Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453479

RESUMEN

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Asunto(s)
Neoplasias , Tamoxifeno , Ratones , Ratas , Animales , Tamoxifeno/toxicidad , Adenosina Trifosfatasas , Mutación
2.
Chem Biol Interact ; 382: 110615, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392961

RESUMEN

Tamoxifen (TAM), a Selective Estrogen Receptor Modulator (SERM), is commonly used to treat and prevent breast cancer. Memory impairment has been noticed in patients who experience hormone therapy in the case of TAM and other SERMs. Animal studies that mimic the TAM longer exposure effects are needed to better elucidate the adverse effects of continuous treatment in humans. This study evaluated the effects of TAM subchronic administration on the memory performance and hippocampal neural plasticity of intact female Wistar rats. Animals were treated intragastrically with TAM (0.25 and 2.5 mg/kg) for 59 days. The rats were subjected to the Object Location Test (OLT) and Object Recognition Test (ORT) to evaluate memory performance. After euthanasia, the hippocampus samples were excised and the protein levels of the BDNF/ERK/Akt/CREB pathway were evaluated. The rat's locomotor activity and hippocampal TrkB levels were similar among the experimental groups. TAM at both doses reduced the memory performance of female rats in the OLT and short-term memory of ORT, and impaired hippocampal levels of mBDNF, proBDNF, and pCREB/CREB. TAM only at the dose of 2.5 mg/kg reduced the memory performance of rats in the long-term memory of ORT and hippocampal pERK/ERK and pAkt/Akt ratios. TAM subchronic administration induced amnesic effects and modulated the hippocampal BDNF/ERK/Akt/CREB pathway in intact young adult female Wistar rats.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Tamoxifeno , Humanos , Ratas , Animales , Femenino , Tamoxifeno/toxicidad , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo
3.
J Cardiovasc Transl Res ; 16(5): 1232-1248, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37155136

RESUMEN

Tamoxifen, a selective estrogen receptor modulator, was initially used to treat cancer in women and more recently to induce conditional gene editing in rodent hearts. However, little is known about the baseline biological effects of tamoxifen on the myocardium. In order to clarify the short-term effects of tamoxifen on cardiac electrophysiology of myocardium, we applied a single-chest-lead quantitative method and analyzed the short-term electrocardiographic phenotypes induced by tamoxifen in the heart of adult female mice. We found that tamoxifen prolonged the PP interval and caused a decreased heartbeat, and further induced atrioventricular block by gradually prolonging the PR interval. Further correlation analysis suggested that tamoxifen had a synergistic and dose-independent inhibition on the time course of the PP interval and PR interval. This prolongation of the critical time course may represent a tamoxifen-specific ECG excitatory-inhibitory mechanism, leading to a reduction in the number of supraventricular action potentials and thus bradycardia. Segmental reconstructions showed that tamoxifen induced a decrease in the conduction velocity of action potentials throughout the atria and parts of the ventricles, resulting in a flattening of the P wave and R wave. In addition, we detected the previously reported prolongation of the QT interval, which may be due to a prolonged duration of the ventricular repolarizing T wave rather than the depolarizing QRS complex. Our study highlights that tamoxifen can produce patterning alternations in the cardiac conduction system, including the formation of inhibitory electrical signals with reduced conduction velocity, implying its involvement in the regulation of myocardial ion transport and the mediation of arrhythmias. A Novel Quantitative Electrocardiography Strategy Reveals the Electroinhibitory Effect of Tamoxifen on the Mouse Heart(Figure 9). A working model of tamoxifen producing acute electrical disturbances in the myocardium. SN, sinus node; AVN, atrioventricular node; RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle.


Asunto(s)
Electrocardiografía , Tamoxifeno , Humanos , Adulto , Femenino , Animales , Ratones , Tamoxifeno/toxicidad , Arritmias Cardíacas , Sistema de Conducción Cardíaco , Ventrículos Cardíacos , Nodo Atrioventricular
4.
Sci Rep ; 13(1): 5976, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045870

RESUMEN

The Cre-lox system is a versatile and powerful tool used in mouse genetics. It allows spatial and/or temporal control of the deletion of a target gene. The Rosa26-CreERT2 (R26CreERT2) mouse model allows ubiquitous expression of CreERT2. Once activated by tamoxifen, CreERT2 will enter into the nuclei and delete floxed DNA sequences. Here, we show that intraperitoneal injection of tamoxifen in young R26CreERT2 mice leads to morbidity and mortality within 10 days after the first injection, in the absence of a floxed allele. Activation of CreERT2 by tamoxifen led to severe hematological defects, with anemia and a strong disorganization of the bone marrow vascular bed. Cell proliferation was significantly reduced in the bone marrow and the spleen resulting in the depletion of several hematopoietic cells. However, not all cell types or organs were affected to the same extent. We realized that many research groups are not aware of the potential toxicity of Cre recombinases, resulting in misinterpretation of the observed phenotype and in a waste of time and resources. We discuss the necessity to include tamoxifen injected CreERT2 controls lacking a floxed allele in experimental designs and to improve communication about the limitations of Cre-lox mouse models among the scientific community.


Asunto(s)
Integrasas , Tamoxifeno , Ratones , Animales , Ratones Transgénicos , Tamoxifeno/toxicidad , Modelos Animales de Enfermedad , Integrasas/genética , Integrasas/metabolismo
5.
Toxicol Appl Pharmacol ; 442: 116002, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35353989

RESUMEN

Tamoxifen is an effective breast cancer therapy in postmenopausal women. However, it can induce hyperglycemia through different mechanisms, such as the impairment of mitochondrial metabolism. Quercetin, a flavonoid with antioxidant potential, has beneficial effects on tamoxifen-induced adverse effects. Therefore, this study aimed to (1) investigate glucose concentration in blood, cerebrospinal fluid, cerebellum, cortex, and hippocampus of tamoxifen-treated ovariectomized female rats, non-treated and treated with quercetin; and (2) establish the metabolic profile of these regions. For that purpose, ovariectomized female rats were divided into four groups: canola oil 1 mL/kg (CONT); tamoxifen 5 mg/kg (TAM); quercetin 22.5 mg/kg (QUER); and tamoxifen 5 mg/kg + quercetin 22.5 mg/kg (TAM + Q); and were treated for 14 days orally. Subsequently, glucose levels were measured in blood, cerebrospinal fluid, cerebellum, cortex, and hippocampus. Pyruvate and lactate concentrations were analyzed in the three brain regions. Tamoxifen-induced hyperglycemia significantly increased glucose concentrations in the cerebrospinal fluid, cortex, and hippocampus, as well as lactate production in the hippocampus. Quercetin significantly prevented the tamoxifen-induced increase in glucose concentrations in all analyzed samples. Besides, quercetin decreased cortical pyruvate production. The copper content decreased only in the hippocampus of group TAM + Q animals. In addition, it is important to highlight that this study also observed that fourteen days of tamoxifen treatment strongly affects brain glucose metabolism, potentially disrupting normal brain functions. Therefore, this drug might represent a risk factor for postmenopausal women undergoing chemoprevention. Meanwhile, quercetin represents a potential intervention to promote metabolic regulation of glucose in tamoxifen-treated women.


Asunto(s)
Hiperglucemia , Tamoxifeno , Animales , Modelos Animales de Enfermedad , Femenino , Glucosa , Hipocampo , Humanos , Hiperglucemia/inducido químicamente , Ácido Láctico , Posmenopausia , Ácido Pirúvico , Quercetina , Ratas , Tamoxifeno/toxicidad
6.
Reprod Toxicol ; 108: 1-9, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34974146

RESUMEN

Tamoxifen, a selective non-steroidal estrogen receptor modulator, is the standard adjuvant endocrine treatment for breast cancer. Since information on the risk of using tamoxifen during pregnancy is still scarce, this study evaluated whether the in utero and lactational treatment with this drug could compromise reproductive and behavioural parameters in male offspring. Pregnant Wistar rats were exposed to three doses of tamoxifen (0.12; 0.6; 3 µg/kg), by gavage, from gestational day 15 to lactational day 20. Tamoxifen exposure did not alter the anogenital distance in the male offspring; however, there was a significant increase in the body weight in the 0.12 µg/kg dose and a decrease in the 0.6 µg/kg dose. The male offspring treated with the highest dose exhibited a delay in the onset of puberty, evidenced by an increase in the age of preputial separation. Regarding sperm parameters, there was an increase in the sperm count in the cauda epididymis in the intermediate and highest dose groups, in addition to an increase in the number of static sperm and a decrease in the progressive sperm in the same groups. Moreover, an increase in the number of hyperplasia of the epithelial clear cells was observed in the epididymis. In conclusion, the present study demonstrated that maternal exposure to tamoxifen compromised the installation of puberty of the male offspring and the maturation of the epididymis, affecting sperm storage and motility in the adult life.


Asunto(s)
Conducta Animal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Moduladores Selectivos de los Receptores de Estrógeno/toxicidad , Espermatozoides/efectos de los fármacos , Tamoxifeno/toxicidad , Animales , Epidídimo/efectos de los fármacos , Epidídimo/crecimiento & desarrollo , Femenino , Hipotálamo/citología , Lactancia , Masculino , Intercambio Materno-Fetal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Ratas Wistar , Receptores Androgénicos/metabolismo , Maduración Sexual/efectos de los fármacos , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911761

RESUMEN

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Asunto(s)
Hipertensión Pulmonar/patología , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Vascular/fisiología , Animales , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión Pulmonar/metabolismo , Isquemia , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 3/genética , Ratones , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/toxicidad , Transducción de Señal , Tamoxifeno/toxicidad , Factor de Crecimiento Transformador beta/genética
8.
Invest Ophthalmol Vis Sci ; 62(14): 23, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807236

RESUMEN

Purpose: Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods: We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results: Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions: Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.


Asunto(s)
Dineínas Citoplasmáticas/genética , Eliminación de Gen , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Animales Recién Nacidos , Proteínas Co-Represoras/metabolismo , Visión de Colores/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Electrorretinografía , Antagonistas de Estrógenos/toxicidad , Proteínas del Ojo/metabolismo , Femenino , Técnicas de Genotipaje , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Visión Nocturna/fisiología , Estimulación Luminosa , Tamoxifeno/toxicidad
9.
Zool Res ; 42(5): 650-659, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34472226

RESUMEN

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The ß subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null ( mdx) mice and BaCl 2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl 2-injection. Compared to the control mice, the cKO mice showed decreased Pax7 + and MYH3 + SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.


Asunto(s)
Proteínas de la Membrana/metabolismo , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Proliferación Celular , Distrofina/genética , Distrofina/metabolismo , Antagonistas de Estrógenos/toxicidad , Regulación de la Expresión Génica/fisiología , Genotipo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Regeneración/genética , Tamoxifeno/toxicidad
10.
PLoS One ; 16(8): e0256299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34403436

RESUMEN

Tamoxifen is an estrogen receptor (ER) ligand with widespread use in clinical and basic research settings. Beyond its application in treating ER-positive cancer, tamoxifen has been co-opted into a powerful approach for temporal-specific genetic alteration. The use of tamoxifen-inducible Cre-recombinase mouse models to examine genetic, molecular, and cellular mechanisms of development and disease is now prevalent in biomedical research. Understanding off-target effects of tamoxifen will inform its use in both clinical and basic research applications. Here, we show that prenatal tamoxifen exposure can cause structural birth defects in the mouse. Administration of a single 200 mg/kg tamoxifen dose to pregnant wildtype C57BL/6J mice at gestational day 9.75 caused cleft palate and limb malformations in the fetuses, including posterior digit duplication, reduction, or fusion. These malformations were highly penetrant and consistent across independent chemical manufacturers. As opposed to 200 mg/kg, a single dose of 50 mg/kg tamoxifen at the same developmental stage did not result in overt structural malformations. Demonstrating that prenatal tamoxifen exposure at a specific time point causes dose-dependent developmental abnormalities, these findings argue for more considerate application of tamoxifen in Cre-inducible systems and further investigation of tamoxifen's mechanisms of action.


Asunto(s)
Fisura del Paladar/etiología , Deformidades Congénitas de las Extremidades/etiología , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Tamoxifeno/toxicidad , Teratógenos/toxicidad , Animales , Fisura del Paladar/patología , Relación Dosis-Respuesta a Droga , Femenino , Feto , Expresión Génica , Humanos , Integrasas/genética , Integrasas/metabolismo , Deformidades Congénitas de las Extremidades/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Moduladores Selectivos de los Receptores de Estrógeno
11.
Environ Res ; 197: 111121, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823193

RESUMEN

Endoxifen is the main active metabolite of a common cytostatic drug, tamoxifen. Endoxifen has been recently detected in the final effluent of municipal wastewater treatment plants. The antiestrogenic activity of endoxifen could bring negative effects to aquatic life if released to the water environment. This study elucidated the fate and susceptibility of (E)- and (Z)-endoxifen (2 µg mL-1, 1:1 wt ratio between the two easily interchangeable isomers) in wastewater and receiving surface water to sunlight. Phototransformation by-products (PBPs) and their toxicity were determined. Sunlight reduced at least 83% of endoxifen concentration in wastewater samples, whereas in surface water samples, 60% of endoxifen was photodegraded after 180 min of the irradiation. In ultrapure water samples spiked with endoxifen, PBPs were mainly generated via con-rotatory 6π-photocyclization, followed by oxidative aromatization. These PBPs underwent secondary reactions leading to a series of PBPs with different molecular weights. Eight PBPs were identified and the toxicity analysis via the Toxicity Estimation Software Tool revealed that seven of these PBPs are more toxic than endoxifen itself. This is likely due to the formation of poly-aromatic core in the PBPs due to exposure to sunlight. Therefore, highly toxic PBPs may be generated if endoxifen is present in water and wastewater exposed to sunlight. The presence, fates and activities of these PBPs in surface water especially at locations close to treated wastewater discharge points should be investigated.


Asunto(s)
Neoplasias de la Mama , Aguas Residuales , Femenino , Humanos , Luz Solar , Tamoxifeno/análogos & derivados , Tamoxifeno/toxicidad , Agua
12.
Basic Res Cardiol ; 116(1): 8, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544211

RESUMEN

Conditional, cell-type-specific transgenic mouse lines are of high value in cardiovascular research. A standard tool for cardiomyocyte-restricted DNA editing is the αMHC-MerCreMer/loxP system. However, there is an ongoing debate on the occurrence of cardiac side effects caused by unspecific Cre activity or related to tamoxifen/oil overload. Here, we investigated potential adverse effects of DNA editing by the αMHC-MerCreMer/loxP system in combination with a low-dose treatment protocol with the tamoxifen metabolite 4-hydroxytamoxifen (OH-Txf). αMHC-MerCreMer mice received intraperitoneally OH-Txf (20 mg/kg) for 5 or 10 days. These treatment protocols were highly efficient to induce DNA editing in adult mouse hearts. Multi-parametric magnetic resonance imaging revealed neither transient nor permanent effects on cardiac function during or up to 19 days after 5 day OH-Txf treatment. Furthermore, OH-Txf did not affect cardiac phosphocreatine/ATP ratios assessed by in vivo 31P MR spectroscopy, indicating no Cre-mediated side effects on cardiac energy status. No MRI-based indication for the development of cardiac fibrosis was found as mean T1 relaxation time was unchanged. Histological analysis of myocardial collagen III content after OH-Txf confirmed this result. Last, mean T2 relaxation time was not altered after Txf treatment suggesting no pronounced cardiac lipid accumulation or tissue oedema. In additional experiments, cardiac function was assessed for up to 42 days to investigate potential delayed side effects of OH-Txf treatment. Neither 5- nor 10-day treatment resulted in a depression of cardiac function. Efficient cardiomyocyte-restricted DNA editing that is free of unwanted side effects on cardiac function, energetics or fibrosis can be achieved in adult mice when the αMHC-MerCreMer/loxP system is activated by the tamoxifen metabolite OH-Txf.


Asunto(s)
Edición Génica , Integrasas/genética , Miocitos Cardíacos/efectos de los fármacos , Tamoxifeno/análogos & derivados , Animales , Metabolismo Energético/efectos de los fármacos , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/toxicidad , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Food Biochem ; 45(2): e13615, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33491243

RESUMEN

Reports over the years have demonstrated toxic side effect-including reproductive toxicity- of tamoxifen (TAM), a drug of choice in the management of primary breast cancer. Chlorogenic acid (CGA), a dietary polyphenol, reportedly elicits beneficial pharmacological effects. However, the impact of CGA on TAM-associated reproductive toxicity is absent in the literature. We, therefore, experimented on CGA's effect and TAM-mediated reproductive toxicity in rats. Cohorts of rats were treated with TAM (50 mg/kg) or co-treated with CGA (25 or 50 mg/kg) for 14 consecutive days. The result showed that treatment of CGA significantly increases testosterone, LH, and FSH levels compared to the TAM group. However, prolactin level was markedly decreased after pretreatment of CGA in TAM-treated rats. CGA abated TAM-induced decreases acid phosphatase, alkaline phosphatase, and antioxidant enzymes in the testis. CGA alleviated TAM-facilitated surges of reactive oxygen and nitrogen species, myeloperoxidase, nitric oxide, interleukin-1ß, and tumor necrosis factor-alpha in rats epididymis and testes. Additionally, CGA increased anti-inflammatory cytokine -interleukin-10-, suppressed caspase-3 activity, and reduced pathological lesions in the examined organs of rats co-treated with CGA and TAM. CGA phytoprotective effect improved reproductive function occasioned by TAM-mediated toxicities in rats, by abating oxido-inflammatory damages and downregulating apoptotic responses. PRACTICAL APPLICATIONS: CGA protects against the damaging oxido-inflammatory responses incumbent on TAM metabolism. As an antioxidant abundant in plant-derived foods, CGA reportedly protects against inflammatory damage, hypertension, and neurodegenerative diseases. We present evidence that CGA ameliorates TAM-induced reproductive dysfunction by suppressing oxidative and inflammation stress downregulate apoptosis and improve reproductive function biomarker in rats.


Asunto(s)
Ácido Clorogénico , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Masculino , Ratas , Tamoxifeno/metabolismo , Tamoxifeno/toxicidad , Testículo/metabolismo
14.
Br J Oral Maxillofac Surg ; 59(1): 52-57, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32723574

RESUMEN

Cleft palate is a common birth defect in mammals, which can be caused by genetic or environmental factors, or both. Decades have witnessed that many environmental exposures during gestation extremely increase the incidence of cleft palate. Tamoxifen (TAM), a widely-used drug in treating breast cancer, has been reported to be associated with craniofacial defects including micrognathia and cleft palate in humans. However, its exact effects on the developing palate remain unclear. Here we took advantage of a mouse model to explore how TAM affects palatal development at the molecular level. We showed that excess exposure of TAM in the early embryonic stages indeed leads to cleft palate in mice. RNA-sequencing results strongly suggest the involvement of mitogen-activated protein kinase (MAPK) signalling in TAM-induced cleft palate. Interestingly, in the anterior portion of the TAM-treated palatal shelf, phosphorylated (p)-AKT and p-ERK1/2 were activated but p-p38 was inhibited, while in the posterior palate, the p-AKT increased but the levels of p-p38 and p-JNK decreased. We conclude that excess TAM exposure causes cleft palate defects in mice by regulating MAPK pathways, which implicates the importance of tightly-regulated MAPK signalling in palatal development. This study provides a basis for further exploration of the molecular aetiology of cleft palate defects caused by environmental factors and, based on our results, we would give a serious warning regarding prescription of TAM and potential cleft palate defects in animal models involving the inducible Cre-LoxP system.


Asunto(s)
Fisura del Paladar , Animales , Fisura del Paladar/inducido químicamente , Ratones , Hueso Paladar , Transducción de Señal , Tamoxifeno/toxicidad
15.
Gut ; 70(10): 1833-1846, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33293280

RESUMEN

OBJECTIVE: Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN: We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS: Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION: IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Mucosa Gástrica/citología , Homeostasis/fisiología , Células Madre/citología , Neoplasias Gástricas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neoplasias Gástricas/tratamiento farmacológico , Tamoxifeno/toxicidad
16.
Nanomedicine (Lond) ; 15(26): 2563-2583, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079004

RESUMEN

Aim: This study aims to load tamoxifen (TAM) and sulforaphane (SFN) into nanostructured lipid carriers (NLCs) to enhance their oral delivery. Materials & methods: TAM-SFN-NLCs were prepared using Precirol® ATO5 and Transcutol® HP, characterized and evaluated in vitro and ex vivo to assess the drug release profile and intestinal permeability, respectively. In vivo pharmacokinetic and acute toxicity assessment was performed in Wistar rats. Results: Optimized TAM-SFN-NLCs exhibited a particle size of 121.9 ± 6.42 nm and zeta potential of -21.2 ± 2.91 mV. The NLCs enhanced intestinal permeability of TAM and SFN and augmented oral bioavailability of TAM and SFN 5.2-fold and 4.8-fold, respectively. SFN significantly reduced TAM-associated toxicity in vivo. Conclusion: This coencapsulation of a chemotherapeutic agent with a herbal bioactive in NLCs could pave a novel treatment approach against cancer.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Administración Oral , Animales , Liberación de Fármacos , Isotiocianatos , Lípidos , Tamaño de la Partícula , Ratas , Ratas Wistar , Sulfóxidos , Tamoxifeno/toxicidad
17.
Sci Rep ; 10(1): 10967, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620803

RESUMEN

We sought here to induce the excision of a large intragenic segment within the intact dystrophin gene locus, with the ultimate goal to elucidate dystrophin protein function and stability in striated muscles in vivo. To this end, we implemented an inducible-gene excision methodology using a floxed allele approach, demarcated by dystrophin exons 2-79, in complementation with a cardiac and skeletal muscle directed gene deletion system for spatial-temporal control of dystrophin gene excision in vivo. Main findings of this study include evidence of significant intact dystrophin gene excision, ranging from ~ 25% in heart muscle to ~ 30-35% in skeletal muscles in vivo. Results show that despite evidence of significant dystrophin gene excision, no significant decrease in dystrophin protein content was evident by Western blot analysis, at three months post excision in skeletal muscles or by 6 months post gene excision in heart muscle. Challenges of in vivo dystrophin gene excision revealed acute deleterious effects of tamoxifen on striated muscles, including a transient down regulation in dystrophin gene transcription in the absence of dystrophin gene excision. In addition, technical limitations of incomplete dystrophin gene excision became apparent that, in turn, tempered interpretation. Collectively, these findings are in keeping with earlier studies suggesting the dystrophin protein to be long-lived in striated muscles in vivo; however, more rigorous quantitative analysis of dystrophin stability in vivo will require future works in which more complete gene excision can be demonstrated, and without significant off-target effects of the gene deletion experimental platform per se.


Asunto(s)
Marcación de Gen/métodos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías/inducido químicamente , Distrofina/deficiencia , Distrofina/genética , Femenino , Eliminación de Gen , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen/métodos , Corazón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Estabilidad Proteica , Tamoxifeno/farmacología , Tamoxifeno/toxicidad
18.
Gastroenterology ; 158(6): 1650-1666.e15, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032583

RESUMEN

BACKGROUND & AIMS: Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells. METHODS: We performed transcriptome analysis of Mist1-CreERT-traced cells, with or without chief cell depletion. Gpr30-rtTA mice were generated and crossed to TetO-Cre mice, and lineage tracing was performed after crosses to R26-TdTomato mice. Additional lineage tracing experiments were performed using Mist1-CreERT, Kitl-CreERT, Tff1-Cre, and Tff2-Cre mice crossed to reporter mice. Mice were given high-dose tamoxifen or DMP-777 or were infected with Helicobacter pylori to induce gastric metaplasia. We studied mice that expressed mutant forms of Ras in gastric cells, using TetO-KrasG12D, LSL-KrasG12D, and LSL-HrasG12V mice. We analyzed stomach tissues from GPR30-knockout mice. Mice were given dichloroacetate to inhibit pyruvate dehydrogenase kinase (PDK)-dependent cell competition. RESULTS: We identified GPR30, the G-protein-coupled form of the estrogen receptor, as a cell-specific marker of chief cells in gastric epithelium of mice. Gpr30-rtTA mice crossed to TetO-Cre;R26-TdTomato mice had specific expression of GPR30 in chief cells, with no expression noted in isthmus stem cells or lineage tracing of glands. Expression of mutant Kras in GPR30+ chief cells did not lead to the development of metaplasia or dysplasia but, instead, led to a reduction in labeled numbers of chief cells and a compensatory expansion of neck lineage, which was derived from upper Kitl+ clones. Administration of high-dose tamoxifen, DMP-777, or H pylori decreased the number of labeled chief cells. Chief cells were eliminated from epithelia via GPR30- and PDK-dependent cell competition after metaplastic stimuli, whereas loss of GRP30 or inhibition of PDK activity preserved chief cell numbers and attenuated neck lineage cell expansion. CONCLUSIONS: In tracing studies of mice, we found that most chief cells are lost during metaplasia and therefore are unlikely to contribute to gastric carcinogenesis. Expansion of cells that coexpress neck and chief lineage markers, known as spasmolytic polypeptide-expressing metaplasia, does not occur via dedifferentiation from chief cells but, rather, through a compensatory response from neck progenitors to replace the eliminated chief cells.


Asunto(s)
Células Principales Gástricas/fisiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Helicobacter pylori/patogenicidad , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Azetidinas/toxicidad , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Ácido Dicloroacético/administración & dosificación , Modelos Animales de Enfermedad , Mucosa Gástrica/citología , Mucosa Gástrica/efectos de los fármacos , Infecciones por Helicobacter/microbiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaplasia/inducido químicamente , Metaplasia/microbiología , Metaplasia/patología , Ratones , Ratones Noqueados , Piperazinas/toxicidad , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Células Madre/fisiología , Tamoxifeno/toxicidad
19.
J Invest Dermatol ; 140(8): 1556-1565.e11, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31987884

RESUMEN

We analyzed the role of WIF1 in normal and acanthotic epidermis of 12-O-tetradecanoylphorbol-13-acetate (TPA) or all-trans-retinoic acid (ATRA)-treated and basal cell carcinoma (BCC)-bearing mice. WIF1 protein is located in the follicular infundibulum and interfollicular epidermis (IFE) in murine back skin. Within the hyperplastic epidermis of TPA- or ATRA-treated or BCC-bearing murine skin, WIF1 and Keratin 10 overlap in Ki67⁻ suprabasal layers, while basal epidermal layers expressing Ki67, and BCCs expressing Wif1 mRNA, are free of WIF1 protein. This is similar in human skin, with the exception that WIF1 protein is found in single Ki67⁻ basal epidermal cells in normal skin and additionally in Ki67+ cells in acanthotic skin. Wif1-deficiency enhances acanthosis of the murine BCC-associated epidermis, which is accompanied by an increase of Ki67+ and of Sca-1+ basal cells. WIF1 overexpression in allografted BCC-derived keratinocytes prevents growth and keratinization, involving enhanced phosphorylation of protein kinase C and extracellular signal-regulated kinase 1 and arguably factors secreted by the in vivo environment. In summary, WIF1 protein marks suprabasal layers in the normal IFE. It is also present in the epidermis overlaying BCCs where it diminishes proliferation of basal cells and production of differentiating suprabasal cells. In addition, WIF1 can prevent proliferation and keratinization of BCC-related keratinocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Basocelular/patología , Epidermis/patología , Neoplasias Experimentales/patología , Neoplasias Cutáneas/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma Basocelular/inducido químicamente , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/metabolismo , Epidermis/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Queratinocitos/patología , Ratones , Neoplasias Experimentales/inducido químicamente , Cultivo Primario de Células , Neoplasias Cutáneas/inducido químicamente , Tamoxifeno/administración & dosificación , Tamoxifeno/toxicidad , Acetato de Tetradecanoilforbol/administración & dosificación , Acetato de Tetradecanoilforbol/toxicidad , Tretinoina/administración & dosificación , Tretinoina/toxicidad
20.
Toxicol Mech Methods ; 30(2): 115-123, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31532279

RESUMEN

Tamoxifen (TAM) is used in breast cancer chemotherapy since its approval by the Food and Drug Administration in 1977. However, TAM therapy is accompanied with hepatotoxicity - a source of worry to clinicians. Oxidative stress and inflammation are the major implicated mechanisms contributing to TAM hepatotoxicity. In this study, we explored whether zinc (Zn) supplementation could prevent TAM-induced hepatotoxicity in female Wistar rats. Rats were subjected to oral pretreatment of Zn (100 mg/kg body weight (b.w.)/day) for 14 days against hepatic toxicity induced by single intraperitoneal administration of TAM (50 mg/kg b.w.) on day 13. TAM markedly elevated serum liver enzymes, whereas total protein and albumin considerably reduced. TAM caused prominent depletion of hepatic-reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activity. Also, TAM significantly increased malondialdehyde (MDA) level. Further, it raised liver levels of tumor necrosis factor-α (TNF-α), interleukin-1ß, (IL-1ß), interleukin-6 (IL-6), and nitric oxide (NO) confirmed by the liver histopathological alterations. The mechanistic inflammatory expression of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-ĸB), and expression of caspase-3 protein prominently increased. Zinc supplementation significantly modulated serum liver function markers, antioxidant enzymes, and GSH and MDA levels. Zinc downregulated the expression of cytokines, NO, iNOS, NF-ĸB and caspase-3, and ameliorated histopathological changes. Zinc protects against TAM-induced hepatotoxicity; it may serve as an adjuvant supplement for female patients undergoing TAM chemotherapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Cloruros/farmacología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Tamoxifeno/toxicidad , Compuestos de Zinc/farmacología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cloruros/administración & dosificación , Citocinas/metabolismo , Suplementos Dietéticos , Femenino , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Wistar , Transducción de Señal , Compuestos de Zinc/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA