Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Adv Exp Med Biol ; 1461: 79-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289275

RESUMEN

Temperature affects a variety of cellular processes because the molecular motion of cellular constituents and the rate of biochemical reactions are sensitive to temperature changes. Thus, the adaptation to temperature is necessary to maintain cellular functions during temperature fluctuation, particularly in poikilothermic organisms. For a wide range of organisms, cellular lipid molecules play a pivotal role during thermal adaptation. Temperature changes affect the physicochemical properties of lipid molecules, resulting in the alteration of cell membrane-related functions and energy metabolism. Since the chemical structures of lipid molecules determine their physicochemical properties and cellular functions, cellular lipids, particularly fatty acid-containing lipid molecules, are remodeled as a thermal adaptation response to compensate for the effects of temperature change. In this chapter, we first introduce the structure and biosynthetic pathway of fatty acid-containing lipid molecules, such as phospholipid and triacylglycerol, followed by a description of the cellular lipid-mediated mechanisms of thermal adaptation and thermoregulatory behavior in animals.


Asunto(s)
Regulación de la Temperatura Corporal , Metabolismo de los Lípidos , Animales , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético , Fosfolípidos/metabolismo , Fosfolípidos/química , Adaptación Fisiológica/fisiología , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Triglicéridos/metabolismo , Termotolerancia/fisiología , Temperatura
2.
Sci Total Environ ; 950: 174969, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117224

RESUMEN

Deoxygenation is a growing threat to marine ecosystems, with an increase in the frequency, extent and intensity of hypoxia events in recent decades. These phenomena will pose various challenges to marine species, as it affects their survival, growth, body condition, metabolism and ability to handle other environmental stressors, such as temperature. Early life stages are particularly vulnerable to these changes. Thus, it is crucial to understand how these initial phases will respond to hypoxia to predict the impacts on marine populations and ecosystems. In this work, we aimed to evaluate the effect of oxygen (O2) availability on fitness related traits (mortality, growth and body condition), metabolism (Routine metabolic rates [RMR]) and thermal tolerance (CTmax), in early stages of Atherina presbyter, exposed for two weeks, to two O2 levels: normoxia (6.5-7.2 mg L-1) and hypoxia (2-2.5 mg L-1), through an experiment setup. Our findings showed that while low oxygen levels did not negatively impact mortality, total length, weight, or body condition (Fulton K), the larvae undergo metabolic depression when exposed to hypoxia, as an energy conservation mechanism. Furthermore, CTmax suffered a significant reduction in low O2 availability, due to the inability of the circulatory and respiratory systems to fulfill energy demands. These outcomes suggest that although early life stages of Atherina presbyter can survive under low oxygen environments, they are less capable of dealing with sudden increases in temperature when oxygen is scarce.


Asunto(s)
Larva , Termotolerancia , Animales , Larva/crecimiento & desarrollo , Termotolerancia/fisiología , Oxígeno/metabolismo , Ecosistema
3.
Plant J ; 119(5): 2217-2235, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961633

RESUMEN

Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Termotolerancia , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Triticum/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerancia/genética , Termotolerancia/fisiología , Calor , Citoplasma/metabolismo , Proteómica , Respuesta al Choque Térmico/fisiología , Aclimatación/genética
4.
Integr Comp Biol ; 64(2): 189-202, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38992237

RESUMEN

As global temperatures continue to rise, accurate predicted species distribution models will be important for forecasting the movement of range-shifting species. These predictions rely on measurements of organismal thermal tolerance, which can be measured using classical threshold concepts such as Arrhenius break temperatures and critical thermal temperatures, or through ecologically relevant measurements such as the temperature at which reproduction and growth occur. Many species, including invasive species, exhibit thermal plasticity, so these thresholds may change based on ambient temperature, life stage, and measurement techniques. Here, we review thermal thresholds for 15 invertebrate species invasive to the Gulf of Maine. The high degree of variability within a species and between applied conceptual frameworks suggests that modeling the future distribution of these species in all ecosystems, but especially in the rapidly warming northwest Atlantic and Gulf of Maine, will be challenging. While each of these measurement techniques is valid, we suggest contextualization and integration of threshold measurements for accurate modeling.


Asunto(s)
Especies Introducidas , Invertebrados , Animales , Océano Atlántico , Invertebrados/fisiología , Calor , Maine , Distribución Animal , Termotolerancia/fisiología
5.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39034690

RESUMEN

Heart failure is among the first major consequences of heat stress in aquatic ectotherms. Mitochondria produce most of the ATP used by the heart and represent almost half of the volume in cardiac cells. It has therefore been hypothesized that mitochondrial dysfunction may be a major cause of heart failure associated with heat stress. The present study aims to investigate if CTmax is linked to the thermal sensitivity of cardiac mitochondria in the three-spined stickleback (Gasterosteus aculeatus), and if it is influenced by heart fatty acid composition and age. To do so, we measured the CTmax of 30 fish. The cardiac mitochondrial oxygen consumption was measured by high resolution respirometry at three temperatures and heart lipid profiles were obtained by gas chromatography (GC) coupled with a flame ionization detector (FID). Fish age was estimated via otolith readings. Fatty acid profiles showed no correlation with CTmax, but EPA levels were higher in older individuals. Mitochondrial respiration was measured in 35 fish using high-resolution respirometry. It was strongly affected by temperature and showed a drastic drop in OXPHOS respiration fed by complex I and complex I+complex II, while uncoupled respiration plateaued at CTmax temperature. Our results suggest that complex I is an important modulator of the impact of temperature on mitochondrial respiration at high temperatures but is not the main limiting factor in physiological conditions (maximal OXPHOS). Mitochondrial respiration was also affected by fish age, showing a general decrease in older individuals.


Asunto(s)
Ácidos Grasos , Mitocondrias Cardíacas , Smegmamorpha , Animales , Ácidos Grasos/metabolismo , Mitocondrias Cardíacas/metabolismo , Smegmamorpha/fisiología , Smegmamorpha/metabolismo , Consumo de Oxígeno/fisiología , Envejecimiento/fisiología , Termotolerancia/fisiología
6.
New Phytol ; 243(6): 2130-2145, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049585

RESUMEN

Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.


Asunto(s)
Antozoos , Fotosíntesis , Selección Genética , Simbiosis , Temperatura , Animales , Antozoos/fisiología , Antozoos/efectos de la radiación , Simbiosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/fisiología
8.
Plant Biol (Stuttg) ; 26(5): 789-797, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858861

RESUMEN

Petunia hybrida, widely grown as a bedding plant, has reduced growth and flower quality at temperatures above 30 °C (heat stress), primarily due to heat stress-induced ethylene (ET) production. The gene acdS encodes the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) enzyme, which is known for its role in reducing ET production by breaking down the ET precursor, ACC, in plant tissues. This study investigated the impact of heat stress on both 'Mirage Rose' WT petunia and its acdS-overexpressing transgenic lines. Heat stress-induced growth inhibition was observed in WT plants but not in transgenic plants. The increased stress tolerance of transgenic plants over WT plants was associated with lower ET production, ROS accumulation, higher SPAD values, water content, and relative water content. Furthermore, higher sensitivity of the WT to heat stress than the transgenic plants was confirmed by analysing ET signalling genes, heat shock transcription factor genes, and antioxidant- and proline-related genes, more strongly induced in WT than in transgenic plants. Overall, this study suggests the potential application of acdS overexpression in other floriculture plants as a viable strategy for developing heat stress-tolerant varieties. This approach holds promise for advancing the floricultural industry by overcoming challenges related to heat-induced growth inhibition and loss of flower quality.


Asunto(s)
Etilenos , Respuesta al Choque Térmico , Petunia , Plantas Modificadas Genéticamente , Petunia/genética , Petunia/fisiología , Petunia/metabolismo , Etilenos/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/genética , Termotolerancia/fisiología , Calor
9.
J Exp Biol ; 227(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841875

RESUMEN

The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.


Asunto(s)
Aclimatación , Artrópodos , Humedad , Termotolerancia , Animales , Regiones Árticas , Aclimatación/fisiología , Artrópodos/fisiología , Termotolerancia/fisiología , Temperatura , Calor , Cambio Climático
10.
Integr Comp Biol ; 64(2): 377-389, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38702856

RESUMEN

As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the "cybotoid" anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.


Asunto(s)
Ecosistema , Lagartos , Lagartos/fisiología , Animales , Región del Caribe , Temperatura , Termotolerancia/fisiología , Pérdida Insensible de Agua/fisiología
11.
Nature ; 629(8014): 1126-1132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750356

RESUMEN

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrínsecamente Desordenadas , Temperatura , Sensación Térmica , Termotolerancia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Represoras/metabolismo , Sensación Térmica/genética , Sensación Térmica/fisiología , Termotolerancia/genética , Termotolerancia/fisiología , Factores de Transcripción/metabolismo , Transducción de Señal
12.
PeerJ ; 12: e17148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708360

RESUMEN

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Asunto(s)
Lotus , Polen , Termotolerancia , Polen/fisiología , Termotolerancia/fisiología , Lotus/fisiología , Lotus/crecimiento & desarrollo , Adaptación Fisiológica/fisiología , Calentamiento Global , Germinación/fisiología , Altitud , Cambio Climático , Temperatura , Aclimatación/fisiología
13.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
14.
Plant Physiol ; 195(2): 1025-1037, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38447060

RESUMEN

Global climate change is accompanied by carbon dioxide (CO2) enrichment and high temperature (HT) stress; however, how plants adapt to the combined environments and the underlying mechanisms remain largely unclear. In this study, we show that elevated CO2 alleviated plant sensitivity to HT stress, with significantly increased apoplastic glucose (Glc) levels in tomato (Solanum lycopersicum) leaves. Exogenous Glc treatment enhanced tomato resilience to HT stress under ambient CO2 conditions. Cell-based biolayer interferometry, subcellular localization, and Split-luciferase assays revealed that Glc bound to the tomato regulator of G protein signaling 1 (RGS1) and induced RGS1 endocytosis and thereby RGS1-G protein α subunit (GPA1) dissociation in a concentration-dependent manner. Using rgs1 and gpa1 mutants, we found that RGS1 negatively regulated thermotolerance and was required for elevated CO2-Glc-induced thermotolerance. GPA1 positively regulated the elevated CO2-Glc-induced thermotolerance. A combined transcriptome and chlorophyll fluorescence parameter analysis further revealed that GPA1 integrated photosynthesis- and photoprotection-related mechanisms to regulate thermotolerance. These results demonstrate that Glc-RGS1-GPA1 signaling plays a crucial role in the elevated CO2-induced thermotolerance in tomato. This information enhances our understanding of the Glc-G protein signaling function in stress resilience in response to global climate change and will be helpful for genetic engineering approaches to improve plant resilience.


Asunto(s)
Dióxido de Carbono , Glucosa , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Dióxido de Carbono/metabolismo , Glucosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calor , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas RGS/metabolismo , Proteínas RGS/genética , Termotolerancia/fisiología
15.
J Exp Bot ; 75(11): 3467-3482, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447052

RESUMEN

The thermal death time (TDT) model suggests that the duration for which an organism can tolerate thermal stress decreases exponentially as the intensity of the temperature becomes more extreme. This model has been used to predict damage accumulation in ectothermic animals and plants under fluctuating thermal conditions. However, the critical assumption of the TDT model, which is additive damage accumulation, remains unverified for plants. We assessed thermal damage in Thymus vulgaris under different heat and cold treatments, and used TDT models to predict time to thermal failure of PSII. Additionally, thermal tolerance estimates from previous studies were used to create TDT models to assess the applicability of this framework in plants. We show that thermal damage is additive between 44 °C and 47 °C and between -6.5 °C and -8 °C, and that the TDT model can predict damage accumulation at both temperature extremes. Data from previous studies indicate a broad applicability of this approach across plant species and traits. The TDT framework reveals a thermal tolerance landscape describing the relationship between exposure duration, stress intensity, and percentage damage accumulation. The extreme thermal sensitivity of plants emphasizes that even a 1 °C increase in future extreme temperatures could impact their mortality and distribution.


Asunto(s)
Calor , Calor/efectos adversos , Thymus (Planta)/fisiología , Modelos Biológicos , Frío , Termotolerancia/fisiología
17.
Plant Biol (Stuttg) ; 26(4): 495-498, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477075

RESUMEN

There is growing concern about the fate of tropical forests in the face of rising global temperatures. Doughty et al. (2023) suggest that an increase in air temperature beyond ∼4 °C will result in massive death of tropical forest leaves and potentially tree death. However, this prediction relies on assumptions that likely underestimate the heat tolerance of tropical leaves.


Asunto(s)
Bosques , Hojas de la Planta , Árboles , Clima Tropical , Hojas de la Planta/fisiología , Árboles/fisiología , Temperatura , Cambio Climático , Termotolerancia/fisiología , Calentamiento Global , Calor
18.
Ecology ; 105(5): e4279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501232

RESUMEN

The role of atmospheric humidity in the evolution of endotherms' thermoregulatory performance remains largely unexplored, despite the fact that elevated humidity is known to impede evaporative cooling capacity. Using a phylogenetically informed comparative framework, we tested the hypothesis that pronounced hyperthermia tolerance among birds occupying humid lowlands evolved to reduce the impact of humidity-impeded scope for evaporative heat dissipation by comparing heat tolerance limits (HTLs; maximum tolerable air temperature), maximum body temperatures (Tbmax), and associated thermoregulatory variables in humid (19.2 g H2O m-3) versus dry (1.1 g H2O m-3) air among 30 species from three climatically distinct sites (arid, mesic montane, and humid lowland). Humidity-associated decreases in evaporative water loss and resting metabolic rate were 27%-38% and 21%-27%, respectively, and did not differ significantly between sites. Decreases in HTLs were significantly larger among arid-zone (mean ± SD = 3.13 ± 1.12°C) and montane species (2.44 ± 1.0°C) compared to lowland species (1.23 ± 1.34°C), with more pronounced hyperthermia among lowland (Tbmax = 46.26 ± 0.48°C) and montane birds (Tbmax = 46.19 ± 0.92°C) compared to arid-zone species (45.23 ± 0.24°C). Our findings reveal a functional link between facultative hyperthermia and humidity-related constraints on evaporative cooling, providing novel insights into how hygric and thermal environments interact to constrain avian performance during hot weather. Moreover, the macrophysiological patterns we report provide further support for the concept of a continuum from thermal specialization to thermal generalization among endotherms, with adaptive variation in body temperature correlated with prevailing climatic conditions.


Asunto(s)
Evolución Biológica , Aves , Humedad , Termotolerancia , Animales , Termotolerancia/fisiología , Aves/fisiología , Regulación de la Temperatura Corporal/fisiología , Atmósfera , Calor
19.
New Phytol ; 242(5): 1919-1931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532535

RESUMEN

Multivariate leaf trait correlations are hypothesized to originate from natural selection on carbon economics traits that control lifetime leaf carbon gain, and energy balance traits governing leaf temperatures, physiological rates, and heat injury. However, it is unclear whether macroevolution of leaf traits primarily reflects selection for lifetime carbon gain or energy balance, and whether photosynthetic heat tolerance is coordinated along these axes. To evaluate these hypotheses, we measured carbon economics, energy balance, and photosynthetic heat tolerance traits for 177 species (157 families) in a common garden that minimizes co-variation of taxa and climate. We observed wide variation in carbon economics, energy balance, and heat tolerance traits. Carbon economics and energy balance (but not heat tolerance) traits were phylogenetically structured, suggesting macroevolution of leaf mass per area and leaf dry matter content reflects selection on carbon gain rather than energy balance. Carbon economics and energy balance traits varied along a common axis orthogonal to heat tolerance traits. Our results highlight a fundamental mismatch in the timescales over which morphological and heat tolerance traits respond to environmental variation. Whereas carbon economics and energy balance traits are constrained by species' evolutionary histories, photosynthetic heat tolerance traits are not and can acclimate readily to leaf microclimates.


Asunto(s)
Aclimatación , Carbono , Metabolismo Energético , Fotosíntesis , Hojas de la Planta , Termotolerancia , Hojas de la Planta/fisiología , Carbono/metabolismo , Termotolerancia/fisiología , Calor , Filogenia , Carácter Cuantitativo Heredable , Factores de Tiempo , Adaptación Fisiológica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA