Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Sci Rep ; 14(1): 22783, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353982

RESUMEN

Telocytes (TCs) are a type of stromal cell discovered in the various organs of different animals and have many potential functions, including angiogenesis, signalling, and substance transport. However, the TCs have not been detected in the testis or epididymis of Tibetan sheep. This study investigated the position, characteristics, and distribution of TCs in the testis and epididymis of Tibetan sheep using transmission electron microscopy (TEM), toluidine blue staining, immunohistochemistry, and double immunofluorescence to elucidate their possible functions. TEM revealed that TCs were often found near basement membranes and capillaries and were characterised by large nuclei, elongated cytoplasmic protrusions, and many secretory vesicles. We also observed via toluidine staining that TCs were present near basement membrane and interstitial capillaries. Immunohistochemistry and double immunofluorescence revealed the positive expression of CD117, vimentin, platelet derived growth factor receptor α(PDGFRα), PDGFRα + CD117, and PDGFRα + vimentin in TCs. Additionally, we inferred that TCs participates in the formation of the blood-testis and blood-epididymis barriers, as well as in material transport and a stable microenvironment. This study presents the first evidence of the presence of TCs near the basement membrane and blood vessels in the testis and epididymis of Tibetan sheep. These findings provide new insights into the function of TCs in the reproductive systems of plateau animals.


Asunto(s)
Epidídimo , Telocitos , Testículo , Animales , Masculino , Telocitos/metabolismo , Telocitos/citología , Telocitos/ultraestructura , Epidídimo/metabolismo , Epidídimo/citología , Ovinos , Testículo/metabolismo , Testículo/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Microscopía Electrónica de Transmisión , Tibet , Vimentina/metabolismo , Inmunohistoquímica , Membrana Basal/metabolismo , Membrana Basal/ultraestructura
2.
Eur J Histochem ; 68(4)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39410819

RESUMEN

Telocytes (TCs) have been identified in various animals. However, information on TCs in the embryos is still very limited. In this work, the developing skin of the silky fowl was sampled for TCs identification by histology, immunohistochemistry and transmission electron microscopy. In addition, morphological parameters of cutaneous TCs and their location relationships were measured using a morphometry software - ImageJ (FiJi). At the 12th, 16th and 20th day of incubation, in the embryonic skin, telocyte-like cells (TC-L) were observed in the dermis. TCs were PDGFRα+ at the 12th, 16th and 20th day of incubation, but showed CD34+ only at 20th day of incubation in the embryonic dermis. Ultrastructurally, TCs were observed in the dermis at all late embryonic developmental stages. TCs established the homocellular contacts/plasmalemmal adhesion with each other. TCs established heterocellular contacts with melanocytes at 20th day of incubation in the dermis. In addition, the intracellular microvesicles were present in the cytoplasm of TCs. The extracellular microvesicles/exosomes were in close proximity to the TCs. The results confirmed that the locations, immunophenotypes, structural characteristics and relationships of TCs, and revealed the developmental characteristics of cutaneous TCs in late silky fowl embryos.


Asunto(s)
Telocitos , Animales , Telocitos/citología , Telocitos/metabolismo , Piel/embriología , Piel/citología , Piel/metabolismo , Pollos , Embrión de Pollo , Microscopía Electrónica de Transmisión
3.
Cell Biol Int ; 48(11): 1680-1697, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39099163

RESUMEN

Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.


Asunto(s)
Antígenos CD34 , Pulmón , Microscopía Electrónica de Rastreo , Telocitos , Animales , Antígenos CD34/metabolismo , Pulmón/ultraestructura , Pulmón/metabolismo , Pulmón/crecimiento & desarrollo , Ratones , Telocitos/metabolismo , Telocitos/ultraestructura , Telocitos/citología , Microscopía Electrónica de Rastreo/métodos , Células del Estroma/ultraestructura , Células del Estroma/metabolismo , Células del Estroma/citología , Células Cultivadas , Microscopía Electrónica de Transmisión
4.
Biomolecules ; 14(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199356

RESUMEN

Background: Telocytes are interstitial stromal cells identified in various human organs, including the kidney. Their presence and role in human diabetic kidney disease remain unknown. Methods: To identify and localize telocytes in glomerular and tubule-interstitial compartments, both normal and diabetic human renal tissues were examined using immunohistochemistry, immunofluorescence, and transmission electron microscopy. Results: Renal telocytes are elongated interstitial cells with long, thin telopodes, showing alternating thin and thick segments. They expressed CD34, Nestin, α-SMA, and Vimentin markers. Occasionally, c-Kit expression was observed in some rounded and spindle cells, while no positivity was detected for PDGFR-ß and NG2. Telocytes were identified around Bowman's capsule, tubules, and peritubular capillaries in both normal and diabetic conditions. In diabetic renal samples, there was a significant increase in α-SMA expressing telocytes, leading to periglomerular fibrosis. These telocytes also exhibited a synthetic phenotype with proteoglycan deposition in the extracellular matrix and, in some cases, showed pre-adipocytic differentiation. Conclusions: Telocytes were identified in normal and diabetic human kidneys. These cells form an elastic mechanical scaffold in the interstitium and are present in all renal cortical compartments. In diabetic samples, their increased α-SMA expression and synthetic phenotype suggest their potential role in the pathogenesis of diabetic nephropathy.


Asunto(s)
Antígenos CD34 , Nefropatías Diabéticas , Telocitos , Vimentina , Humanos , Telocitos/metabolismo , Telocitos/patología , Telocitos/ultraestructura , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Antígenos CD34/metabolismo , Vimentina/metabolismo , Riñón/metabolismo , Riñón/patología , Inmunohistoquímica , Actinas/metabolismo , Nestina/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Microscopía Electrónica de Transmisión , Anciano
5.
Cells ; 13(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195210

RESUMEN

For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.


Asunto(s)
Plasma Rico en Plaquetas , Piel , Telocitos , Cicatrización de Heridas , Humanos , Plasma Rico en Plaquetas/metabolismo , Piel/patología , Telocitos/metabolismo , Animales
6.
Histochem Cell Biol ; 162(5): 373-384, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39078438

RESUMEN

Telocytes (TCs) are characterized by a small oval-shaped cell body with long prolongations that are called telopods (Tps). PDGFR-ß and c-kit markers may assist for the immunohistochemical identification of TCs; however, by these means they cannot be identified with absolute specificity. Transmission electron microscopy (TEM) is considered as a gold standard method for TCs observation. Studies on TCs in the female reproductive system are limited, and there is a lack of awareness regarding TCs in rat ovaries. We aimed to demonstrate the existence and morphology of TCs in rat ovaries, alongside previously studied TCs in rat uteri. Thus, ovaries and uteri from young adult Sprague-Dawley female rats (n = 8) with regular estrous cycles were collected. Then, left ovaries and uteri were proccessed for TEM analysis, while the right ones were used for immunohistochemistry. As a result, TCs were seen throughout the rat's ovarian stroma with their characteristic cell bodies, Tps, podomes (Pds) and podomers (Pdms). Tps were situated within the thecal layer of the follicles, surrounding the corpus luteum and blood vessels. Ovarian TCs were recognized to have relationship with other TCs/stromal cells. Subsequently, TCs were seen in stroma of endometrium with surrounding blood vessels and uterine glands, myometrium and perimetrium in rat uteri. There was also no statistical significance between the number of c-kit+ and PDGFR-ß+ telocyte-like cells in both rat ovarian (p = 0.137) and endometrial stroma (p = 0.450). Further investigation of the roles and functions of TCs in the female reproductive system is needed.


Asunto(s)
Inmunohistoquímica , Ovario , Ratas Sprague-Dawley , Telocitos , Útero , Animales , Femenino , Telocitos/metabolismo , Telocitos/citología , Ratas , Ovario/metabolismo , Ovario/citología , Útero/metabolismo , Útero/citología , Microscopía Electrónica de Transmisión
7.
Sci Rep ; 14(1): 13899, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886354

RESUMEN

The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.


Asunto(s)
Dermis , Inmunohistoquímica , Telocitos , Telocitos/metabolismo , Telocitos/citología , Dermis/metabolismo , Dermis/citología , Humanos , Antígenos CD34/metabolismo , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos CD/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Molécula CD68
8.
Sci Rep ; 14(1): 14904, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942924

RESUMEN

Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.


Asunto(s)
Colelitiasis , Vesícula Biliar , Telocitos , Telocitos/metabolismo , Telocitos/patología , Colelitiasis/patología , Colelitiasis/metabolismo , Humanos , Vesícula Biliar/patología , Vesícula Biliar/metabolismo , Femenino , Masculino , Conductos Biliares/patología , Conductos Biliares/metabolismo , Persona de Mediana Edad , Anciano , Dilatación Patológica
9.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767703

RESUMEN

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Asunto(s)
Exosomas , Integrina beta1 , MicroARNs , Telocitos , Proteína de Unión al GTP rac1 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Exosomas/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Ratones , Telocitos/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipoxia/metabolismo , Hipoxia/genética , Hipoxia/complicaciones , Proliferación Celular/genética , Movimiento Celular/genética , Humanos , Remodelación Vascular/genética , Neuropéptidos
10.
Sci Rep ; 14(1): 12034, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802438

RESUMEN

Telocytes are a unique interstitial cell type that functions in adulthood and embryogenesis. They have characteristic immunohistochemical phenotypes while acquiring different immunohistochemical properties related to the organ microenvironment. The present study aims to investigate the immunohistochemical features of embryonic telocytes during myogenesis and describe their morphology using light microscopy and TEM. Telocytes represent a major cellular constituent in the interstitial elements. They had distinguished telopodes and podoms and formed a 3D interstitial network in the developing muscles. They formed heterocellular contact with myoblasts and nascent myotubes. Telocytes also had distinctive secretory activity. Telocytes identified by CD34. They also express CD68 and MMP-9 to facilitate the development of new tissues. Expression of CD21 by telocytes may reveal their function in immune defense. They also express VEGF, which regulates angiogenesis. In conclusion, the distribution and immunological properties of telocytes in the myogenic tissue indicate that telocytes provide biological and structural support in the development of the myogenic tissue architecture and organization.


Asunto(s)
Inmunohistoquímica , Desarrollo de Músculos , Telocitos , Telocitos/metabolismo , Telocitos/citología , Animales , Ratones , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Microambiente Celular , Metaloproteinasa 9 de la Matriz/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Mioblastos/metabolismo , Mioblastos/citología
11.
Cell Mol Gastroenterol Hepatol ; 18(2): 101347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670488

RESUMEN

BACKGROUND & AIM: Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS: To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS: We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS: These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.


Asunto(s)
Proteína Morfogenética Ósea 4 , Mucosa Gástrica , Metaplasia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Telocitos , Proteína Wnt-5a , Animales , Metaplasia/patología , Ratones , Telocitos/metabolismo , Telocitos/patología , Proteína Wnt-5a/metabolismo , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estómago/patología , Proteína Morfogenética Ósea 7/metabolismo , Movimiento Celular , Ratones Transgénicos , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead
12.
DNA Cell Biol ; 43(7): 341-352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38634821

RESUMEN

Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p. The isolation/characterization of telocytes from bone marrow mononuclear cells and the isolation of mitochondria from these cells were performed, respectively. In the next step, CSCs were isolated from the MDA-MB-231 cell line and were characterized. Then, miR-146a-5p expressions of CSCs were inhibited by anti-miR-146a-5p. The epithelial-mesenchymal transition (EMT) was determined by evaluating changes in vimentin protein levels and was evaluated by analyzing BRCA1, P53, SOX2, E-cadherin, and N-cadherin gene expression changes. Our results showed that miR-146a promoted stemness and oncogenic properties in CSCs. EMT (N-cadherin, vimentin, E-cadherin) and tumorigenic markers (BRCA1, P53, SOX2) of CSCs decreased after miR-146a inhibition. Bone marrow-derived telocytes and mitochondria derived from telocytes favored the reduction of CSC aggressiveness following this inhibition.


Asunto(s)
Neoplasias de la Mama , Técnicas de Cocultivo , MicroARNs , Mitocondrias , Células Madre Neoplásicas , Telocitos , Humanos , Telocitos/metabolismo , Telocitos/patología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo
13.
Cell Tissue Res ; 396(2): 141-155, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38539007

RESUMEN

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.


Asunto(s)
Telocitos , Telocitos/citología , Telocitos/metabolismo , Humanos , Animales
14.
Cell Biol Int ; 48(5): 647-664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353345

RESUMEN

Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/ß-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.


Asunto(s)
Células Madre Mesenquimatosas , Telocitos , Enfermedades Uterinas , Humanos , Ratones , Femenino , Animales , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Endometrio/patología , Células Madre Mesenquimatosas/metabolismo , Telocitos/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad
15.
Cardiovasc Pathol ; 70: 107617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38309490

RESUMEN

The telocyte (TC) is a new interstitial cell type described in a wide variety of organs and loose connective tissues around small vessels, but its presence in large arteries remains unexplored. TCs have small cell bodies and remarkably thin, long, moniliform processes called telopods (Tps). Using transmission electron microscopy and immunofluorescence, we identified TCs in normal human thoracic aortas and in those with aneurysm or acute dissection (TAAD). In normal aortas the TCs were distributed throughout the connective tissue of the adventitial layer, in its innermost portion and at the zone of transition with the medial layer, with their long axes oriented parallel to the external elastic lamellae, forming a three-dimensional network, without prevalence in the media layer. In contrast, TAAD TCs were present in the medial layer and in regions of neovascularization. The most important feature of the adventitia of diseased aortas was the presence of numerous contacts between TCs and stem cells, including vascular progenitor cells. Although the biologically functional correlations need to be elucidated, the morphological observations presented here provide strong evidence of the involvement of TCs in maintaining vascular homeostasis in pathological situations of tissue injury.


Asunto(s)
Aorta Torácica , Disección Aórtica , Homeostasis , Microscopía Electrónica de Transmisión , Telocitos , Humanos , Telocitos/patología , Telocitos/metabolismo , Telocitos/ultraestructura , Disección Aórtica/patología , Disección Aórtica/fisiopatología , Disección Aórtica/metabolismo , Aorta Torácica/patología , Aorta Torácica/metabolismo , Masculino , Persona de Mediana Edad , Anciano , Adventicia/patología , Adventicia/metabolismo , Aneurisma de la Aorta Torácica/patología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/fisiopatología , Femenino , Telopodos/patología , Telopodos/metabolismo , Adulto , Técnica del Anticuerpo Fluorescente , Estudios de Casos y Controles
16.
Cell Mol Gastroenterol Hepatol ; 17(5): 697-701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342300

RESUMEN

Telocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells. However, the analysis of single-cell RNA sequencing has revealed other stromal populations and mechanisms for niche organization, raising questions about the role of telocytes as a component of the stem cell niche. This review explores the current state-of-the-art, existing controversies, and potential future directions related to telocytes in the luminal gastrointestinal tract.


Asunto(s)
Células Madre Mesenquimatosas , Telocitos , Telocitos/metabolismo , Intestinos , Células Madre/metabolismo , Tracto Gastrointestinal
17.
BMC Vet Res ; 20(1): 73, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402164

RESUMEN

BACKGROUND: Telocytes are modified interstitial cells that communicate with other types of cells, including stem cells. Stemness properties render them more susceptible to environmental conditions. The current morphological investigation examined the reactions of telocytes to salt stress in relation to stem cells and myoblasts. The common carp are subjected to salinity levels of 0.2, 6, and 10 ppt. The gill samples were preserved and prepared for TEM. RESULTS: The present study observed that telocytes undergo morphological change and exhibit enhanced secretory activities in response to changes in salinity. TEM can identify typical telocytes. This research gives evidence for the communication of telocytes with stem cells, myoblasts, and skeletal muscles. Telocytes surround stem cells. Telopodes made planar contact with the cell membrane of the stem cell. Telocytes and their telopodes surrounded the skeletal myoblast. These findings show that telocytes may act as nurse cells for skeletal stem cells and myoblasts, which undergo fibrillogenesis. Not only telocytes undergo morphological alternations, but also skeletal muscles become hypertrophied, which receive telocyte secretory vesicles in intercellular compartments. CONCLUSION: In conclusion, the activation of telocytes is what causes stress adaptation. They might act as important players in intercellular communication between cells. It is also possible that reciprocal interaction occurs between telocytes and other cells to adapt to changing environmental conditions.


Asunto(s)
Carpas , Telocitos , Animales , Salinidad , Telocitos/metabolismo , Microscopía Electrónica de Transmisión/veterinaria , Músculo Esquelético , Células Madre , Mioblastos
18.
Cell Biochem Biophys ; 82(2): 705-713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38300374

RESUMEN

This investigation delves into the structural foundation of human dermal telocytes (TCs) with the aim of elucidating their role in signal transmission. Dermal TCs were isolated from human foreskins via enzymatic digestion and flow cytometric sorting, and identified by immunohistochemical staining with an antibody against CD34. The ultrastructure of TCs was examined using transmission electron microscopy (TEM). The proliferation rates of sorted TCs and CD34-negative fibroblasts were compared using the MTS assay (Cell Proliferation Assay). Images of viable cultured TCs were analyzed using atomic force microscopy (AFM) under normal atmospheric pressure and temperature. Results demonstrated that dermal TCs were positive for CD34 and vimentin, predominantly distributed in the reticular dermis and subcutaneous tissue, forming interwoven networks. Each TC had a small body with a high nuclear-plasma ratio and two or three extremely long and thin telopodes (TPs), exhibiting a typical 'moniliform' appearance. Compared with CD34-negative fibroblasts, dermal TCs exhibited significantly lower proliferation rates. Cultured TCs displayed typical moniliform projections (namely, TPs) in the AFM images. The distal ends of TPs were enlarged, shaped like a broom, and extended multiple pseudopods to contact other cell bodies. Slender filamentary pseudopodia and thick, short cone-like structures were observed on the surfaces of the dilated segments and terminals of TPs. These structures are assumed to be evidence of the secretion and release of endosomes, such as exosomes, and the communication between cells. TCs form interstitial networks in the reticular dermis and subcutaneous tissue, providing a structural basis for contacts between cells and the secretion of signal-carrying substances, involving intercellular connections and communication.


Asunto(s)
Antígenos CD34 , Proliferación Celular , Fibroblastos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Telocitos , Vimentina , Telocitos/citología , Telocitos/metabolismo , Telocitos/ultraestructura , Humanos , Antígenos CD34/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Vimentina/metabolismo , Dermis/citología , Dermis/metabolismo , Dermis/ultraestructura , Células Cultivadas , Masculino , Telopodos/metabolismo
19.
Planta Med ; 90(2): 84-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37714195

RESUMEN

A brand-new class of interstitial cells, called telocytes, has been detected in the heart. Telocytes can connect and transmit signals to almost all cardiomyocytes; this is highly interrelated with the occurrence and development of heart diseases. Modern studies have shown that berberine has a therapeutic effect on cardiovascular health. However, berberine's mechanism of action on the cardiovascular system through cardiac telocytes is unclear. Interestingly, 5 µm of berberine remarkably decreased the concentration of intracellular calcium and membrane depolarization in cultured telocytes, upregulated the expression of CX43 and ß-catenin, and downregulated the expressions of TRPV4 and TRPV1. Here, telocytes were identified in the vascular adventitia and intima, endocardium, myocardium, adventitia, and heart valves. Moreover, telocytes were broadly dispersed around cardiac vessels and interacted directly through gap junctions and indirectly through extracellular vesicles. Together, cardiac telocytes interact with berberine and then deliver drug information to the heart. Telocytes may be an essential cellular target for drug therapy of the cardiovascular system.


Asunto(s)
Berberina , Telocitos , Animales , Conejos , Berberina/farmacología , Miocardio/metabolismo , Telocitos/metabolismo , Endocardio/metabolismo , Miocitos Cardíacos
20.
Cell Transplant ; 32: 9636897231212746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38006220

RESUMEN

Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (ß-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and ß-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/ß-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.


Asunto(s)
Exosomas , Telocitos , Enfermedades Uterinas , Humanos , Femenino , Ratones , Animales , beta Catenina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fibronectinas/metabolismo , Exosomas/metabolismo , Endometrio/metabolismo , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Enfermedades Uterinas/terapia , Fibrosis , Telocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA