RESUMEN
The kinesin-9 family comprises two subfamilies specific to ciliated eukaryotic cells, and has recently attracted considerable attention because of its importance in ciliary bending and formation. However, only scattered data are available on the motor properties of kinesin-9 family members; these properties have not been compared under identical experimental conditions using kinesin-9 motors from the same species. Here, we report the comprehensive motor properties of two kinesin-9 molecules of Tetrahymena thermophila, TtK9A (Kif9/Klp1 ortholog) and TtK9B1 (Kif6 ortholog), using microtubule-based in vitro assays, including single-motor and multi-motor assays and microtubule-stimulated ATPase assays. Both subfamilies exhibit microtubule plus-end-directed, extremely slow motor activity, both in single and multiple molecules. TtK9A shows lower processivity than TtK9B1. Our findings indicate that the considerable slow movement of kinesin-9 that corresponds to low ATP hydrolysis rates is a common feature of the ciliary kinesin-9 family.
Asunto(s)
Cinesinas , Microtúbulos , Tetrahymena thermophila , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Adenosina Trifosfato/metabolismo , Cilios/metabolismo , Tetrahymena/metabolismo , Tetrahymena/genéticaRESUMEN
Copper pollution can alter biological and trophic functions. Organisms can utilise different tolerance strategies, including accumulation mechanisms (intracellular vacuoles, external chelation, etc.) to maintain themselves in copper-polluted environments. Accumulation mechanisms can influence the expression of other phenotypic traits, allowing organisms to deal with copper stress. Whether copper effects on accumulation strategies interact with other environmental stressors such as temperature and how this may differ within species are still unsolved questions. Here, we tested experimentally whether the combined effect of copper and temperature modulates traits linked to demography, morphology, movement and accumulation in six strains of the ciliate Tetrahymena thermophila. We also explored whether copper accumulation might modulate environmental copper concentration effects on phenotypic and demographic traits. Results showed high intraspecific variability in the phenotypic and demographic response to copper, with interactive effects between temperature and copper. In addition, they suggested an attenuation effect of copper accumulation on the sensitivity of traits to copper, but with great variation between strains, temperatures and copper concentrations. Diversity of responses among strains and their thermal dependencies pleads for the integration of intraspecific variability and multiple stressors approaches in ecotoxicological studies, thus improving the reliability of assessments of the effects of pollutants on biodiversity.
Asunto(s)
Cobre , Fenotipo , Estrés Fisiológico , Temperatura , Tetrahymena thermophila , Tetrahymena thermophila/efectos de los fármacos , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/fisiología , Cobre/metabolismo , Cobre/toxicidadRESUMEN
Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens. The coincidental evolution hypothesis postulates that virulence results from exaptation or pleiotropy, i.e. traits evolved for adaptation to living in one environment that have a different function in another. In particular, adaptation to avoid or survive protist predation has been suggested to contribute to the evolution of bacterial virulence (the training ground hypothesis). Here, we used experimental evolution to determine how the selective pressure imposed by a protist predator impacts the virulence and fitness of a ubiquitous environmental opportunistic bacterial pathogen that has acquired multidrug resistance: Serratia marcescens. To this aim, we evolved S. marcescens in the presence or absence of generalist protist predator, Tetrahymena thermophila. After 60 d of evolution, we evaluated genotypic and phenotypic changes by comparing evolved S. marcescens with the ancestral strain. Whole-genome shotgun sequencing of the entire evolved populations and individual isolates revealed numerous cases of parallel evolution, many more than statistically expected by chance, in genes associated with virulence. Our phenotypic assays suggested that evolution in the presence of a predator maintained virulence, whereas evolution in the absence of a predator resulted in attenuated virulence. We also found a significant correlation between virulence, biofilm formation, growth, and grazing resistance. Overall, our results provide evidence that bacterial virulence and virulence-related traits are maintained by selective pressures imposed by protist predation.
Asunto(s)
Serratia marcescens , Tetrahymena thermophila , Serratia marcescens/patogenicidad , Serratia marcescens/genética , Virulencia , Tetrahymena thermophila/genética , Evolución BiológicaRESUMEN
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
Asunto(s)
Fenotipo , Tetrahymena thermophila , Tetrahymena thermophila/fisiología , Temperatura , Adaptación FisiológicaRESUMEN
Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDSâPAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.
Asunto(s)
Glutatión Transferasa , Proteínas Protozoarias , Proteínas Recombinantes , Tetrahymena thermophila , Clonación Molecular , Dinitroclorobenceno/química , Dinitroclorobenceno/metabolismo , Expresión Génica , Glutatión/metabolismo , Glutatión/química , Glutatión Transferasa/genética , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Cinética , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetrahymena thermophila/enzimología , Tetrahymena thermophila/genéticaRESUMEN
Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.
Asunto(s)
Adenina , Metilación de ADN , Tetrahymena thermophila , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenina/metabolismo , Adenina/análogos & derivados , Replicación del ADN , ADN Protozoario/genética , ADN Protozoario/metabolismoRESUMEN
Cryoelectron microscopy (cryo-EM) has revolutionized the structural determination of macromolecular complexes. With the paradigm shift to structure determination of highly complex endogenous macromolecular complexes ex vivo and in situ structural biology, there are an increasing number of structures of native complexes. These complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because side chains cannot be visualized reliably. Here, we present DomainFit, a program for semi-automated domain-level protein identification from cryo-EM maps, particularly at resolutions lower than 4 Å. By fitting domains from AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the domains and protein candidates forming the density. Using DomainFit, we identified two microtubule inner proteins, one of which contains a CCDC81 domain and is exclusively localized in the proximal region of the doublet microtubule in Tetrahymena thermophila.
Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Dominios Proteicos , Microscopía por Crioelectrón/métodos , Tetrahymena thermophila/metabolismo , Programas Informáticos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Microtúbulos/metabolismo , Microtúbulos/químicaRESUMEN
Tetrahymena thermophila is an alternative organism for recombinant protein production. However, the production efficiency in T. thermophila is quite low mainly due to the rich cysteine proteases. In this study, we studied whether supplementation of the E-64 inhibitor to T. thermophila cultures increases the recombinant protein production efficiency without any toxic side effects. Our study showed that supplementation of E-64 had no lethal effects on T. thermophila cells in flask culture at 30 °C and 38 °C. In vitro protease activity analysis using secretome as protease enzyme source from E-64-supplemented cell cultures showed a reduced protein substrate degradation using bovine serum albumin, rituximab, and milk lactoglobulin proteins. E-64 also prevented proteolysis of the recombinantly produced and secreted TtmCherry2-sfGFP fusion protein at some level. This reduced inhibitory effect of E-64 could be due to genetic compensation of the inhibited proteases. As a result, the 5 µM concentration of E-64 was found to be a non-toxic protease inhibitory supplement to improve extracellular recombinant protein production efficiency in T. thermophila. This study suggests that the use of E-64 may increase the efficiency of extracellular recombinant protein production by continuously reducing extracellular cysteine protease activity during cultivation.
Asunto(s)
Inhibidores de Cisteína Proteinasa , Proteínas Recombinantes , Tetrahymena thermophila , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Leucina/análogos & derivadosRESUMEN
Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Asunto(s)
Cuerpos Basales , Cilios , Microtúbulos , Proteínas Protozoarias , Tetrahymena thermophila , Cuerpos Basales/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/genéticaRESUMEN
Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5â¯h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250⯵g/L As(V) in 48â¯h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.
Asunto(s)
Arsénico , Tetrahymena thermophila , Arsénico/metabolismo , Ecosistema , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Biotransformación , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismoRESUMEN
Vint proteins have been identified in unicellular metazoans as a novel hedgehog-related gene family, merging the von Willebrand factor type A domain and the Hedgehog/INTein (HINT) domains. We present the first three-dimensional structure of the Vint domain from Tetrahymena thermophila corresponding to the auto-processing domain of hedgehog proteins, shedding light on the unique features, including an adduct recognition region (ARR). Our results suggest a potential binding between the ARR and sulfated glycosaminoglycans like heparin sulfate. Moreover, we uncover a possible regulatory role of the ARR in the auto-processing by Vint domains, expanding our understanding of the HINT domain evolution and their use in biotechnological applications. Vint domains might have played a crucial role in the transition from unicellular to multicellular organisms.
Asunto(s)
Dominios Proteicos , Proteínas Protozoarias , Tetrahymena thermophila , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Ligandos , Modelos Moleculares , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Secuencia de Aminoácidos , Pliegue de ProteínaRESUMEN
The simultaneous presence of nanoparticles (NPs) and heavy metals in the environment may affect their mutual biological uptake. Although previous studies showed that NPs could alter the cellular uptake of heavy metals by their adsorption of heavy metals, whether they could affect metal uptake without the need for adsorption is unknown. This study examined the effects of silica (SiO2) NPs on the uptake of Cd ion by the protozoan Tetrahymena thermophila. We found that, even with negligible levels of adsorption, SiO2 NPs at concentrations of 3 to 100 mg/L inhibited Cd uptake. This inhibitory effect decreased as the ambient Cd concentration increased from 1 to 100 µg/L, suggesting the involvement of at least two transporters with different affinities for Cd. The transporters were subsequently identified by the specific protein inhibitors amiloride and tariquidar as NCX and ABCB1, which are responsible for the uptake of Cd at low and high Cd levels, respectively. RT-qPCR and molecular dynamics simulation further showed that the inhibitory effects of SiO2 NPs were attributable to the down-regulated expression of the genes Ncx and Abcb1, steric hindrance of Cd uptake by NCX and ABCB1, and the shrinkage of the central channel pore of the transporters in the presence of SiO2 NPs. SiO2 NPs more strongly inhibited Cd transport by NCX than by ABCB1, due to the higher binding affinity of SiO2 NPs with NCX. Overall, our study sheds new light on a previously overlooked influence of NPs on metal uptake and the responsible mechanism.
Asunto(s)
Nanopartículas , Tetrahymena thermophila , Cadmio/metabolismo , Dióxido de Silicio/metabolismo , Adsorción , Metales/metabolismoRESUMEN
The extent of intraspecific genomic variation is key to understanding species evolutionary history, including recent adaptive shifts. Intraspecific genomic variation remains poorly explored in eukaryotic micro-organisms, especially in the nuclear dimorphic ciliates, despite their fundamental role as laboratory model systems and their ecological importance in many ecosystems. We sequenced the macronuclear genome of 22 laboratory strains of the oligohymenophoran Tetrahymena thermophila, a model species in both cellular biology and evolutionary ecology. We explored polymorphisms at the junctions of programmed eliminated sequences, and reveal their utility to barcode very closely related cells. As for other species of the genus Tetrahymena, we confirm micronuclear centromeres as gene diversification centres in T. thermophila, but also reveal a two-speed evolution in these regions. In the rest of the genome, we highlight recent diversification of genes coding for extracellular proteins and cell adhesion. We discuss all these findings in relation to this ciliate's ecology and cellular characteristics.
Asunto(s)
Tetrahymena thermophila , Tetrahymena thermophila/genética , Ecosistema , Genómica , Eucariontes , LaboratoriosRESUMEN
Glucose is the most important energy source in all organisms; however, our understanding of the pathways and mechanisms underlying glucose transportation and localization in living cells is incomplete. Here, we prepared two glucose analogs labeled with a dansylamino group at the C-1 (1-Dansyl) or C-2 (2-Dansyl) position; the dansyl group is a highly fluorescent moiety that is characterized by a large Stokes shift between its excitation and emission wavelengths. We then examined the cytotoxicity of the two glucose analogs in mammalian fibroblast cells and in the ciliated protozoan Tetrahymena thermophila. In both cell types, 2-Dansyl had no negative effects on cell growth. The specificity of cellular uptake of glucose analogs was confirmed using an inhibitor of glucose transporter in NIH3T3 cells. In NIH3T3 cells and T. thermophila, fluorescence microscopy revealed that the glucose analogs localized throughout the cytoplasm, but especially at the periphery of the nucleus. In T. thermophila, we also found that swimming speed was comparable in media containing non-labeled glucose or one of the glucose analogs, which provided more evidence not only that the analogs were not cytotoxic in these cells but also that the analogs had no negative effect on the ciliary motion. Together, the present results suggest that the glucose analogs have low toxicity and will be useful for bioimaging of glucose-related systems.
Asunto(s)
Tetrahymena thermophila , Animales , Citoplasma , Glucosa/metabolismo , Mamíferos , Microscopía Fluorescente , Células 3T3 NIHRESUMEN
Tetrahymena thermophila is a promising host for recombinant protein production, but its utilization in biotechnology is mostly limited due to the presence of intracellular and extracellular papain-family cysteine proteases (PFCPs). In this study, we employed bioinformatics approaches to investigate the T. thermophila PFCP genes and their encoded proteases (TtPFCPs), the most prominent protease family in the genome. Results from the multiple sequence alignment, protein modeling, and conserved motif analyses revealed that all TtPFCPs showed considerably high homology with mammalian cysteine cathepsins and contained conserved amino acid motifs. The total of 121 TtPFCP-encoding genes, 14 of which were classified as non-peptidase homologs, were found. Remaining 107 true TtPFCPs were divided into four distinct subgroups depending on their homology with mammalian lysosomal cathepsins: cathepsin L-like (TtCATLs), cathepsin B-like (TtCATBs), cathepsin C-like (TtCATCs), and cathepsin X-like (TtCATXs) PFCPs. The majority of true TtPFCPs (96 out of the total) were in TtCATL-like peptidase subgroup. Both phylogenetic and chromosomal localization analyses of TtPFCPs supported the hypothesis that TtPFCPs likely evolved through tandem gene duplication events and predominantly accumulated on micronuclear chromosome 5. Additionally, more than half of the identified TtPFCP genes are expressed in considerably low quantities compared to the rest of the TtPFCP genes, which are expressed at a higher level. However, their expression patterns fluctuate based on the stage of the life cycle. In conclusion, this study provides the first comprehensive in-silico analysis of TtPFCP genes and encoded proteases. The results would help designing an effective strategy for protease knockout mutant cell lines to discover biological function and to improve the recombinant protein production in T. thermophila.
Asunto(s)
Papaína , Tetrahymena thermophila , Animales , Papaína/genética , Tetrahymena thermophila/genética , Secuencia de Bases , Secuencia de Aminoácidos , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Mamíferos/genéticaRESUMEN
Ciliates assemble numerous microtubular structures into complex cortical patterns. During ciliate division, the pattern is duplicated by intracellular segmentation that produces a tandem of daughter cells. In Tetrahymena thermophila, the induction and positioning of the division boundary involves two mutually antagonistic factors: posterior CdaA (cyclin E) and anterior CdaI (Hippo kinase). Here, we characterized the related cdaH-1 allele, which confers a pleiotropic patterning phenotype including an absence of the division boundary and an anterior-posterior mispositioning of the new oral apparatus. CdaH is a Fused or Stk36 kinase ortholog that localizes to multiple sites that correlate with the effects of its loss, including the division boundary and the new oral apparatus. CdaH acts downstream of CdaA to induce the division boundary and drives asymmetric cytokinesis at the tip of the posterior daughter. CdaH both maintains the anterior-posterior position of the new oral apparatus and interacts with CdaI to pattern ciliary rows within the oral apparatus. Thus, CdaH acts at multiple scales, from induction and positioning of structures on the cell-wide polarity axis to local organelle-level patterning.
Asunto(s)
Tetrahymena thermophila , Tetrahymena , Tetrahymena/genética , División Celular/genética , Acetamidas , Tetrahymena thermophila/genética , CitoesqueletoRESUMEN
Among the epigenetic mechanisms based on non-coding RNA are microRNAs (miRNAs) that are involved in the post-transcriptional regulation of mRNAs. In many organisms, the expression of genes involved in the cellular response to biotic or abiotic stress depends on the regulation, generally inhibitory, performed by miRNAs. For the first time in the eukaryotic microorganism (ciliate-model) Tetrahymena thermophila, miRNAs involved in the post-transcriptional regulation of transcripts linked to the response to cadmium have been isolated and analyzed. Forty de novo miRNAs (we named tte-miRNAs) have been isolated from control and Cd-treated populations (1 or 24 h exposures). An exhaustive comparative analysis of the features of these mature tte-miRNAs and their precursor sequences (pre-tte-miRNAs) confirms that they are true miRNAs. In addition to the three types of miRNA isoforms previously described in other organisms, two new types are also described among the tte-miRNAs studied. A certain percentage of the pre-tte-miRNA sequences are in introns from genes with many introns, and have been defined as 5', 3'-tailed mirtrons. A qRT-PCR analysis of selected tte-miRNAs together with some of their targets has validated them. Cd is one of the most toxic metals for the cell, which must defend itself against its toxicity by various mechanisms, such as expulsion by membrane pumps, chelation by metallothioneins, among others. Like other toxic metals, Cd also causes a well-known series of cellular effects such as intense proteotoxicity. Many of the targets that are regulated by the tte-miRNAs are transcripts encoding proteins that fit into these defense mechanisms and toxic metal effects.
Asunto(s)
MicroARNs , Tetrahymena thermophila , Tetrahymena thermophila/genética , Cadmio/toxicidad , Cadmio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Epigénesis Genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.
Asunto(s)
Nucleosomas , Tetrahymena thermophila , Nucleosomas/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismoRESUMEN
DNA mismatch repair (MMR) improves replication accuracy by up to three orders of magnitude. The MutS protein in E. coli or its eukaryotic homolog, the MutSα (Msh2-Msh6) complex, recognizes base mismatches and initiates the mismatch repair mechanism. Msh6 is an essential protein for assembling the heterodimeric complex. However, the function of the Msh6 subunit remains elusive. Tetrahymena undergoes multiple DNA replication and nuclear division processes, including mitosis, amitosis, and meiosis. Here, we found that Msh6Tt localized in the macronucleus (MAC) and the micronucleus (MIC) during the vegetative growth stage and starvation. During the conjugation stage, Msh6Tt only localized in MICs and newly developing MACs. MSH6Tt knockout led to aberrant nuclear division during vegetative growth. The MSH6TtKO mutants were resistant to treatment with the DNA alkylating agent methyl methanesulfonate (MMS) compared to wild type cells. MSH6Tt knockout affected micronuclear meiosis and gametogenesis during the conjugation stage. Furthermore, Msh6Tt interacted with Msh2Tt and MMR-independent factors. Downregulation of MSH2Tt expression affected the stability of Msh6Tt. In addition, MSH6Tt knockout led to the upregulated expression of several MSH6Tt homologs at different developmental stages. Msh6Tt is involved in macronuclear amitosis, micronuclear mitosis, micronuclear meiosis, and gametogenesis in Tetrahymena.
Asunto(s)
Reparación de la Incompatibilidad de ADN , Tetrahymena thermophila , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Proteína 2 Homóloga a MutS/genética , Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis , Gametogénesis/genéticaRESUMEN
Transforming waste into resources is an important strategy to enhance the economic efficiency and reduce the waste entering the environment. In this work, iron-loading N and S co-doped porous carbon materials, as peroxymonosulfate (PMS) activator for pollutants degradation, were prepared by pyrolysis of the mixture of iron loading chitosan and CdS-Tetrahymena thermophila under N2 flow. Chitosan is mainly derived from the shell waste of shrimp and crab, and CdS-Tetrahymena thermophila is produced in the removing process of Cd2+ pollution bioremediation using Tetrahymena thermophila. The synergistic effects of iron related species and heteroatoms (S/N) co-doped porous carbon in the obtained carbon materials improved the performance for activating PMS. The prepared Fe-S-CS-1-900 exhibited high performance for the degradation of Rhodamine B (RhB) by activating PMS. Radical quenching tests and electron paramagnetic resonance measurements suggested that superoxide radical (O2-) and singlet oxygen (1O2) were the primary reactive oxygen species in RhB degradation. These results propose new insights of using biomass waste to derive Fe-loading N and S heteroatom co-doping carbon as PMS activator applied in the removal of organic pollutants.