RESUMEN
Antimicrobial peptides have garnered increasing attention as potential alternatives due to their broad-spectrum antimicrobial activity and low propensity for developing resistance. This is for the first time; proteome sequences of Aegle marmelos were subjected to in-silico digestion and AMP prediction were performed using DBAASP server. After screening the peptides on the basis of different physiochemical property, peptide sequence GKEAATKAIKEWGQPKSKITH (AM1) shows the maximum binding affinity with - 10.2 Kcal/mol in comparison with the standard drug (Trimethoprim) with - 7.4 kcal/mol and - 6.8 Kcal/mol for DHFR and SaTrmK enzyme respectively. Molecular dynamics simulation performed for 300ns, it has been found that peptide was able to stabilize the protein more effectively, analysed by RMSD, RMSF, and other statistical analysis. Free binding energy for DHFR and SaTrmK interaction from MMPBSA analysis with peptide was found to be -47.69 and - 44.32 Kcal/mol and for Trimethoprim to be -13.85 Kcal/mol and - 11.67 Kcal/mol respectively. Further in-vitro study was performed against Methicillin Susceptible Staphylococcus aureus (MSSA), Methicillin Resistant Staphylococcus aureus (MRSA), Multi-Drug Resistant Staphylococcus aureus (MDR-SA) strain, where MIC values found to be 2, 4, and 8.5 µg/ml lesser in comparison to trimethoprim which has higher MIC values 2.5, 5, and 9.5 µg/ml respectively. Thus, our study provides the insight for the further in-vivo study of the peptides against multi-drug resistant S. aureus.
Asunto(s)
Aegle , Péptidos Antimicrobianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Aegle/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Simulación por Computador , Secuencia de Aminoácidos , AnimalesRESUMEN
Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in the study of protein dynamics. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in the dynamics. For example, specific mutations on the Met20 loop in Escherichia coli DHFR (N23PP/S148A) are known to disrupt millisecond-time scale motions as well as reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues that possesses increased correlated motions. We then go on to show that allosteric communication in this network is knocked down in N23PP/S148A mutant E. coli DHFR. We also identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline motif. Finally, we demonstrate a concerted evolutionary change in the human DHFR allosteric networks, which maintains dynamic communication. These findings strongly implicate protein dynamics as a driving force for evolution.
Asunto(s)
Escherichia coli , Tetrahidrofolato Deshidrogenasa , Humanos , Regulación Alostérica , Escherichia coli/enzimología , Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Mutación , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genéticaRESUMEN
The sensitivity to protein inhibitors is altered by modifications or protein mutations, as represented by drug resistance. The mode of stable drug binding to the protein pocket has been experimentally clarified. However, the nature of the binding of inhibitors with reduced sensitivity remains unclear at the atomic level. In this study, we analyzed the thermodynamics and kinetics of inhibitor binding to the surface of wild-type and mutant dihydrofolate reductase (DHFR) using molecular dynamics simulations combined with Markov state modeling. A strong inhibitor of methotrexate (MTX) showed a preference for the active site of wild-type DHFR with minimal binding to unrelated (secondary) sites. Deletion of a side-chain fragment in MTX largely destabilized the active site-bound state, with clear evidence of binding to secondary sites. Similarly, the F31V mutation in DHFR diminished the specificity of MTX binding to the active site. These results reveal the presence of multiple-bound states whose stabilities are comparable to or higher than those of the unbound state, suggesting that a reduction in the binding affinity for the active site significantly elevates the fractions of these states. This study presents a theoretical model that more accurately interprets the altered drug sensitivity than the traditional two-state model.
Asunto(s)
Antagonistas del Ácido Fólico , Metotrexato , Simulación de Dinámica Molecular , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/metabolismo , Metotrexato/química , Metotrexato/farmacología , Metotrexato/metabolismo , Sitios de Unión , Termodinámica , Unión Proteica , Cinética , Mutación , Dominio CatalíticoRESUMEN
Dihydrofolate reductase (DHFR), an essential enzyme in folate metabolism, presents a promising target for drug development against various diseases, including cancer and tuberculosis. Herein, we present an integrated approach combining in vitro biochemical assays with in silico molecular docking analysis to evaluate the inhibitory potential of 4-piperidine-based thiosemicarbazones 5(a-s) against DHFR. In our in vitro study, a novel series of 4-piperidine-based thiosemicarbazones 5(a-s) were assessed for their inhibitory activity against DHFR enzyme. The synthesized compounds 5(a-s) exhibited potent inhibition with IC50 values in the range of 13.70 ± 0.25 µM to 47.30 ± 0.86 µM. Among all the derivatives 5p displayed highest inhibitory activity. Simultaneously, in silico analysis were performed and compared with standard drug (Methotrexate) to predict the binding affinity and interaction pattern of synthesized compounds with DHFR active site. SAR analysis was done to elucidate how structural modifications impact compound's biological activity, guiding the rational design of potent and selective drug candidates for targeted diseases. These findings may provide a comprehensive assessment of 4-piperdine-based thiosemicarbazones as DHFR inhibitors and contribute to the development of novel therapeutics targeting DHFR-associated diseases.
Asunto(s)
Diseño de Fármacos , Antagonistas del Ácido Fólico , Simulación del Acoplamiento Molecular , Piperidinas , Tetrahidrofolato Deshidrogenasa , Tiosemicarbazonas , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/síntesis química , Piperidinas/química , Piperidinas/farmacología , Piperidinas/síntesis química , Relación Estructura-Actividad , Humanos , Dominio Catalítico , Simulación por Computador , Unión ProteicaRESUMEN
Dihydrofolate reductase (DHFR) is ubiquitously present in all living organisms and plays a crucial role in the growth of the fungal pathogen R.solani. Sequence alignment confirmed the evolutionary conservation of the essential lid domain, with the amino acid 'P' within the PEKN lid domain appearing with a frequency of 89.5% in higher organisms and 11.8% in lower organisms. Consequently, a K65P variant was introduced into R.solani DHFR (rDHFR). Subsequent enzymatic kinetics assays were conducted for human DHFR (hDHFR), rDHFR, E. coli DHFR (eDHFR), and the K65P variant. hDHFR exhibited the highest kcat of 0.95 s-1, followed by rDHFR with 0.14 s-1, while eDHFR displayed the lowest kcat of 0.09 s-1. Remarkably, the K65P variant induced a significant reduction in Km, resulting in a 1.8-fold enhancement in catalytic efficiency (kcat/Km) relative to the wild type. Differential scanning fluorimetry and binding free energy calculations confirmed the enhanced substrate affinity for both folate and NADPH in the K65P variant. These results suggest that the K65P mutation enhances substrate affinity and catalytic efficiency in DHFR, highlighting the evolutionary and functional importance of the K65 residue.
Asunto(s)
Simulación de Dinámica Molecular , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Sustitución de Aminoácidos , Especificidad por Sustrato , Ácido Fólico/metabolismo , Ácido Fólico/química , NADP/metabolismo , NADP/químicaRESUMEN
Recent work from Nguyen et al. unveils massively parallel measurements of epistatic interactions between two enzymes, dihydrofolate reductase and thymidylate synthase, in their natural cellular context. Almost 3000 mutations of DHFR in three TYMS backgrounds reveal a complex interaction network. The authors capture much of this complexity using a simple model.
Asunto(s)
Epistasis Genética , Tetrahidrofolato Deshidrogenasa , Timidilato Sintasa , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Timidilato Sintasa/metabolismo , Timidilato Sintasa/genética , Mutación , HumanosRESUMEN
The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.
Asunto(s)
Chaperonina 60 , Codón , Escherichia coli , Pliegue de Proteína , Tetrahidrofolato Deshidrogenasa , Chaperonina 60/genética , Chaperonina 60/química , Chaperonina 60/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Codón/genética , Codón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Mutación SilenciosaRESUMEN
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.
Asunto(s)
Antagonistas del Ácido Fólico , Tetrahidrofolato Deshidrogenasa , Triazinas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Humanos , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Triazinas/farmacología , Triazinas/química , Tripanocidas/farmacología , Tripanocidas/química , Proguanil/farmacología , Proguanil/química , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Leishmania infantum/efectos de los fármacos , Leishmania infantum/enzimología , Bencimidazoles/farmacología , Bencimidazoles/química , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , OxidorreductasasRESUMEN
In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.
Asunto(s)
Antituberculosos , Pirroles , Tetrahidrofolato Deshidrogenasa , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Dominio Catalítico , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/metabolismo , Enoil-ACP Reductasa (NADH)/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/síntesis química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Pirroles/síntesis química , Pirroles/química , Pirroles/farmacología , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/químicaRESUMEN
The observation of multiple conformations of a functional loop (termed M20) in the Escherichia coli dihydrofolate reductase (ecDHFR) enzyme triggered the proposition that large-scale motions of protein structural elements contribute to enzyme catalysis. The transition of the M20 loop from a closed conformation to an occluded conformation was thought to aid the rate-limiting release of the products. However, the influence of charged species in the solution environment on the observed M20 loop conformations, independent of charged ligands bound to the enzyme, had not been considered. Molecular dynamics simulations of ecDHFR in model CaCl2 solutions of varying molar ionic strengths IM reveal a substantial free energy barrier between occluded and closed M20 loop states at IM exceeding the E. coli threshold (â¼0.24 M). This barrier may facilitate crystallization of ecDHFR in the occluded state, consistent with ecDHFR structures obtained at IM exceeding 0.3 M. At lower IM (≤0.15 M), the M20 loop can explore the occluded state, but prefers an open/partially closed conformation, again consistent with ecDHFR structures. Our findings caution against using ecDHFR structures obtained at nonphysiological ionic strengths in interpreting catalytic events or in structure-based drug design.
Asunto(s)
Escherichia coli , Simulación de Dinámica Molecular , Conformación Proteica , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Escherichia coli/enzimología , Concentración Osmolar , Soluciones , Cloruro de Calcio/química , Cloruro de Calcio/metabolismoRESUMEN
Pneumocystis jirovecii is a fungal pathogen that causes pneumocystis pneumonia, a disease that mainly affects immunocompromised individuals. This fungus has historically been hard to study because of our inability to grow it in vitro. One of the main drug targets in P. jirovecii is its dihydrofolate reductase (PjDHFR). Here, by using functional complementation of the baker's yeast ortholog, we show that PjDHFR can be inhibited by the antifolate methotrexate in a dose-dependent manner. Using deep mutational scanning of PjDHFR, we identify mutations conferring resistance to methotrexate. Thirty-one sites spanning the protein have at least one mutation that leads to resistance, for a total of 355 high-confidence resistance mutations. Most resistance-inducing mutations are found inside the active site, and many are structurally equivalent to mutations known to lead to resistance to different antifolates in other organisms. Some sites show specific resistance mutations, where only a single substitution confers resistance, whereas others are more permissive, as several substitutions at these sites confer resistance. Surprisingly, one of the permissive sites (F199) is without direct contact to either ligand or cofactor, suggesting that it acts through an allosteric mechanism. Modeling changes in binding energy between F199 mutants and drug shows that most mutations destabilize interactions between the protein and the drug. This evidence points towards a more important role of this position in resistance than previously estimated and highlights potential unknown allosteric mechanisms of resistance to antifolate in DHFRs. Our results offer unprecedented resources for the interpretation of mutation effects in the main drug target of an uncultivable fungal pathogen.
Asunto(s)
Farmacorresistencia Fúngica , Antagonistas del Ácido Fólico , Metotrexato , Mutación , Pneumocystis carinii , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Pneumocystis carinii/genética , Pneumocystis carinii/enzimología , Pneumocystis carinii/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Farmacorresistencia Fúngica/genética , Metotrexato/farmacología , Regulación Alostérica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Dominio Catalítico/genéticaRESUMEN
In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24â mm compared with ampicillin (20-25â mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17â mm) and 9 d (ZI=16â mm) recorded higher antifungal activity against C.â albicans to that exhibited by the antifungal drug amphotericin B (ZI=15â mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.
Asunto(s)
Antibacterianos , Candida albicans , Girasa de ADN , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Quinolinas , Tetrahidrofolato Deshidrogenasa , Quinolinas/química , Quinolinas/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Candida albicans/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Estructura Molecular , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Relación Dosis-Respuesta a DrogaRESUMEN
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Asunto(s)
Biocatálisis , Código Genético , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ingeniería de Proteínas , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismoRESUMEN
BACKGROUND: Quassinoids are degraded triterpene compounds that can be obtained from various species of the Simaroubaceae plant family, including Eurycoma longifolia. Quassinoids are the major compounds in E. longifolia, and they are known to have various medicinal potentials, such as anticancer and antimalarial properties. Dihydrofolate reductase (DHFR) was reported to be one of the important targets for certain anticancer and antimalarial drugs. Twelve quassinoids from E. longifolia were identified to have anticancer effects based on their IC50 values. This study aimed to evaluate the interactions of these twelve quassinoids with DHFR via Autodock 4.2 software and Biovia Discovery Studio Visualiser. METHODS: Twelve quassinoids from E. longifolia and their interactions with DHFR were evaluated via Autodock 4.2 software and Biovia Discovery Studio Visualiser. Their drug-likeness and pharmacokinetic properties were also assessed using the ADMETlab 2.0 program. RESULTS: The molecular docking results showed that eleven quassinoids showed better docking scores than methotrexate, in which the binding energy (BE) of these quassinoids ranged from - 7.87 to -9.58 kcal/mol. Their inhibition constant (Ki) ranged from 0.095 to 1.71 µM. At the same time, the BE and Ki values for methotrexate were -7.80 kcal/mol and 1.64 µM, respectively. CONCLUSION: From the analysis, 6-dehydrolongilactone and eurycomalide B are among the twelve compounds that showed great potential as hit-to-lead compounds based on the docking score on DHFR, drug-likeness, and ADMET properties. These results suggest a great potential to pursue validation studies via in vitro and in vivo models.
Asunto(s)
Eurycoma , Antagonistas del Ácido Fólico , Simulación del Acoplamiento Molecular , Cuassinas , Tetrahidrofolato Deshidrogenasa , Cuassinas/farmacología , Cuassinas/química , Cuassinas/aislamiento & purificación , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Eurycoma/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , HumanosRESUMEN
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.
Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Preparaciones Farmacéuticas , Reposicionamiento de Medicamentos , Malaria/tratamiento farmacológico , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Resistencia a Medicamentos , Ácido FólicoRESUMEN
Pharmacological inhibition of dihydrofolate reductase (DHFR) is an established approach for treating a variety of human diseases, including foreign infections and cancer. However, treatment with classic DHFR inhibitors, such as methotrexate (MTX), are associated with negative side-effects and resistance mechanisms that have prompted the search for alternatives. The DHFR inhibitor pyrimethamine (Pyr) has compelling anti-cancer activity in in vivo models, but lacks potency compared to MTX, thereby requiring higher concentrations to induce therapeutic responses. The purpose of this work was to investigate structural analogues of Pyr to improve its in vitro and cellular activity. A series of 36 Pyr analogues were synthesized and tested in a sequence of in vitro and cell-based assays to monitor their DHFR inhibitory activity, cellular target engagement, and impact on breast cancer cell viability. Ten top compounds were identified, two of which stood out as potential lead candidates, 32 and 34. These functionalized Pyr analogues potently engaged DHFR in cells, at concentrations as low as 1 nM and represent promising DHFR inhibitors that could be further explored as potential anti-cancer agents.
Asunto(s)
Antineoplásicos , Antagonistas del Ácido Fólico , Neoplasias , Humanos , Pirimetamina/farmacología , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Metotrexato/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Biología , Tetrahidrofolato Deshidrogenasa/químicaRESUMEN
Many natural products have been shown to possess antiplasmodial activities, but their protein targets are unknown. This work employed molecular docking and molecular dynamics simulations to explore the inhibitory activity of some antiplasmodial natural products against wild-type and mutant strains of Plasmodium falciparum dihydrofolate reductase (PfDHFR). From the molecular docking study, 6 ligands preferentially bind at the active site of the DHFR domain with binding energies ranging from -6.4 to -9.5 kcal/mol. Interactions of compounds with MET55 and PHE58 were mostly observed in the molecular docking study. From the molecular dynamics study, the binding of 2 of the ligands-nitidine and oplodiol-was observed to be stable against all tested strains of PfDHFR. The average binding free energy of oplodiol in complex with the various PfDHFR strains was -93.701 kJ/mol whereas that of nitidine was -106.206 kJ/mol. The impressive in silico activities of the 2 compounds suggest they could be considered for development as potential antifolate agents.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Antimaláricos , Benzofenantridinas , Productos Biológicos , Naftoles , Plasmodium falciparum/metabolismo , Antimaláricos/farmacología , Antimaláricos/química , Simulación del Acoplamiento Molecular , Tetrahidrofolato Deshidrogenasa/químicaRESUMEN
Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical components, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these components. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [k_{cat}, K_{M}, K_{i}, and T_{m} (melting temperature)]. We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future applications to bioengineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.
Asunto(s)
Epistasis Genética , Escherichia coli , Escherichia coli/metabolismo , Mutación , Fenotipo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Resistencia a MedicamentosRESUMEN
Fitness landscape theory predicts that rugged landscapes with multiple peaks impair Darwinian evolution, but experimental evidence is limited. In this study, we used genome editing to map the fitness of >260,000 genotypes of the key metabolic enzyme dihydrofolate reductase in the presence of the antibiotic trimethoprim, which targets this enzyme. The resulting landscape is highly rugged and harbors 514 fitness peaks. However, its highest peaks are accessible to evolving populations via abundant fitness-increasing paths. Different peaks share large basins of attraction that render the outcome of adaptive evolution highly contingent on chance events. Our work shows that ruggedness need not be an obstacle to Darwinian evolution but can reduce its predictability. If true in general, the complexity of optimization problems on realistic landscapes may require reappraisal.
Asunto(s)
Proteínas de Escherichia coli , Aptitud Genética , Tetrahidrofolato Deshidrogenasa , Modelos Genéticos , Mutación , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Edición Génica , Sistemas CRISPR-Cas , Selección Genética , Simulación por ComputadorRESUMEN
Enzymes are complex macromolecules capable of catalyzing a wide variety of chemical reactions with high efficiency. Nonetheless, biological catalysis can be rudimentary. Here, we describe an enzyme that is built from a simple protein fold. This short protein sequence - almost a peptide - belongs to the ancient SH3 family of binding modules. Surprisingly, this binding module catalyzes the specific reduction of dihydrofolate using NADPH as a reducing cofactor, making this a dihydrofolate reductase. Too small to provide all the required binding and catalytic machinery on its own, it homotetramerizes, thus creating a large, central active site environment. Remarkably, none of the active site residues is essential to the catalytic function. Instead, backbone interactions juxtapose the reducing cofactor proximal to the target imine of the folate substrate, and a specific motion of the substrate promotes formation of the transition state. In this feature article, we describe the features that make this small protein a functional enzyme capable of catalyzing a metabolically essential reaction, highlighting the characteristics that make it a model for the evolution of primitive enzymes from binding modules.