Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 911
Filtrar
1.
Int J Nanomedicine ; 19: 5071-5094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846644

RESUMEN

Background: The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods: DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results: The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion: The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.


Asunto(s)
Disponibilidad Biológica , Docetaxel , Estabilidad de Medicamentos , Nanopartículas , Tamaño de la Partícula , Albúmina Sérica Bovina , Docetaxel/farmacocinética , Docetaxel/química , Docetaxel/administración & dosificación , Animales , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacocinética , Albúmina Sérica Bovina/administración & dosificación , Nanopartículas/química , Taxoides/farmacocinética , Taxoides/química , Taxoides/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ratas Sprague-Dawley , Masculino , Composición de Medicamentos/métodos , Ratas
2.
J Pharm Biomed Anal ; 245: 116149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678858

RESUMEN

A precise, sensitive, accurate, and validated reverse-phase high-performance liquid chromatography (RP-HPLC) method with a bioanalytical approach was utilized to analyze Cabazitaxel (CBZ) in rat plasma. Comparative research on extraction recoveries was performed between traditional liquid-liquid extraction (LLE) and synthesized graphene oxide (GO) based magnetic solid phase extraction (GO@MSPE). The superparamagnetic hybrid nanosorbent was synthesized using the combination of iron oxide and GO and subsequently applied for extraction and bioanalytical quantification of CBZ from plasma by (HPLC-PDA) analysis. Fourier- transform infrared spectroscopy (FT-IR), particle size, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analysis were employed in the characterization of synthesized GO@MSPE nanosorbent. The investigation was accomplished using a shim pack C18 column (150 mm×4.6 mm, 5 µm) with a binary gradient mobile phase consisting of formic acid: acetonitrile: water (0.1:75:25, v/v/v) at a 0.8 mL/min flow rate, and a λmax of 229 nm. The limits of detection (LOD) and quantitation (LOQ) have been determined to be 50 and 100 ng/mL for both LLE and SPE techniques. The linearity range of the approach encompassed from 100 to 5000 ng/mL and was found to be linear (coefficient of determination > 0.99) for CBZ. The proposed method showed extraction recovery of 76.8-88.4% for the synthesized GO@MSPE and 69.3-77.4% for LLE, suggesting that the proposed bioanalytical approach was robust and qualified for all validation parameters within the acceptable criteria. Furthermore, the developed hybrid GO@MSPE nanosorbent with the help of the proposed RP-HPLC method, showed a significant potential for the extraction of CBZ in bioanalysis.


Asunto(s)
Grafito , Límite de Detección , Extracción Líquido-Líquido , Extracción en Fase Sólida , Animales , Cromatografía Líquida de Alta Presión/métodos , Ratas , Extracción Líquido-Líquido/métodos , Grafito/química , Extracción en Fase Sólida/métodos , Taxoides/sangre , Taxoides/química , Masculino , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier/métodos
3.
Protein J ; 43(3): 544-558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581543

RESUMEN

To solve the large size faultiness of Oryza sativa recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.


Asunto(s)
Nanopartículas , Oryza , Proteínas Recombinantes , Albúmina Sérica Humana , Humanos , Oryza/química , Albúmina Sérica Humana/química , Proteínas Recombinantes/química , Nanopartículas/química , Taxoides/química , Sistemas de Liberación de Medicamentos
4.
Chem Biol Drug Des ; 103(3): e14511, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38508859

RESUMEN

Docetaxel (DTX) is a semi-synthetic analogue of paclitaxel which has attracted extensive attention in the treatment of cancer. However, the current clinically used DTX formulations display low tumor targeting ability, leading to unsatisfactory therapeutic outcomes with adverse effects, which poses significant challenges to the clinical application. In this study, three galactosamine (Gal) and docetaxel conjugates with different linkers were synthesized, namely DTX-(suc-Gal)2, DTX-(DTDPA-Gal)2, and DTX-(DSeDPA-Gal)2. These three conjugates were characterized by 1H NMR, FT-IR and HRMS. The in vitro drug release study shows that DTX-(DTDPA-Gal)2 and DTX-(DSeDPA-Gal)2 exhibit glutathione (GSH)-responsive drug release and DTX-(DSeDPA-Gal)2 displays higher GSH-responsiveness. The in vitro antitumor activity study shows that DTX-(DTDPA-Gal)2 and DTX-(DSeDPA-Gal)2 exhibit enhanced cytotoxicity, cell apoptosis rate and G2/M phase arrest against HepG2 cells as compared to DTX-(suc-Gal)2, DTX-(DSeDPA-Gal)2 displays the highest cytotoxicity, cell apoptosis rate and G2/M phase arrest among these three conjugates. In addition, DTX-(DSeDPA-Gal)2 exhibits higher selectivity to HepG2 cells as compared to free DTX. The DTX-(DSeDPA-Gal)2 developed in this study has been proven to be an effective DTX conjugate for selective killing hepatoma cells.


Asunto(s)
Antineoplásicos , Docetaxel/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Galactosamina , Espectroscopía Infrarroja por Transformada de Fourier , Taxoides/farmacología , Taxoides/química , Portadores de Fármacos/química , Línea Celular Tumoral
5.
Curr Drug Deliv ; 21(5): 775-784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37349996

RESUMEN

BACKGROUND: Most chemotherapeutic agents are characterized by poor water solubility and non-specific distribution. Polymer-based conjugates are promising strategies for overcoming these limitations. OBJECTIVE: This study aims to fabricate a polysaccharide, dextran-based, dual-drug conjugate by covalently grafting docetaxel (DTX) and docosahexaenoic acid (DHA) onto the bifunctionalized dextran through a long linker, and to investigate the antitumor efficacy of this conjugate against breast cancer. METHODS: DTX was firstly coupled with DHA and covalently bounded with the bifunctionalized dextran (100 kDa) through a long linker to produce a conjugate dextran-DHA-DTX (termed C-DDD). Cytotoxicity and cellular uptake of this conjugate were measured in vitro. Drug biodistribution and pharmacokinetics were investigated through liquid chromatography/mass spectrometry analysis. The inhibitory effects on tumor growth were evaluated in MCF-7- and 4T1-tumor-bearing mice. RESULTS: The loading capacity of the C-DDD for DTX was 15.90 (weight/weight). The C-DDD possessed good water solubility and was able to self-assemble into nanoparticles measuring 76.8 ± 5.5 nm. The maximum plasma concentration and area under the curve (0-∞) for the released DTX and total DTX from the C-DDD were significantly enhanced compared with the conventional DTX formulation. The C-DDD selectively accumulated in the tumor, with limited distribution was observed in normal tissues. The C-DDD exhibited greater antitumor activity than the conventional DTX in the triplenegative breast cancer model. Furthermore, the C-DDD nearly eliminated all MCF-7 tumors in nude mice without leading to systemic adverse effects. CONCLUSION: This dual-drug C-DDD has the potential to become a candidate for clinical application through the optimization of the linker.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Docetaxel/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Dextranos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Distribución Tisular , Ratones Desnudos , Taxoides/farmacología , Taxoides/uso terapéutico , Taxoides/química , Portadores de Fármacos/química , Línea Celular Tumoral , Nanopartículas/química , Agua , Ratones Endogámicos BALB C
6.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067476

RESUMEN

Taxanes are the best-known compounds in Taxus cuspidata owing to their strong anticancer effects. However, the traditional taxanes extraction method is the solid-liquid extraction method, which is limited by a large energy consumption and low yield. Therefore, it is urgent to find an efficient method for taxanes extraction. The ultrasonic microwave synergistic extraction (UME) method integrates the cavitation effect of ultrasound and the intensifying heat transfer (ionic conduction and dipole rotation of molecules) effect of microwave to accelerate the release of intracellular compounds and is used in active ingredient extractions. This study aimed to evaluate the performance of UME in extracting taxanes from T. cuspidata needles (dichloromethane-ethanol as extractant). A single-factor experiment, Plackett-Burman design, and the response surface method showed that the optimal UME parameters for taxanes extraction were an ultrasonic power of 300 W, a microwave power of 215 W, and 130 sieve meshes. Under these conditions, the taxanes yield was 570.32 µg/g, which increased by 13.41% and 41.63% compared with the ultrasound (US) and microwave (MW) treatments, respectively. The reasons for the differences in the taxanes yield were revealed by comparing the physicochemical properties of T. cuspidata residues after the UME, US, and MW treatments. The cell structures were significantly damaged after the UME treatment, and numerous tiny holes were observed on the surface. The absorption peaks of cellulose, hemicellulose, and lignin increased significantly in intensity, and the lowest peak temperature (307.40 °C), with a melting enthalpy of -5.19 J/g, was found after the UME treatment compared with the US and MW treatments. These results demonstrate that UME is an effective method (570.32 µg/g) to extract taxanes from T. cuspidata needles by destroying cellular structures.


Asunto(s)
Taxoides , Taxus , Taxoides/química , Taxus/química , Ultrasonido , Microondas , Extractos Vegetales/química
7.
Int J Biol Macromol ; 253(Pt 8): 127690, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37898254

RESUMEN

Docetaxel (DTX) has become one of the most important cytotoxic drugs to treat cancer; nevertheless, its poor hydrophilicity and non-specific distribution of DTX lead to detrimental side effects. In this article, we devised carboxymethylcellulose (CMC)-conjugated polymeric prodrug micelles (mPEG-CMC-DTX PMs) for DTX delivery. The ester-bonded polymeric prodrug, mPEG-CMC-DTX, was synthesized and exhibited the capacity for self-assembling into polymeric micelles. The CMC is profusely substituted and acetylated to promote the coupling rate of DTX. Covalent binding of DTX and CMC through an ester bond can be hydrolyzed to dissociate the bond under the action of esterase in the tumor. The mPEG-CMC-DTX PMs displayed promoted drug loading (>50 %, wt), commendable stability, and sustained release behavior in vitro. The gradual release of the prodrug amplified the selectivity of cytotoxicity between normal cells and tumor cells, mitigating the systemic toxicity of mPEG-CMC-DTX PMs and enabling dose intensification. Notably, mPEG-CMC-DTX PMs demonstrated a superior antitumor efficacy and low systemic toxicity due to the elevated tolerance dosage (even at 40 mg/kg DTX). In summation, mPEG-CMC-DTX PMs harmonized the antitumor efficacy and toxicity of DTX. In essence, innovative perspectives for the rational design of CMC-conjugated polymeric prodrug micelles for the delivery of potently toxic drugs were proffered.


Asunto(s)
Antineoplásicos , Profármacos , Docetaxel/farmacología , Micelas , Profármacos/farmacología , Carboximetilcelulosa de Sodio , Taxoides/química , Polietilenglicoles/química , Antineoplásicos/química , Polímeros/química , Ésteres , Línea Celular Tumoral
8.
Eur J Med Chem ; 259: 115668, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37490800

RESUMEN

The taxane class of microtubule stabilizers are some of the most effective and widely used chemotherapeutics. The anticancer activity of taxanes arises from their ability to induce tubulin assembly by selectively recognizing the curved (c-) conformation in unassembled tubulin as compared to the straight (s-) conformation in assembled tubulin. We first designed and synthesized a series of 3'N-modified taxanes bearing covalent groups. Instead of discovering covalent taxanes, we found a series of non-covalent taxanes 2, in which the 3'N side chain was found to be essential for cytotoxicity due to its role in locking tubulin in the s-conformation. A representative compound bearing an acrylamide moiety (2h) exhibited increased binding affinity to the unassembled tubulin c-conformation and less cytotoxicity than paclitaxel. Further exploration of chemical space around 2h afforded a new series 3, in which derivatives such as 3l bind more tightly to both the s- and c-conformations of tubulin compared to paclitaxel, leading to more efficient promotion of tubulin polymerization and a greater persistence of in vitro efficacy against breast cancer cells after drug washout. Although 3l also had improved in vivo potency as compared to paclitaxel, it was also associated with increased systemic toxicity that required localized, intratumoral injection to observe potent and prolonged antitumor efficacy.


Asunto(s)
Paclitaxel , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Paclitaxel/farmacología , Paclitaxel/química , Taxoides/farmacología , Taxoides/química , Microtúbulos
9.
Amino Acids ; 55(8): 1023-1037, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37318626

RESUMEN

Prostate cancer is a global disease that negatively affects the quality of life. Although various strategies against prostate cancer have been developed, only a few achieved tumor-specific targeting. Therefore, a special emphasis has been placed on the treatment of cancer using nano-carrier-encapsulated chemotherapeutic agents conjugated with tumor-homing peptides. The targeting strategy coupling the drugs with nanotechnology helps to overcome the most common barriers, such as high toxicity and side effects. Prostate-specific membrane antigen has emerged as a promising target molecule for prostate cancer and shown to be targeted with high affinity by GRFLTGGTGRLLRIS peptide known as peptide 563 (P563). Here, we aimed to assess the in vitro and in vivo targeting efficiency, safety, and efficacy of P563-conjugated, docetaxel (DTX)-loaded polymeric micelle nanoparticles (P563-PEtOx-co-PEI30%-b-PCL-DTX) against prostate cancer. To this end, we analyzed the cytotoxic activity of P563-PEtOx-co-PEI30%-b-PCL and P563-PEtOx-co-PEI30%-b-PCL-DTX by a cell proliferation assay using PNT1A and 22Rv1 cells. We have also determined the targeting selectivity of P563-PEtOx-co-PEI30%-b-PCL-FITC by flow cytometry and assessed the induction of cell death by western blot and TUNEL assays for P563-PEtOx-co-PEI30%-b-PCL-DTX in 22Rv1 cells. To investigate the in vivo efficacy, we administered DTX in the free form or in polymeric micelle nanoparticles to athymic CD-1 nu/nu mice 22Rv1 xenograft models and performed histopathological analyses. Our study showed that targeting prostate cancer with P563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelles could exert a potent anti-cancer activity with low side effects.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Ratones , Masculino , Animales , Humanos , Docetaxel , Micelas , Calidad de Vida , Taxoides/farmacología , Taxoides/uso terapéutico , Taxoides/química , Antineoplásicos/química , Polímeros , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Péptidos/uso terapéutico , Línea Celular Tumoral
10.
J Mol Graph Model ; 123: 108503, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37209440

RESUMEN

The single-point mutation D26E in human ß-tubulin is associated with drug resistance seen with two anti-mitotic taxanes (paclitaxel and docetaxel) when used to treat cancers. The molecular mechanism of this resistance remains elusive. However, docetaxel and a third-generation taxane, cabazitaxel, are thought to overcome this resistance. Here, structural models of both the wildtype (WT) and D26E mutant (MT) human ß-tubulin were constructed based on the crystal structure of pig ß-tubulin in complex with docetaxel (PDB ID: 1TUB). The three taxanes were docked into the WT and MT ß-tubulin, and the resulting complexes were submitted to three independent runs of 200 ns molecular dynamic simulations, which were then averaged. MM/GBSA calculations revealed the binding energy of paclitaxel with WT and MT ß-Tubulin to be -101.5 ± 8.4 and -90.4 ± 8.9 kcal/mol, respectively. The binding energy of docetaxel was estimated to be -104.7 ± 7.0 kcal/mol with the WT and -103.8 ± 5.5 kcal/mol with the MT ß-tubulin. Interestingly, cabazitaxel was found to have a binding energy of -122.8 ± 10.8 kcal/mol against the WT and -106.2 ± 7.0 kcal/mol against the MT ß-tubulin. These results show that paclitaxel and docetaxel bound to the MT less strongly than the WT, suggesting possible drug resistance. Similarly, cabazitaxel displayed a greater binding propensity against WT and MT ß-tubulin than the other two taxanes. Furthermore, the dynamic cross-correlation matrices (DCCM) analysis suggests that the single-point mutation D26E induces a subtle dynamical difference in the ligand-binding domain. Overall, the present study revealed how the single-point mutation D26E may reduce the binding affinity of the taxanes, however, the effect of the mutation does not significantly affect the binding of cabazitaxel.


Asunto(s)
Resistencia a Antineoplásicos , Tubulina (Proteína) , Humanos , Animales , Porcinos , Tubulina (Proteína)/química , Docetaxel/farmacología , Taxoides/farmacología , Taxoides/química , Paclitaxel/farmacología , Paclitaxel/química
11.
J Mater Chem B ; 11(17): 3797-3807, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37006120

RESUMEN

Insufficient stability of micellar drug delivery systems is still the major limitation to their systematic application in chemotherapy. This work demonstrates novel π-electron stabilized polyelectrolyte block copolymer micelles based on dendritic polyglycerolsulfate-cystamine-block-poly(4-benzoyl-1,4-oxazepan-7-one)-pyrene (dPGS-SS-POxPPh-Py) presenting a very low critical micelle concentration (CMC) of 0.3 mg L-1 (18 nM), 55-fold lower than that of conventional amphiphilic block copolymer micelles. The drug loading capacities of up to 13 wt% allow the efficient encapsulation of the chemotherapeutic Docetaxel (DTX). The spherical morphology of the micelles was proven by cryogenic electron microscopy (cryo-EM). Gaussian Analysis revealed well-defined sizes of 57 nm and 80 nm in the unloaded/loaded state, respectively. Experiments by dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), fluorescence spectroscopy, and cross-polarization solid-state 13C NMR studied the π-π interactions between the core-forming block segment of dPGS-SS-POxPPh-Py and DTX. The findings point to a substantial contribution of these noncovalent interactions to the system's high stability. By confocal laser scanning microscopy (CLSM), the cellular uptake of fluorescein-labelled FITC-dPGS-SS-POxPPh-Py micelles was monitored after one day displaying the successful cell insertion of the cargo-loaded systems. To ensure the drug release in cancerous cells, the disassembly of the micellar DTX-formulations was achieved by reductive and enzymatic degradation studied by light scattering and GPC experiments. Further, no size increase nor disassembly in the presence of human serum proteins after four days was detected. The precise in vitro drug release was also given by the high potency of inhibiting cancer cell growth, finding half-maximal inhibitory concentrations (IC50) efficiently reduced to 68 nM coming along with high viabilities of the empty polymer materials tested on tumor-derived HeLa, A549, and McF-7 cell lines after two days. This study highlights the substantial potential of micelles tailored through the combination of π-electron stabilization with dendritic polyglycerolsulfate for targeted drug delivery systems, enabling them to have a significant foothold in the clinical treatment of cancer.


Asunto(s)
Amidas , Micelas , Humanos , Docetaxel , Ésteres , Taxoides/química , Taxoides/farmacología , Polímeros/química
12.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876916

RESUMEN

Paclitaxel (Taxol) is a taxane and a chemotherapeutic drug that stabilizes microtubules. While the interaction of paclitaxel with microtubules is well described, the lack of high-resolution structural information on a tubulin-taxane complex precludes a comprehensive description of the binding determinants that affect its mechanism of action. Here, we solved the crystal structure of baccatin III the core moiety of paclitaxel-tubulin complex at 1.9 Å resolution. Based on this information, we engineered taxanes with modified C13 side chains, solved their crystal structures in complex with tubulin, and analyzed their effects on microtubules (X-ray fiber diffraction), along with those of paclitaxel, docetaxel, and baccatin III. Further comparison of high-resolution structures and microtubules' diffractions with the apo forms and molecular dynamics approaches allowed us to understand the consequences of taxane binding to tubulin in solution and under assembled conditions. The results sheds light on three main mechanistic questions: (1) taxanes bind better to microtubules than to tubulin because tubulin assembly is linked to a ßM-loopconformational reorganization (otherwise occludes the access to the taxane site) and, bulky C13 side chains preferentially recognize the assembled conformational state; (2) the occupancy of the taxane site has no influence on the straightness of tubulin protofilaments and; (3) longitudinal expansion of the microtubule lattices arises from the accommodation of the taxane core within the site, a process that is no related to the microtubule stabilization (baccatin III is biochemically inactive). In conclusion, our combined experimental and computational approach allowed us to describe the tubulin-taxane interaction in atomic detail and assess the structural determinants for binding.


Asunto(s)
Taxoides , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Taxoides/farmacología , Taxoides/química , Taxoides/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacología , Paclitaxel/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-36161272

RESUMEN

The second-generation taxane cabazitaxel has been clinically approved for the treatment of metastatic castration-resistant prostate cancer after docetaxel failure. Compared with the first-generation taxanes paclitaxel and docetaxel, cabazitaxel has potent anticancer activity and is less prone to drug resistance due to its lower affinity for the P-gp efflux pump. The relatively high hydrophobicity of cabazitaxel and the poor aqueous colloidal stability of the commercial formulation, following its preparation for injection, presents opportunities for new cabazitaxel formulations with improved features. This review provides an overview of cabazitaxel drug formulations and hydrophobic taxane drug delivery systems in general, and particularly focuses on emerging cabazitaxel delivery systems discovered in the past 5 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Antineoplásicos , Masculino , Humanos , Docetaxel , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Taxoides/uso terapéutico , Taxoides/química , Sistemas de Liberación de Medicamentos
14.
Int J Nanomedicine ; 17: 5353-5374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419719

RESUMEN

Introduction: Approximately 15%~30% of breast cancers have gene amplification or overexpression of the human epidermal growth factor receptor 2 (HER2), resulting in the chemotherapy resistance, a more-aggressive phenotype and poor prognosis. Methods: We propose a strategy of nanocarriers co-loaded with docetaxel (DTX) and pictilisib (PIC) at a synergistic ratio and non-covalently bound with dual anti-HER2 epitopes bispecific antibodies (BsAbs: anti-HER2-IV/methoxy-polyethylene glycol (mPEG) and anti-HER2-II/methoxy-PEG) for synergistic targeting to overcome the therapeutic dilemmas of the resistance for HER2-targetable chemodrugs. DTX/PIC-loaded nanocarriers (D/P_NCs) were prepared with single emulsion methods and characterized using dynamic light scattering analysis, and the drug content was assayed by high-performance liquid chromatographic method. The integrity and function of BsABs were evaluated using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). The in vitro cell studies and in vivo breast tumor-bearing mice model were used to evaluate the anti-cancer effect and biosafety of formulations. Results: D/P_NCs optimally prepared exhibited a spherical morphology with small particle sizes (~140 nm), high drug loading (~5.5%), and good colloidal stability. The synergistic tumor cytotoxicity of loading DTX and PIC at 2:1 ratio in D/P_NCs was discovered. The BsAbs are successfully decorated on mPEGylated DTX/PIC-loaded nanocarriers via anti-mPEG moiety. In vitro studies revealed that non-covalent decoration with dual BsAbs on D_P-NCs significantly and synergistically increased cellular uptake, while with loading DTX and PIC at a synergistic ratio of 2:1 in D/P_NCs further resulted in synergistic cytotoxicity. In vivo tumor inhibition studies showed the comparable results for synergistic antitumor efficacy while minimizing systemic toxicity of chemodrugs. Conclusion: Non-covalent modification with dual distinct epitopes BsAbs on the nanocarriers loaded with dual chemodrugs at a synergistic ratio was expected to be a promising therapeutic platform to overcome the chemoresistance of various cancers and warrants further development for future therapy in the clinical.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Docetaxel , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Taxoides/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Epítopos
15.
Int J Biol Macromol ; 222(Pt A): 1287-1303, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191788

RESUMEN

Oral cancer is one of the most prevalent malignancies worldwide. Here, to prepare a biocompatible tumor-targeted nanoformulation capable of efficient loading of the hydrophobic drug, DTX, human serum albumin was conjugated to poly(lactide) at different HSA: PLA ratios (1:1, 2, 3). The HSA-(PLA)1-3 conjugates were physicochemically characterized by UV, IR, NMR, GPC, pyrene incorporation, and surface tension analysis. Next, the DTX-loaded DTX@HSA-(PLA)1-3 NPs were prepared by the desolvation-self-assembly technique, which was further optimized by DOE. The NPs were characterized by DLS, SEM, DSC, XRD, CD spectroscopy, SDS-PAGE, drug entrapment and loading efficiencies, kinetic stability, drug release, and hemolysis assays. Murine and human oral cancer cell lines, MOC2 and FaDu, were used in monolayers/multicellular spheroids to assess cellular uptake, the extent of cell viability, and apoptosis induction following NPs treatment. The DTX@HSA-(PLA)1-3 NPs were ~ 149-212 nm size range, drug entrapment, ~75-96 %, and loading efficiency, ~21-27 %. The selected DTX@HSA-(PLA)2 NPs showed time-dependent improved targetability towards cancer cells than HSA NPs, indicating the benefit of HSA polymerization in NPs internalization. A time-dependent decrease in cell viability was observed for both the cell lines with IC50 values, 7.12 ± 1.84 and 6.38 ± 1.63 µg/mL, for FaDu and MOC2 cell lines, respectively (48 h post-treatment). The DTX@ HSA-(PLA)2 NPs treatment induced higher apoptotic marker expressions, cell-cycle arrest in the G2/M-phase, DNA damage, and mitochondrial depolarization than free DTX and DTX@HSA NPs. Further, DTX@HSA-(PLA)2 NPs (iv) showed significantly reduced plasma clearance (p < 0.05) and volume of distribution (Vd) than DTX and DTX@HSA NPs. Therefore, the developed polyprotein NPs offer superior therapeutic effect due to their stable drug incorporation, improved cell internalization, and long circulation, revealing their potential as an effective nanomedicine for oral cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Boca , Nanopartículas , Humanos , Ratones , Animales , Docetaxel , Albúmina Sérica Humana , Taxoides/química , Nanopartículas/química , Poliésteres , Neoplasias de la Boca/tratamiento farmacológico , Antineoplásicos/química , Portadores de Fármacos/química , Línea Celular Tumoral
16.
Arch Biochem Biophys ; 719: 109165, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35227656

RESUMEN

A 10-O-deacetylbaccatin III 10-O-acetyltransferase biocatalyst from Taxus plants was expressed in bacteria whole-cells that were fed 10-O-deacetylbaccatin III and cyclopropane carboxylic acid. Product analysis by qualitative LC/ESI-MS suggested that the C10-acylated products baccatin III, 10-O-n-propionyl-10-O-deacetylbaccatin III, and 10-O-cyclopropanecarbonyl-10-O-deacetylbaccatin III were made in vivo. The results implied that the cells provided non-natural cyclopropanecarbonyl CoA, from a broad-specificity CoA ligase, and natural products, acetyl CoA and n-propionyl CoA, from reserves in the bacteria for use by acyltransferase to acylate 10-O-deacetylbaccatin III in vivo. The 10-acyl-10-O-deacetylbaccatin III are precursors used to synthesize new-generation paclitaxel analogs SB-T-1214 and SB-T-121303, which are effective against cancer cells resistant to paclitaxel and its drug derivatives. The kcat and KM of the acyltransferase for cyclopropanecarbonyl CoA (0.83 s-1, 0.15 M) and n-propionyl CoA (1.2 s-1, 0.15 M) guided scale-up efforts. The 10-acyl-10-O-deacetylbaccatin III analogs (∼45 mg each) were made in vitro by the acyltransferase when incubated with the commercial taxane 10-O-deacetylbaccatin III and synthesized cyclopropanecarbonyl or n-propionyl CoA. The structures of the 10-acyl products were verified by NMR analyses that confirmed C10 acylation of the taxane substrate. LC/ESI-MS/MS analysis also supported the identities of the biocatalyzed products. This effort provides a biocatalysis framework to produce new-generation taxane precursors.


Asunto(s)
Neoplasias , Paclitaxel , Acetilcoenzima A/metabolismo , Acetiltransferasas/metabolismo , Biocatálisis , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Taxoides/química , Taxoides/farmacología
17.
Bioorg Chem ; 119: 105578, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979464

RESUMEN

It has been shown that the incorporation of fluorine or organofluorine groups into pharmaceutical and agricultural drugs often induces desirable pharmacological properties through unique protein-drug interactions involving fluorine. We have reported separately remarkable effects of the 2,2-difluorovinyl (DFV) group at the C3' position, as well as those of the CF3O and CHF2O groups at the 3-position of the C2-benzoyl moiety of the 2nd- and 3rd-generation taxoids on their potency and pharmacological properties. Thus, it was very natural for us to investigate the combination of these two modifications in the 3rd-generation taxoids and to find out whether these two modifications are cooperative at the binding site in the ß-tubulin or not, as well as to see how these effects are reflected in the biological activities of the new 3rd-generation DFV-taxoids. Accordingly, we designed, synthesized and fully characterized 14 new 3rd-generation DFV-taxoids. These new DFV-taxoids exhibited remarkable cytotoxicity against human breast, lung, colon, pancreatic and prostate cancer cell lines. All of these new DFV-taxoids exhibited subnanomolar IC50 values against drug-sensitive cell lines, A549, HT29, Vcap and PC3, as well as CFPAC-1. All of the novel DFV-taxoids exhibited 2-4 orders of magnitude greater potency against extremely drug-resistant cancer cell lines, LCC6-MDR and DLD-1, as compared to paclitaxel, indicating that these new DFV-taxoids can overcome MDR caused by the overexpression of Pgp and other ABC cassette transporters. Dose-response (kill) curve analysis of the new DFV-taxoids in LCC6-MDR and DLD-1 cell lines revealed highly impressive profiles of several new DFV-taxoids. The cooperative effects of the combination of the 3'-DFV group and 3-CF3O/CHF2O-benzoyl moiety at the C2 position were investigated in detail by molecular docking analysis. We found that both the 3'-DFV moiety and the 3-CF3O/3-CHF2O group of the C2-benzoate moiety are nicely accommodated to the deep hydrophobic pocket of the paclitaxel/taxoid binding site in the ß-tubulin, enabling an enhanced binding mode through unique attractive interactions between fluorine/CF3O/CHF2O and the protein beyond those of paclitaxel and new-generation taxoids without bearing organofluorine groups, which are reflected in the remarkable potency of the new 3rd-generation DFV-taxoids.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Flúor/farmacología , Taxoides/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Flúor/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Taxoides/síntesis química , Taxoides/química , Células Tumorales Cultivadas
18.
J Oncol Pharm Pract ; 28(5): 1035-1041, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33977816

RESUMEN

AIM/BACKGROUND: In this study, the prolonged physical and chemical stability of the anticancer agent cabazitaxel, commercially available as Jevtana®, was examined. Both concentrate-solvent mixture and infusion solution were examined with the aim to extend the use of multidose left-over cabazitaxel and infusion solutions and with that reduce financial and environmental waste. METHODS: A validated stability-indicating high-pressure liquid chromatography (HPLC) method with ultraviolet (UV) and photodiode array (PDA) detection was used to examine the purity and any degradation of cabazitaxel. The concentrate-solvent mixture and infusion solution samples that were tested had been stored out of the range of the criteria stated in the summary of product characteristics (SmPC). The concentrate-solvent mixtures were stored at 3-5°C, 18-21°C, and 40 °C, whereas the infusion solution was stored at 3-5°C. All samples were tested at t = 0, t = 1 week and t = 2 weeks. RESULTS: All samples showed that purity and concentration had remained within the criteria of <5% as stated in the European Pharmacopoeia. However, the concentrate-solvent mixtures stored at 18-21°C and 40 °C showed a degradation product forming in all the samples lowering the purity of the samples from 100% to 99.91% and 98.20% respectively, whereas all samples stored at 3-5°C remained at 100%. CONCLUSION: Concentrate-solvent mixture and infusion solution of cabazitaxel, Jevtana®, can be used up to 2 weeks after preparation if stored at 3-5°C and prepared under aseptic conditions.


Asunto(s)
Antineoplásicos , Taxoides , Solventes/química , Antineoplásicos/química , Estabilidad de Medicamentos , Taxoides/química , Cromatografía Líquida de Alta Presión
19.
ACS Chem Biol ; 16(11): 2130-2136, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34734690

RESUMEN

Here we report a small molecule tubulin probe for single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy and MINFLUX nanoscopy, which can be used in living and fixed cells. We explored a series of taxane derivatives containing spontaneously blinking far-red dye hydroxymethyl silicon-rhodamine (HMSiR) and found that the linker length profoundly affects the probe permeability and off-targeting in living cells. The best performing probe, HMSiR-tubulin, is composed of cabazitaxel and the 6'-regioisomer of HMSiR bridged by a C6 linker. Microtubule diameter of ≤50 nm was routinely measured in SMLM experiments on living and fixed cells. HMSiR-tubulin allows a complementary use of different nanoscopy techniques for investigating microtubule functions and developing imaging methods. For the first time, we resolved the inner microtubule diameter of 16 ± 5 nm by optical nanoscopy and thereby demonstrated the utility of a self-blinking dye for MINFLUX imaging.


Asunto(s)
Microscopía/métodos , Taxoides/química , Tubulina (Proteína)/química , Línea Celular Tumoral , Colorantes Fluorescentes , Humanos , Microtúbulos/química , Microtúbulos/fisiología , Estructura Molecular , Osteosarcoma , Rodaminas/química , Imagen Individual de Molécula , Análisis de la Célula Individual
20.
J Nanobiotechnology ; 19(1): 397, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34838042

RESUMEN

Cancer cells and cancer stem cells (CSCs) are the major players of cancer malignancy and metastasis, but they are extremely difficult to access. Inspired by the vital role of macrophages and microvesicle-mediated cell-cell communication in tumors, we herein designed M2 macrophage microvesicle-inspired nanovehicle of cabazitaxel (M-CFN) to promote accessibility to cancer cells and CSCs in tumors. In the 4T1 tumor model, M-CFN flexibly permeated the tumor mass, accessed cancer cells and CD90-positive cells, and significantly promoted their entry into CSC fractions in tumors. Moreover, M-CFN treatment profoundly eliminated aldehyde dehydrogenase (ALDH)-expressing CSCs in 4T1 and MCF-7 tumors, produced notable depression of tumor growth and caused 93.86% suppression of lung metastasis in 4T1 models. Therefore, the M2 macrophage microvesicle-inspired nanovehicle provides an encouraging strategy to penetrate the tumor tissues and access these insult cells in tumors for effective cancer therapy.


Asunto(s)
Antineoplásicos , Micropartículas Derivadas de Células , Macrófagos/citología , Nanoestructuras/química , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Taxoides/química , Taxoides/farmacocinética , Taxoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA