Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Pestic Biochem Physiol ; 204: 106084, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277397

RESUMEN

Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to ß-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with ß-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to ß-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to ß-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to ß-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.


Asunto(s)
Resistencia a los Insecticidas , Intrones , Piretrinas , Tephritidae , Canales de Sodio Activados por Voltaje , Animales , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Piretrinas/farmacología , Piretrinas/toxicidad , Resistencia a los Insecticidas/genética , Tephritidae/genética , Tephritidae/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/toxicidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39348591

RESUMEN

Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B. dorsalis, traps are typically baited with liquid methyl eugenol (ME), and for Z. cucurbitae, traps are baited with liquid cue-lure (CL). Operating large-scale trapping networks is costly, consequently, there is much interest in identifying ways to maintain network sensitivity while reducing costs. One cost-cutting approach is the possibility of combining different male lures in the same dispenser, thus reducing the number of traps requiring servicing. The chief objective of this study was to compare captures of B. dorsalis and Z. cucurbitae males in Jackson traps baited with polymeric wafers impregnated with both ME and raspberry ketone (RK, a hydrolyzed form of CL) versus traps baited with liquid ME or CL freshly applied to cotton wicks. Captures were measured when the ME/RK wafers had been weathered for 12, 18, or 24 wk. Captures of B. dorsalis and Z. cucurbitae males were similar between fresh lure and weathered wafers over all trapping periods, with a single exception apparently due to the lessened potency of the associated killing agent. The residual amount and release rate of ME and RK from the wafers were also measured to examine possible relationships between wafer chemistry and trap catch. The possible implications of the present results to area-wide trapping programs are discussed.


Asunto(s)
Eugenol , Control de Insectos , Longevidad , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Tephritidae/fisiología , Masculino , Control de Insectos/métodos , Control de Insectos/instrumentación , Eugenol/farmacología , Eugenol/análogos & derivados , Longevidad/efectos de los fármacos , Butanonas/farmacología , Feromonas/farmacología
3.
J Econ Entomol ; 117(5): 2009-2018, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39255408

RESUMEN

Zeugodacus tau (Walker) (Diptera: Tephritidae) is an important agricultural pest currently managed primarily through the application of insecticides due to limited control strategies. Bait station devices are target specific and have emerged as a behaviorally based alternative to traditional insecticide sprays for managing Z. tau. In this study, we designed a bait station by integrating female-biased olfactory, visual, and gustatory elements, and a killing agent in a wax-matrix. Our results showed that the wax-matrix integrated with spinetoram showed the highest toxicity to immature and mature Z. tau females. Furthermore, the color and shape of the spinetoram bait station significantly influenced its attractiveness and toxicity to female Z. tau. Green sausage-shaped exteriors were the most effective color and shape examined. Subsequent experiments showed a length-dependent effect on mortality and visiting frequencies of Z. tau females when the bait stations were 9-13 cm long. The addition of the olfactory stimulus of 5% ammonium acetate to the bait station attracted a higher number of mature Z. tau females than the control. The killing efficacy of the weathered bait station was similar to that of the fresh station within an 8-week period (over 794 mm of rainfall). The bait station developed herein would provide new insight into the attract-and-kill strategy for Z. tau and alleviate the pressure of the actual management program for this pest.


Asunto(s)
Control de Insectos , Insecticidas , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Femenino , Control de Insectos/métodos , Insecticidas/farmacología , Masculino , Macrólidos/farmacología , Feromonas/farmacología
4.
Pest Manag Sci ; 80(11): 5728-5740, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38989597

RESUMEN

BACKGROUND: Fopius arisanus (Sonan) is an important egg-pupal endoparasitic wasp of Bactrocera dorsalis (Hendel). As traditional method of sorting nonparasitic B. dorsalis from parasitic wasps is labor-intensive, requires specific equipment and poses the risk of spreading fertile hosts, the development of a more convenient, economical and safe sorting procedure is important. RESULTS: The optimal cyromazine emergence inhibition procedure (CEIP) involved facilitating the pupation of B. dorsalis mature larvae (Bdml) in 3 mg kg-1 cyromazine sand substrate (CSS) for 48 h. When the Bdml that had been exposed to F. arisanus during the egg stage were treated with 3-7 mg kg-1 CSS for 48 h, no negative effects on the emergence parameters of parasitoids were observed. Treatment with 3-4 mg kg-1 CSS had insignificant effects on the biological and behavioral parameters of F. arisanus. However, treatment with 5-6 mg kg-1 CSS adversely affected the fecundity and antennating activity of the wasps; specifically, 6 mg kg-1 CSS negatively affected the lifespan and flight ability of wasps. Fortunately, no transgenerational effects on these parameters were observed in the progeny. Regarding the nutrient reserves of both sexes of F. arisanus, significant dose-dependent effects were observed. Moreover, 5-6 mg kg-1 CSS significantly reduced the protein and carbohydrate content in F. arisanus; in particular, 6 mg kg-1 CSS notably reduced the lipid content. CONCLUSION: CEIP provides a more flexible, economical and safe mass-release program for F. arisanus. In addition, it has profound implications for the biological control of other dipteran pests. © 2024 Society of Chemical Industry.


Asunto(s)
Larva , Control Biológico de Vectores , Tephritidae , Triazinas , Avispas , Animales , Avispas/fisiología , Avispas/efectos de los fármacos , Tephritidae/efectos de los fármacos , Tephritidae/crecimiento & desarrollo , Triazinas/farmacología , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Femenino , Pupa/crecimiento & desarrollo , Pupa/efectos de los fármacos , Masculino
5.
Pest Manag Sci ; 80(11): 5640-5647, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38994798

RESUMEN

BACKGROUND: Insecticide resistance among invasive tephritid fruit flies poses a great risk to national food security and has the potential to disrupt quarantine and eradication programs, which rely on the efficacy of Spinosad to prevent widespread establishment in North America. During 2022 to 2023 we surveyed the extent of Spinosad resistance of two key species, oriental fruit fly Bactrocera dorsalis, and melon fly Zeugodacus cucurbitae, from 20 sites across five Hawaiian Islands including Kaua'i, O'ahu, Maui, Molokai and the "Big Island" (Hawai'i). RESULTS: We used topical thoracic applications of eight concentrations of Spinosad ranging from 0.028 to 3.6 mg/mL to evaluate the lethal concentration (LC50 and LC99) required to kill wild-caught males. Resistance ratios (RR) were calculated by comparing the LC50 of wild flies to laboratory susceptible lines maintained in colony. Our results identified at least two new sites of concern for melon fly resistance on the Big Island, and at least four sites of concern for oriental fruit fly, all of which were located on the Big Island. At these locations RRs were >5. On O'ahu, melon fly RRs were >10. CONCLUSIONS: The persistence of Spinosad resistance is concerning, yet it is a reduction compared to the values reported previously and before changes to Spinosad use recommendations by local extension agents beginning in 2017. For oriental fruit fly, these RR values are the highest levels that have been detected in wild Hawai'i populations. These data suggest that expanded Spinosad reduction and replacement programs are warranted given the ongoing issues with Spinosad resistance in Hawai'i and expansion in the number of species affected. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Combinación de Medicamentos , Resistencia a los Insecticidas , Insecticidas , Macrólidos , Tephritidae , Animales , Macrólidos/farmacología , Hawaii , Tephritidae/efectos de los fármacos , Insecticidas/farmacología , Masculino
6.
Environ Entomol ; 53(5): 782-788, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-38956829

RESUMEN

Certain species of true fruit flies (Diptera: Tephritidae) cause tremendous damage to commercially important fruits and vegetables, and many countries operate continuous trapping programs which rely on male-specific lures such as trimedlure (TML), methyl eugenol (ME), and cue-lure (CL). Traditionally, these attractants have been applied as liquids to cotton wicks inside traps, although this results in high evaporative loss of the lure. Slow-release, polymeric plugs have been widely adopted for TML, but such devices are not widely used for ME or CL. Recent data, however, suggest that ME and CL plugs may be attractive for as long as 12 wk in the field. The present study investigates whether ME and CL plugs weathered for 18 or 24 wk are effective in capturing males of Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett), respectively. For B. dorsalis, 6 g ME plugs were as effective as the control treatment (fresh liquid on a wick) after 12 wk of weathering but not after 18 or 24 wk. For Z. cucurbitae, 3 g CL plugs were as effective as the control treatment (fresh CL plugs) after 12 and 18 wk of weathering but not after 24 wk. The residual content and release rate of the 2 lures were also measured over time, but, with the exception of the residual content of ME, we did not find a direct correlation between these parameters and numbers of flies captured.


Asunto(s)
Eugenol , Control de Insectos , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Eugenol/análogos & derivados , Eugenol/farmacología , Masculino , Hawaii , Feromonas/farmacología , Insecticidas/farmacología , Señales (Psicología)
7.
Pestic Biochem Physiol ; 202: 105919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879322

RESUMEN

G-protein coupled receptors (GPCRs) are the largest and most diverse transmembrane receptor family in the cell. They are involved in regulating a wide range of biological processes, including behavior, reproduction, and development. However, GPCRs have not yet been identified in Zeugodacus cucurbitae. The current study focuses on the GPCRs identification, classification, distribution, and their expression analysis under ß-cypermethrin stress to uncover novel targets for pest management and assist in the development of effective strategies for controlling the melon fly population. We identified 80 GPCRs genes including 50 GPCRs identified in family A, 17 GPCRs identified in family B, 8 identified in family C, and 5 identified in family F. Z. cucurbitae GPCRs showed significant differences in both the number of genes in families or subfamilies, as well as the sequencing of the genes. Interestingly, newly identified GPCRs genes are expressed differently at various developmental stages of Z. cucurbitae. Further, we evaluated these 80 GPCRs using Realtime quantitative PCR to confirm their expression between ß-cypermethrin-resistant (RS) strain and susceptible strain (SS) of Z. cucurbitae. We identified 50 GPCR genes were highly overexpressed in a RS. Among these genes, eight genes were strongly induced by the 30% lethal concentration (LC) while two genes were significantly increased by the 50% LC of ß-cypermethrin. This first genome-wide profiling and characterization of GPCRs could lay foundation for unraveling detoxification mechanism and target site modifications which may improve the insect resistance and could be effective insecticide targets for Z. cucurbitae management.


Asunto(s)
Insecticidas , Piretrinas , Receptores Acoplados a Proteínas G , Piretrinas/farmacología , Piretrinas/toxicidad , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Insecticidas/farmacología , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Tephritidae/genética , Tephritidae/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
8.
Pest Manag Sci ; 80(10): 5353-5363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38940484

RESUMEN

BACKGROUND: The olive fruit fly (OFF), Bactrocera oleae (Rossi), is the main insect pest of olive trees worldwide. Legislation limits to the use of some synthetic larvicidal insecticides is leading to the development of new control options for preventive control of adult flies. In the present study, the biological activity of four short-chain aliphatic aldehydes, namely hexanal, (E)-2-hexenal, heptanal and (E)-2-heptenal, previously reported as repellents to the OFF adults was investigated. RESULTS: Electroantennography (EAG) recordings showed that antennae of OFF males and females are able to perceive the test compounds in a wide range of doses. In field trapping experiments, reservoir-type polypropylene (PP) membrane dispensers loaded with individual compounds did not elicit a significant attraction of OFF males and females. On the contrary, a significant reduction of male catches was noticed when sex pheromone dispensers and PP membrane dispensers, loaded with one of the test compounds, were applied on the same white sticky traps ≈20 cm apart. Likewise, male and female catches in yellow sticky traps baited with ammonium carbonate (AC) dispensers as food attractant were significantly reduced by the presence of PP membrane dispensers of individual aliphatic aldehydes on the same traps. In small plots control trials, solid formulations of the four aldehydes into a bentonite clay support induced a significant reduction of the OFF active infestation mainly when C6 and C7 aldehyde-activated bentonites were used. CONCLUSION: Short-chain aliphatic aldehydes showed inhibitory effects on sex pheromone and food attractant-mediated attraction of OFF. Results of field trials suggest potential of short-chain aliphatic aldehydes to develop new semiochemical-based OFF control options. © 2024 Society of Chemical Industry.


Asunto(s)
Aldehídos , Carbonatos , Control de Insectos , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Tephritidae/fisiología , Masculino , Femenino , Aldehídos/farmacología , Aldehídos/química , Carbonatos/farmacología , Carbonatos/química , Control de Insectos/métodos , Feromonas/farmacología , Olea/química , Atractivos Sexuales/farmacología , Insecticidas/farmacología
9.
Z Naturforsch C J Biosci ; 79(9-10): 267-273, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38695678

RESUMEN

In this present study, new chalcone derivatives were synthesized from 4-aminoacetophenone, which were confirmed by spectroscopic methods. The toxic risks of chalcones to humans and the environment were investigated by a web-based platform called ADMETlab. With this program, the possible toxic effects of the compounds on liver, respiratory system, and eyes were evaluated. For the topical insecticidal activity, adult female Caribbean fruit fly, Anastrepha suspensa, was targeted. Results of the toxicity tests showed that chalcone derivatives are effective against female A. suspensa. Among the synthesized chalcones, 1-(4-cinnamoylphenyl)-3-(p-tolyl)urea (2) exhibited the greatest insecticidal activity, resulting in 73 % mortality at 100 µg/fly after 24 h, whereas other derivatives showed less than 30 % mortality. Our results demonstrate that insecticidal activity may be modulated by the presence of a certain phenyl ring in the structure of derivative 2 and, therefore, has potential for design of efficient chemicals for tephritid fruit fly management.


Asunto(s)
Chalconas , Insecticidas , Tephritidae , Animales , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Tephritidae/efectos de los fármacos , Femenino , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química
10.
Environ Entomol ; 53(3): 442-446, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38570731

RESUMEN

Chitosan is a naturally derived polymer that has significant potential for use as a bioinsecticide. Despite this, there is a lack of research as to the efficacy of chitosan for many insect pest species. The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is one such pest for which chitosan toxicity has not been explored. In this study, the toxicity of chitosan for R. pomonella adults was tested via no-choice feeding assays. An aging trial was further used to test the mortality of flies provided dried chitosan-sucrose treatments (CST), which were aged for 0 or 3 days in greenhouse conditions. This study found that the CST is toxic for R. pomonella adults when ingested, leading to a significant increase in the rate of mortality compared to control groups. The use of dried chitosan, however, did not change the mortality of flies, suggesting this will not be an effective delivery mechanism. Effective biopesticide delivery systems have not been defined for chitosan use outside of a laboratory, indicating the need for further research testing delivery mechanisms. It is suggested that an effective method of delivery can be as a food-based bait in attract-and-kill traps, as chitosan must be ingested to kill flies. Forming a viscous solution, chitosan may be best suited to these lure systems.


Asunto(s)
Quitosano , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Quitosano/farmacología , Insecticidas/farmacología , Femenino , Control de Insectos , Masculino , Conducta Alimentaria/efectos de los fármacos
11.
J Econ Entomol ; 117(3): 876-886, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38648180

RESUMEN

The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a crop pest of global economic importance because of its wide range of hosts and its invasiveness capacities. To develop a novel integrated and sustainable crop protection, we have investigated the insecticidal properties of different varieties of kava (Piper methysticum [Frost]) extracted by two methods and the attractive effects of six plant volatiles identified from B. tryoni host plants to female, mated or not. We did not identify any significant insecticidal effect of the traditional Pacific kava plant at the tested concentrations. Among mated females, ethyl acetate compared to the no odor control elicited the highest attraction (87%, of which 60% for this odor), while ethyl butyrate was preferred compared with ethyl acetate in dual choice assays. Flies' preferences for specific odors depended on their mating status and the odor landscape they were confronted with. Combination with the commercial ingestion insecticide (Success 4: spinosad, 480 g/l, Dow AgroSciences, Valbonne, France) with the plant volatiles were tested to detect an increase in mortality related to the addition of an attractant. The 2-heptanone slightly showed a tend to increase the attractiveness of mated females within 4-6 h to the food bait, but the results were not statistically significant after 8 h. Further tests should be performed with other concentrations or mixtures of the identified host plant volatiles to develop a strong lure and kill strategy.


Asunto(s)
Combinación de Medicamentos , Insecticidas , Macrólidos , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Femenino , Insecticidas/farmacología , Macrólidos/farmacología , Control de Insectos , Masculino , Compuestos Orgánicos Volátiles/farmacología , Kava , Feromonas/farmacología
12.
Pest Manag Sci ; 80(7): 3640-3649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456555

RESUMEN

BACKGROUND: The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION: The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cobre , Fertilidad , Insecticidas , Nanopartículas del Metal , Piretrinas , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Tephritidae/fisiología , Cobre/farmacología , Fertilidad/efectos de los fármacos , Insecticidas/farmacología , Femenino , Piretrinas/farmacología , Simbiosis , Nitrilos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Resistencia a los Insecticidas
13.
Insect Mol Biol ; 33(3): 218-227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319237

RESUMEN

Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to ß-cypermethrin. Glutathione S-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both ZcGSTd6 and ZcGSTd10 were up-regulated by ß-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with ß-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in Escherichia coli showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver-Burk. The Vmax and Km of ZcGSTd6 were 0.50 µmol/min·mg and 0.3 mM, respectively. The Vmax and Km of ZcGSTd10 were 1.82 µmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that ß-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to ß-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of ZcGSTd6 and ZcGSTd10 by using RNA interference. In addition, the inhibition of CDNB at 50% (IC50) and the inhibition constants (Ki) of ß-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The Ki and IC50 of ß-cypermethrin against ZcSGTd6 were not analysed. These results suggested that ZcGSTd10 could be an essential regulator involved in the tolerance of Z. cucurbitae to ß-cypermethrin.


Asunto(s)
Glutatión Transferasa , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Tephritidae , Animales , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Simulación del Acoplamiento Molecular , Piretrinas/farmacología , Interferencia de ARN , Tephritidae/genética , Tephritidae/enzimología , Tephritidae/efectos de los fármacos , Tephritidae/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-35121130

RESUMEN

Phenolic compounds are the secondary metabolites (SMs) present in plants carrying different bioactivities. In the present study, we explored the influence of a phenolic compound namely phloroglucinol on oviposition behaviour and different biochemical entities of an insect pest Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) using artificial diet. Phloroglucinol (IUPAC name: benzene-1,3,5-triol) affected the activity of antioxidant and detoxifying enzymes viz. superoxide dismutases (SOD), catalase (CAT), ascorbate peroxidases (APOX). dehydroascorbate reductase (DHAR), peroxidases (POX), phenol oxidase (PO), glutathione peroxidase (GPOX), glutathione S-transferase peroxidase (GSTpox), glutathione reductase (GR), glutathione S-transferase (GST) and esterases (EST) as well as the biological antioxidants viz. ascorbate content and glutathione. The lipid peroxide content (LP) and hydrogen peroxide content (H2O2) were significantly enhanced in the treated larvae indicating oxidative stress in the insect. Significant inhibition in oviposition was observed and effective repellency percentage increased with phloroglucinol treatment as compared to control. The oviposition deterrent activity and toxic effects of phloroglucinol on various biochemical parameters of Z. cucurbitae larvae revealed in the present study clearly confirms its suitability for use in pest management.


Asunto(s)
Enzimas/metabolismo , Oviposición/efectos de los fármacos , Floroglucinol/farmacología , Tephritidae/efectos de los fármacos , Alimentación Animal/análisis , Animales , Biomarcadores , Enzimas/genética , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Indicadores y Reactivos/farmacología , Estrés Oxidativo/efectos de los fármacos , Floroglucinol/química , Tephritidae/enzimología
15.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946585

RESUMEN

The present study analyzed the chemical composition of Juniperus foetidissima Willd. essential oils (EOs) and evaluated their attractancy and toxicity to two agriculturally important tephritid fruit flies. The composition of hydrodistilled EOs obtained from leaves (JFLEO) and fruits (JFFEO) of J. foetidissima was analyzed by GC-FID and GC-MS. The main compounds were α-pinene (45%) and cedrol (18%) in the JFLEO and α-pinene (42%), α-thujone (12%), and ß-thujone (25%) in the JFFEO. In behavioral bioassays of the male Mediterranean fruit fly, Ceratitis capitata (Wiedemann), both JFLEO and JFFEO showed strong attraction comparable to that observed with two positive controls, Melaleuca alternifolia and Tetradenia riparia EOs. In topical bioassays of the female Caribbean fruit fly, Anastrepha suspensa (Loew), the toxicity of JFFEO was two-fold higher than that of JFLEO, with the LD50 values being 10.46 and 22.07 µg/µL, respectively. This could be due to differences in chemical components between JFLEO and JFFEO. The JFFEO was dominated by 48% monoterpene hydrocarbons (MH) and 46% oxygenated monoterpenes (OM), while JFLEO consisted of 57% MH, 18% OM, and 20% oxygenated sesquiterpenes (OS). This is the first study to evaluate the attractancy and toxicity of J. foetidissima EOs to tephritid fruit flies. Our results indicate that JFFEO has the potential for application to the management of pest tephritid species, and further investigation is warranted.


Asunto(s)
Ceratitis capitata/efectos de los fármacos , Juniperus/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Tephritidae/efectos de los fármacos , Animales , Frutas/química , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Especificidad de la Especie
16.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770754

RESUMEN

Melon fly (Bactrocera cucurbitae) is the most common pest of cucurbits, and it directly causes damage to cucurbit fruits in the early developmental stage. The infection of fruit tissues induces oxidative damage through increased generation of cellular reactive oxygen species. The effects of melon fly infestation on the production of defensive enzymes and antioxidant capabilities in five cucurbit species, namely, bottle gourd, chayote, cucumber, snake gourd, and bitter gourd, were investigated in this study. The total phenolic and flavonoid content was considerably higher in melon fly infestation tissues compared to healthy and apparently healthy tissues. The chayote and bottle gourd tissues expressed almost 1.5- to 2-fold higher phenolic and flavonoid contents compared to the tissues of bitter gourd, snake gourd, and cucumber upon infestation. Defensive enzymes, such as peroxidase (POD), superoxide dismutase (SOD), polyphenol oxidase (PPO), and catalase (CAT), were high in healthy and infected tissues of chayote and bottle gourd compared to bitter gourd, snake gourd, and cucumber. The activity of POD (60-80%), SOD (30-35%), PPO (70-75%), and CAT (40-50%) were high in infected chayote and bottle gourd tissue, representing resistance against infestation, while bitter gourd, snake gourd, and cucumber exhibited comparatively lower activity suggesting susceptibility to melon fly infection. The antioxidant properties were also high in the resistant cucurbits compared to the susceptible cucurbits. The current research has enlightened the importance of redox-regulatory pathways involving ROS neutralization through infection-induced antioxidative enzymes in host cucurbit resistance. The melon fly infestation depicts the possible induction of pathways that upregulate the production of defensive enzymes and antioxidants as a defensive strategy against melon fly infestation in resistant cucurbits.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Cucurbita/química , Cucurbita/enzimología , Tephritidae/efectos de los fármacos , Animales , Cucurbita/genética , Cucurbita/parasitología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo
17.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641444

RESUMEN

The family Tephritidae (Diptera) includes species that are highly invasive and harmful to crops. Due to globalization, international trade, and human displacement, their spread is continuously increasing. Unfortunately, the control of tephritid flies is still closely linked to the use of synthetic insecticides, which are responsible for detrimental effects on the environment and human health. Recently, research is looking for alternative and more eco-friendly tools to be adopted in Integrated Pest Management (IPM) programs. In this regard, essential oils (EOs) and their main compounds represent a promising alternative to chemical insecticides. EOs are made up of phytoconstituents formed from the secondary metabolism of many plants and can act as attractants or toxics, depending on the dose. Because of this unique characteristic, EOs and their main constituents are promising tools that can be used both in Sterile Insect Technique (SIT) programs and in the "lure and kill" technique, exploiting the attractiveness of the product in the former case and its toxicity in the latter. In this article, current knowledge on the biological and behavioral effects of EOs and their main constituents on tephritid fruit flies is reviewed, mainly focusing on species belonging to the Anastrepha, Bactrocera, Ceratitis, and Zeugodacus genera. The mechanisms of action of EOs, their real-world applications, and challenges related to their use in IPM are critically discussed.


Asunto(s)
Control de Insectos/métodos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Tephritidae/efectos de los fármacos , Animales
18.
J Chem Ecol ; 47(6): 552-563, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33844147

RESUMEN

The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an economically devastating pest of fruit crops across the globe with stringent quarantine restrictions to limit its further spread. The current management programs increasingly depend on male annihilation but trapping female flies is equally important to reduce fruit damage. Considering the importance of kairomones in courtship and oviposition site selection behavior of B. dorsalis, the aim of this work was to isolate and identify potential cues from the volatiles of arils of jackfruit, Artocarpus heterophyllus. Using olfactometer assays and gas-chromatography linked to electroantennographic detection, attraction of both female and male B. dorsalis to specific jackfruit volatiles was demonstrated. Ethyl 3-methylbutanoate, ethyl hexanoate, pentyl butanote, 2-methylbutyl 3-methylbutanoate, 2-methylpropyl hexanoate, (Z)-3-hexenyl 3-methylbutanoate and dodecanal were found to attract female B. dorsalis specifically. Butyl acetate, 2 phenylethanol and pentyl 3-methylbutanoate elicited attraction in male B. dorsalis only. Synthetic blends of these compounds were found to attract female and male B. dorsalis in laboratory as well as field conditions. Using specific cues common to each set, a blend of methyl 3-methylbutanoate, butyl acetate, 3-methylbutyl acetate and hexyl acetate attracted both sexes of B dorsalis. This study demonstrates the use of kairomone-based lures for sex-specific as well as bisexual attraction for the first time.


Asunto(s)
Señales (Psicología) , Odorantes/análisis , Feromonas/farmacología , Tephritidae/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Feromonas/metabolismo , Tephritidae/metabolismo
19.
PLoS One ; 15(12): e0244493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382763

RESUMEN

The Chinese citrus fly, Bactrocera minax, is a notorious univoltine pest that causes damage to citrus. B. minax enters obligatory pupal diapause in each generation to resist harsh environmental conditions in winter. Despite the enormous efforts that have been made in the past decade, the understanding of pupal diapause of B. minax is currently still fragmentary. In this study, the 20-hydroxyecdysone solution and ethanol solvent was injected into newly-formed pupae to obtain non-diapause- (ND) and diapause-destined (D) pupae, respectively, and a comparative proteomics analysis between ND and D pupae was performed 1 and 15 d after injection. A total of 3,255 proteins were identified, of which 190 and 463 were found to be differentially abundant proteins (DAPs) in ND1 vs D1 and ND15 vs D15 comparisons, respectively. The reliability and accuracy of LFQ method was validated by qRT-PCR. Functional analyses of DAPs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction, were conducted. The results revealed that the diapause program of B. minax is closely associated with several physiological activities, such as phosphorylation, chitin biosynthesis, autophagy, signaling pathways, endocytosis, skeletal muscle formation, protein metabolism, and core metabolic pathways of carbohydrate, amino acid, and lipid conversion. The findings of this study provide insights into diapause program of B. minax and lay a basis for further investigation into its underlying molecular mechanisms.


Asunto(s)
Diapausa de Insecto/fisiología , Proteínas de Insectos/fisiología , Mapas de Interacción de Proteínas/fisiología , Tephritidae/crecimiento & desarrollo , Animales , Citrus/parasitología , Diapausa de Insecto/efectos de los fármacos , Ecdisterona/farmacología , Proteínas de Insectos/análisis , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Mapeo de Interacción de Proteínas , Proteómica , Pupa/efectos de los fármacos , Pupa/crecimiento & desarrollo , Tephritidae/efectos de los fármacos
20.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138264

RESUMEN

Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.


Asunto(s)
Frutas/química , Feromonas/farmacología , Proteoma/análisis , Proteoma/metabolismo , Tephritidae/metabolismo , Animales , Tephritidae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA