caused by environmental factors in the eastern Qaidam Basin, and the established adaptive strategy triangle could be well explained by these environmental stresses. The interpretation of the strategic triangle was as follows: (1) exploitative plant strategy, in which leaf and stem adopt the hydraulic efficiency strategy and safety strategy, respectively. This strategy is mostly applied to plants in sandy desert (i.e., Nitraria tangutorum, and Artemisia sphaerocephala) which is mainly influenced by drought stress; (2) stable plant strategy, in which both leaf/assimilation branches and stem adopt hydraulic safety strategy. This strategy is mostly applied to plants in salty desert (i.e., Kalidium foliatum and Haloxylon ammodendron) which aridity has little effect on them; and (3) opportunistic plant strategy, in which leaf and stem adopt hydraulic safety strategy and water transport efficiency strategy. This strategy is mostly applied to plants in multiple habitats (i.e., Sympegma regelii) which is mainly affected by coldness stress. CONCLUSION: The proposed adaptive strategy system could provide a basis for elucidating the ecological adaptation mechanism of desert woody plants and the scientific management of natural vegetation in the Qinghai-Tibet Plateau.


Asunto(s)
Adaptación Fisiológica , Hojas de la Planta , Tallos de la Planta , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología , Sequías , Agua/metabolismo , China , Ecosistema , Estrés Fisiológico
17.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669458

RESUMEN

To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200µmolm-2 s-1 , presented as either white light or three levels of blue light (40µmolm-2 s-1 , 67µmolm-2 s-1 and 100µmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.


Asunto(s)
Luz Azul , Celulosa , Glycine max , Lignina , Tallos de la Planta , Celulosa/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/efectos de la radiación , Lignina/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación
18.
Arch Microbiol ; 206(5): 208, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587620

RESUMEN

Cistanche deserticola is a precious Chinese medicinal material with extremely high health care and medicinal value. In recent years, the frequent occurrence of stem rot has led to reduced or even no harvests of C. deserticola. The unstandardized use of farm chemicals in the prevention and control processes has resulted in excessive chemical residues, threatening the fragile desert ecological environment. Therefore, it is urgent to explore safe and efficient prevention and control technologies. Biocontrol agents, with the advantages of safety and environment-friendliness, would be an important idea. The isolation, screening and identification of pathogens and antagonistic endophytic bacteria are always the primary basis. In this study, three novel pathogens causing C. deserticola stem rot were isolated, identified and pathogenicity tested, namely Fusarium solani CPF1, F. proliferatum CPF2, and F. oxysporum CPF3. For the first time, the endophytic bacteria in C. deserticola were isolated and identified, of which 37 strains were obtained. Through dual culture assay, evaluation experiment and tissue culture verification, a biocontrol candidate strain Bacillus atrophaeus CE6 with outstanding control effect on the stem rot was screened out. In the tissue culture system, CE6 showed excellent control effect against F. solani and F. oxysporum, with the control efficacies reaching 97.2% and 95.8%, respectively, indicating its great potential for application in the production. This study is of great significance for the biocontrol of plant stem rot and improvement of the yield and quality of C. deserticola.


Asunto(s)
Cistanche , Bacterias/genética , Ambiente , Granjas , Tallos de la Planta
19.
Phytochemistry ; 222: 114077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615925

RESUMEN

Two undescribed bisindole alkaloids, gelseginedine A (1) and its rearranged gelseginedine B (2), and seven unreported gelselegine-type oxindole alkaloids (3-9) were isolated from the stems and leaves of Gelsemium elegans, together with five known alkaloids (10-14). Compounds 1 and 2 represented the first examples of gelselegine-gelsedine type alkaloids which bridged two units by a double bond. Their structures with absolute configurations were elucidated by means of HRESIMS, NMR and calculational chemistry. The performed bioassay revealed that 14 could promote the proliferation of human oral mucosa fibroblast cells.


Asunto(s)
Fibroblastos , Gelsemium , Indoles , Extractos Vegetales , Indoles/aislamiento & purificación , Indoles/farmacología , Gelsemium/química , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Células Cultivadas , Estructura Molecular , Tallos de la Planta/química , Humanos
20.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38618738

RESUMEN

The oxygen and hydrogen isotopic composition (δ18O, δ2H) of plant tissues are key tools for the reconstruction of hydrological and plant physiological processes and may therefore be used to disentangle the reasons for tree mortality. However, how both elements respond to soil drought conditions before death has rarely been investigated. To test this, we performed a greenhouse study and determined predisposing fertilization and lethal soil drought effects on δ18O and δ2H values of organic matter in leaves and tree rings of living and dead saplings of five European tree species. For mechanistic insights, we additionally measured isotopic (i.e. δ18O and δ2H values of leaf and twig water), physiological (i.e. leaf water potential and gas-exchange) and metabolic traits (i.e. leaf and stem non-structural carbohydrate concentration, carbon-to-nitrogen ratios). Across all species, lethal soil drought generally caused a homogenous 2H-enrichment in leaf and tree-ring organic matter, but a low and heterogenous δ18O response in the same tissues. Unlike δ18O values, δ2H values of tree-ring organic matter were correlated with those of leaf and twig water and with plant physiological traits across treatments and species. The 2H-enrichment in plant organic matter also went along with a decrease in stem starch concentrations under soil drought compared with well-watered conditions. In contrast, the predisposing fertilization had generally no significant effect on any tested isotopic, physiological and metabolic traits. We propose that the 2H-enrichment in the dead trees is related to (i) the plant water isotopic composition, (ii) metabolic processes shaping leaf non-structural carbohydrates, (iii) the use of carbon reserves for growth and (iv) species-specific physiological adjustments. The homogenous stress imprint on δ2H but not on δ18O suggests that the former could be used as a proxy to reconstruct soil droughts and underlying processes of tree mortality.


Asunto(s)
Sequías , Isótopos de Oxígeno , Hojas de la Planta , Suelo , Árboles , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Árboles/metabolismo , Árboles/fisiología , Suelo/química , Isótopos de Oxígeno/análisis , Agua/metabolismo , Deuterio/metabolismo , Deuterio/análisis , Tallos de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA