Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Elife ; 132024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250349

RESUMEN

Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.


Asunto(s)
Proteómica , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Proteómica/métodos , Humanos , Animales , Vesículas Extracelulares/metabolismo , Nanotubos/química , Ratones , Comunicación Celular
2.
Klin Onkol ; 38(1): 50-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183551

RESUMEN

BACKGROUND: Triple-negative breast carcinomas (TNBC) are a heterogeneous group of tumors with mostly aggressive behaviour and poor prognosis. In association with their aggressive behavior and chemoresistance to treatment, the concept of epithelial-mesenchymal transition (EMT) has come to the fore. CD9 and CD29 proteins are associated with EMT and may play a role in TNBC progression. Our aim was to investigate association of these markers with the lymph node metastasis, tumor grade, proliferative activity, and patient survival. PATIENTS AND METHODS: Our cohort consisted of 66 TNBC patients without neoadjuvant therapy, aged 26-81 years. The pathological tumor stages ranged from pT1b to pT3 and histological grades ranged from II to III, according to the Bloom-Richardson system. Immunohistochemical evaluation of CD9, CD29, E-cadherin, vimentin, androgen receptor and Ki-67 expression was performed semiquantitatively using the H-score. Expression of the proteins was statistically evaluated in relation to the clinicopathological parameters and survival of the patients. RESULTS: We observed lower expression of CD9 in lymph node metastases compared to the primary tumor (P = 0.021). The CD29 expression in primary tumor was significantly lower in patients with lymph node metastases compared to patients without cancer dissemination (P = 0.03). Neither CD9 nor CD29 protein expression was associated with breast cancer-specific survival (BCSS). Lower expression of E-cadherin at the periphery of the primary tumor was associated with worse BCSS (P = 0.038). Neither grade nor the presence of lymph node metastases reached significant association with the BCSS. Lower expression of E-cadherin at the periphery was also associated with higher Ki67 (Rs -0.26) and vimentin (Rs -0.33). CONCLUSION: Decreased protein expression of CD9 and CD29 were associated with lymph node metastasis growth, however, their association with survival was not proved. Lower expression of E-cadherin at the periphery of the primary tumor was associated with high proliferation and poor breast cancer-specific survival.


Asunto(s)
Biomarcadores de Tumor , Transición Epitelial-Mesenquimal , Metástasis Linfática , Tetraspanina 29 , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Anciano , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Adulto , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Tetraspanina 29/metabolismo , Inmunohistoquímica , Cadherinas/metabolismo
3.
BMC Res Notes ; 17(1): 202, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044286

RESUMEN

OBJECTIVE: Extracellular vesicles (EVs) have been shown to play a critical role in promoting tumorigenesis. As EV research grows, it is of importance to have standardization of isolation, quality control, characterization and validation methods across studies along with reliable references to explore troubleshooting solutions. Therefore, our objective with this Research Note was to isolate EVs from multiple breast cancer cell lines and to describe and perform protocols for validation as outlined by the list of minimal information for studies of EVs (MISEV) from the International Society for Extracellular Vesicles. RESULTS: To isolate EVs, two techniques were employed: ultracentrifugation and size exclusion chromatography. Ultracentrifugation yielded better recovery of EVs in our hands and was therefore used for further validation. In order to satisfy the MISEV requirements, protein quantification, immunoblotting of positive (CD9, CD63, TSG101) and negative (TGFß1, ß-tubulin) markers, nanoflow cytometry and electron microscopy was performed. With these experiments, we demonstrate that yield of validated EVs varied between different breast cancer cell lines. Protocols were optimized to accommodate for low levels of EVs, and various technical and troubleshooting suggestions are included for potential application to other cell types that may provide benefit to investigators interested in future EV studies.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/patología , Femenino , Línea Celular Tumoral , Ultracentrifugación/métodos , Control de Calidad , Cromatografía en Gel/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Proteínas de Unión al ADN , Factores de Transcripción
4.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 434-442, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39034117

RESUMEN

OBJECTIVES: To investigate the effect of osteoblast-derived extracellular vesicles (OB-EVs) on the proliferation and differentiation of osteoclasts, and to explore the possible molecular mechanism of extracellular vesicles involved in the communication between osteoblasts and osteoclasts. METHODS: Primary osteoblasts were isolated from newborn mouse calvarial bone and induced by ß-glycero phosphate, ascorbic acid and dexamethasone. Osteogenic feature was tested by alkaline phosphatase (ALP) and alizarin red S staining. Extracellular vesicles were isolated by ultracentrifugation from the cell culture supernatant. Vesicle morphology was observed by transmission electron microscopy, and the characteristic markers of tumor susceptibility gene 101 (TSG101), ALG-2 interacting protein X (Alix) and cluster of differentiation 9 (CD9) on the surface of extracellular vesicles were identified by Western blotting. Cell counting kit 8 (CCK-8) assay was used to determine the proliferation effect of OB-EVs on mouse mononuclear macrophage RAW264.7 cells. Furthermore, the expression level of specific markers of osteoclast differentiation in RAW264.7 cells was detected by Western blotting after the combined effect of OB-EVs and receptor activator for nuclear factor κB ligand (RANKL). The number of osteoclasts was observed and compared with OB-EVs-treated mouse bone marrow-derived macrophages (BMMs) by tartrate-resistant acid phosphatase (TRAP) staining, and the effect of OB-EVs on osteoclast differentiation was determined. RESULTS: The extracted OB-EVs showed a double-layer cup-like structure with a diameter of 30-150 nm, and TSG101, Alix and CD9 were expressed. RAW264.7 cells were stimulated with OB-EVs, and the results of CCK-8 assay showed that high concentration of OB-EVs (more than 20 µg/mL) inhibited cell proliferation (P<0.05). Western blotting analysis showed that the expression of osteoclast differentiation marker proteins such as c-Fos, activated T cell nuclear factor (NFATc1) and c-Jun N-terminal kinase (JNK) in RAW264.7 cells were significantly increased, and the promoting effect was enhanced with increasing of OB-EVs concentration (P<0.05). In addition, the combination of OB-EVs and RANKL on BMMs showed that the number of TRAP-positive cells was significantly higher than that of the RANKL induction group alone (P<0.05). CONCLUSIONS: OB-EVs can promote the differentiation of osteoclast precursor cells into osteoclasts, but high concentration of OB-EVs can inhibit proliferation of RAW264.7 cells.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Vesículas Extracelulares , Osteoblastos , Osteoclastos , Animales , Ratones , Vesículas Extracelulares/metabolismo , Osteoclastos/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Células RAW 264.7 , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ligando RANK/metabolismo , Tetraspanina 29/metabolismo , Osteogénesis , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Proteínas de Unión al ADN , Factores de Transcripción , ATPasas de Translocación de Protón Vacuolares
5.
Theranostics ; 14(10): 3843-3858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994028

RESUMEN

Rationale: Extracellular vesicles (EVs) are thought to mediate intercellular communication during development and disease. Yet, biological insight to intercellular EV transfer remains elusive, also in the heart, and is technically challenging to demonstrate. Here, we aimed to investigate biological transfer of cardiomyocyte-derived EVs in the neonatal heart. Methods: We exploited CD9 as a marker of EVs, and generated two lines of cardiomyocyte specific EV reporter mice: Tnnt2-Cre; double-floxed inverted CD9/EGFP and αMHC-MerCreMer; double-floxed inverted CD9/EGFP. The two mouse lines were utilized to determine whether developing cardiomyocytes transfer EVs to other cardiac cells (non-myocytes and cardiomyocytes) in vitro and in vivo and investigate the intercellular transport pathway of cardiomyocyte-derived EVs. Results: Genetic tagging of cardiomyocytes was confirmed in both reporter mouse lines and proof of concept in the postnatal heart showed that, a fraction of EGFP+/MYH1- non-myocytes exist firmly demonstrating in vivo cardiomyocyte-derived EV transfer. However, two sets of direct and indirect EGFP +/- cardiac cell co-cultures showed that cardiomyocyte-derived EGFP+ EV transfer requires cell-cell contact and that uptake of EGFP+ EVs from the medium is limited. The same was observed when co-cultiring with mouse macrophages. Further mechanistic insight showed that cardiomyocyte EV transfer occurs through type I tunneling nanotubes. Conclusion: While the current notion assumes that EVs are transferred through secretion to the surroundings, our data show that cardiomyocyte-derived EV transfer in the developing heart occurs through nanotubes between neighboring cells. Whether these data are fundamental and relate to adult hearts and other organs remains to be determined, but they imply that the normal developmental process of EV transfer goes through cell-cell contact rather than through the extracellular compartment.


Asunto(s)
Comunicación Celular , Técnicas de Cocultivo , Vesículas Extracelulares , Miocitos Cardíacos , Animales , Vesículas Extracelulares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ratones , Comunicación Celular/fisiología , Nanotubos , Corazón/fisiología , Tetraspanina 29/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Animales Recién Nacidos , Ratones Transgénicos
6.
Front Immunol ; 15: 1397967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947317

RESUMEN

Introduction: CD39 plays an important role in the immunoregulation and inhibition of effector cells. It is expressed on immune cells, including Tregs, and on extracellular vesicles (EVs) budding from the plasma membrane. Platelet transfusion may induce alloimmunization against HLA-I antigens, leading to refractoriness to platelet transfusion with severe consequences for patients. Tregs may play a key role in determining whether alloimmunization occurs in patients with hematologic disorders. We hypothesized that CD39+ EVs might play an immunoregulatory role, particularly in the context of platelet transfusions in patients with hematologic disorders. Such alloimmunization leads to the production of alloantibodies and is sensitive to the regulatory action of CD39. Methods: We characterized CD39+ EVs in platelet concentrates by flow cytometry. The absolute numbers and cellular origins of CD39+ EVs were evaluated. We also performed functional tests to evaluate interactions with immune cells and their functions. Results: We found that CD39+ EVs from platelet concentrates had an inhibitory phenotype that could be transferred to the immune cells with which they interacted: CD4+ and CD8+ T lymphocytes (TLs), dendritic cells, monocytes, and B lymphocytes (BLs). Moreover, the concentration of CD39+ EVs in platelet concentrates varied and was very high in 10% of concentrates. The number of these EVs present was determinant for EV-cell interactions. Finally, functional interactions were observed with BLs, CD4+ TLs and CD39+ EVs for immunoglobulin production and lymphoproliferation, with potential implications for the immunological management of patients.


Asunto(s)
Plaquetas , Vesículas Extracelulares , Tetraspanina 29 , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Plaquetas/inmunología , Plaquetas/metabolismo , Tetraspanina 29/metabolismo , Comunicación Celular/inmunología , Transfusión de Plaquetas , Femenino , Linfocitos B/inmunología , Linfocitos B/metabolismo , Masculino , Apirasa/metabolismo , Apirasa/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Antígenos CD
7.
Adv Sci (Weinh) ; 11(29): e2400819, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837628

RESUMEN

Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.


Asunto(s)
Hígado Graso , Tetraspanina 29 , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Animales , Ratones , Humanos , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Receptores de Glucagón/genética , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
8.
Mol Biol Rep ; 51(1): 749, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874800

RESUMEN

Background The incidence of various types of cancers, including leukemia, is on the rise and many challenges in both drug resistance and complications related to chemotherapy appeared. Recently, the development and application of extracellular vesicles (EV) such as exosomes in the management of cancers, especially leukemia, holds great significance. In this article, we extracted exosomes from NALM6 cells and assessed their regulatory effects on proliferation and apoptosis in mesenchymal stem cells (MSCs). Method and result We first verified the exosomes using various techniques, including flow cytometry, transient electron microscopy, dynamic light scattering (DLS), and BCA protein assay. Then MTT analysis and flowcytometry (apoptosis and cell cycle assay) besides gene expressions were employed to determine the state of MSC proliferations. The results indicated that exosome-specific pan markers like CD9, CD63, and CD81 were present. Through DLS, we found out that the mean size of the exosomes was 89.68 nm. The protein content was determined to be 956.292 µg/ml. Analysis of MTT, flow cytometry (cell cycle and apoptosis assay), and RT-qPCR showed that in the dose of 50 µg/ml the proliferation of MSCs was increased significantly (p-value < 0.05). Conclusion All these data showed that exosomes use several signaling pathways to increase the MSCs' proliferation and drug resistance, ultimately leading to high mortalities and morbidities of acute lymphoblastic leukemia.


Asunto(s)
Apoptosis , Proliferación Celular , Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tetraspanina 30/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
9.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718108

RESUMEN

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Asunto(s)
Endocitosis , Exosomas , Tetraspanina 30 , Exosomas/metabolismo , Humanos , Tetraspanina 30/metabolismo , Biomarcadores/metabolismo , Sinteninas/metabolismo , Sinteninas/genética , Tetraspanina 28/metabolismo , Membrana Celular/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Tetraspanina 29/metabolismo
10.
Haematologica ; 109(9): 2833-2845, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572553

RESUMEN

Resistance to glucocorticoids (GC), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-offunction experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GC-resistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GC against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.


Asunto(s)
Resistencia a Antineoplásicos , Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Tetraspanina 29 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Resistencia a Antineoplásicos/genética , Niño , Animales , Ratones , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Línea Celular Tumoral , Masculino , Femenino , Preescolar , Dexametasona/farmacología
11.
Clin Exp Nephrol ; 28(7): 617-628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38436899

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) have received considerable attention as ideal biomarkers for kidney diseases. Most reports have focused on urinary EVs, that are mainly derived from the cells in the urinary tract. However, the detection and the application of kidney-derived EVs in plasma remains uncertain. METHODS: We examined the kidney-derived small EVs (sEVs) in plasma that were supposedly released from renal mesangial and glomerular endothelial cells, using clinical samples from healthy controls and patients with kidney transplants. Plasma from healthy controls underwent ultracentrifugation, followed by on-bead flow cytometry, targeting α8 integrin, an antigen-specific to mesangial cells. To confirm the presence of kidney-derived sEVs in peripheral blood, plasma from ABO-incompatible kidney transplant recipients was ultracentrifuged, followed by western blotting for donor blood type antigens. RESULTS: Immunohistochemistry and immunoelectron microscopy confirmed α8 integrin expression in kidney mesangial cells and their sEVs. The CD9-α8 integrin double-positive sEVs were successfully detected using on-bead flow cytometry. Western blot analysis further revealed transplanted kidney-derived sEVs containing blood type B antigens in non-blood type B recipients, who had received kidneys from blood type B donors. Notably, a patient experiencing graft kidney loss exhibited diminished signals of sEVs containing donor blood type antigens. CONCLUSION: Our findings demonstrate the potential usefulness of kidney-derived sEVs in plasma in future research for kidney diseases.


Asunto(s)
Vesículas Extracelulares , Trasplante de Riñón , Humanos , Vesículas Extracelulares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Células Mesangiales/metabolismo , Biomarcadores/sangre , Sistema del Grupo Sanguíneo ABO , Tetraspanina 29/metabolismo , Citometría de Flujo , Riñón , Células Endoteliales/metabolismo , Incompatibilidad de Grupos Sanguíneos
12.
Mol Ther ; 32(9): 3059-3079, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38379282

RESUMEN

Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.


Asunto(s)
Vesículas Extracelulares , Macrófagos , MicroARNs , Cicatrización de Heridas , Animales , MicroARNs/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Cicatrización de Heridas/genética , Ratones , Macrófagos/metabolismo , Adiponectina/metabolismo , Adiponectina/genética , Fibroblastos/metabolismo , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Piel/metabolismo , Piel/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Humanos , Ratones Obesos , Diabetes Mellitus Experimental/metabolismo
13.
J Reprod Dev ; 69(6): 308-316, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37778977

RESUMEN

The adenohypophysis is comprised of the anterior and intermediate lobes (AL and IL, respectively). Cluster of differentiation 9 (CD9)- and sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor hormone-producing cells in the AL. They are located in the marginal cell layer (MCL) facing Rathke's cleft between the AL and IL (primary niche) and the parenchyma of the AL (secondary niche). We previously showed that, in rats, CD9/SOX2-positive cells in the IL side of the MCL (IL-side MCL) migrate to the AL side (AL-side MCL) and differentiate into prolactin-producing cells (PRL cells) in the AL parenchyma during pregnancy, lactation, and diethylstilbestrol treatment, all of which increase PRL cell turnover. This study examined the changes in CD9/SOX2-positive stem/progenitor cell niches and their proportions by manipulating the turnover of growth hormone (GH)- and thyroid-stimulating hormone (TSH)-producing cells (GH and TSH cells, respectively), which are Pit1 lineage cells, as well as PRL cells. After induction, the isolated CD9/SOX2-positive cells from the IL-side MCL formed spheres and differentiated into GH and TSH cells. We also observed an increased GH cell proportion upon treatment with GH-releasing hormone and recovery from continuous stress and an increased TSH cell proportion upon propylthiouracil treatment, concomitant with alterations in the proportion of CD9/SOX2-positive cells in the primary and secondary niches. These findings suggest that CD9/SOX2-positive cells have the potential to supply GH and TSH when an increase in GH and TSH cell populations is required in the adult pituitary gland.


Asunto(s)
Adenohipófisis , Animales , Femenino , Ratas , Hormona del Crecimiento , Hipófisis/metabolismo , Adenohipófisis/metabolismo , Prolactina , Tirotropina , Tetraspanina 29/metabolismo , Factores de Transcripción SOXB1/metabolismo
14.
ACS Sens ; 8(8): 3174-3186, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37585601

RESUMEN

Cancer progresses silently to the terminal stage of the impossible operable condition. There are many limitations in the treatment options of cancer, but diagnosis in an early stage can improve survival rates and low recurrence. Exosomes are the biomolecules released from cancer cells and are promising candidates for clinical diagnosis. Among them, the cluster of differentiation 9 (CD9) protein is an important exosomal biomarker that can be used for exosome determination. Therefore, here, a CD9 aptamer was first synthesized and applied to an extended-gate field-effect transistor (EGFET)-type biosensor containing a disposable sensing membrane to suggest the possibility of detecting exosomes in a clinical environment. Systematically evaluating ligands using the exponential enrichment (SELEX) technique was performed to select nucleic acid sequences that can specifically target the CD9 protein. Exosomes were detected according to the electrical signal changes on a membrane, which is an extended gate using an Au microelectrode. The fabricated biosensor showed a limit of detection (LOD) of 10.64 pM for CD9 proteins, and the detection range was determined from 10 pM to 1 µM in the buffer. In the case of the clinical test, the LOD and detection ranges of exosomes in human serum samples were 6.41 × 102 exosomes/mL and 1 × 103 to 1 × 107 exosomes/mL, respectively, showing highly reliable results with low error rates. These findings suggest that the proposed aptasensor can be a powerful tool for a simple and early diagnosis of exosomes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Humanos , Exosomas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Aptámeros de Nucleótidos/metabolismo , Tetraspanina 29/metabolismo
15.
J Extracell Vesicles ; 12(8): e12352, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37525398

RESUMEN

The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.


Asunto(s)
Vesículas Extracelulares , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 30 , Movimiento Celular , Vesículas Extracelulares/metabolismo , Proteómica , Tetraspanina 28/metabolismo , Humanos , Células MCF-7 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
16.
Commun Biol ; 6(1): 532, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198427

RESUMEN

Extracellular vesicles (EVs) are thought to mediate intercellular communication by transferring cargoes from donor to acceptor cells. The EV content-delivery process within acceptor cells is still poorly characterized and debated. CD63 and CD9, members of the tetraspanin family, are highly enriched within EV membranes and are respectively enriched within multivesicular bodies/endosomes and at the plasma membrane of the cells. CD63 and CD9 have been suspected to regulate the EV uptake and delivery process. Here we used two independent assays and different cell models (HeLa, MDA-MB-231 and HEK293T cells) to assess the putative role of CD63 and CD9 in the EV delivery process that includes uptake and cargo delivery. Our results suggest that neither CD63, nor CD9 are required for this function.


Asunto(s)
Vesículas Extracelulares , Tetraspaninas , Humanos , Comunicación Celular , Endosomas/metabolismo , Vesículas Extracelulares/metabolismo , Células HEK293 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
17.
Clin Exp Med ; 23(6): 2867-2875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36826611

RESUMEN

Extracellular vesicles (EVs) are implicated in the pathogenesis of rheumatoid arthritis (RA) but little is known about the composition of specific small EV (sEV) subpopulations. This study aimed to characterize the CD63, CD81 and CD9 tetraspanin profile in the membrane of single EVs in plasma from treatment naïve RA patients and assess potential discrepancies between methotrexate (MTX) responder groups. EVs isolated from plasma were characterized using transmission electron microscopy, and detection of surface markers (CD63, CD81 and CD9) on single EVs was performed on the ExoView platform. All RA patients (N = 8) were newly diagnosed, treatment naïve, females, ACPA positive and former smokers. The controls (N = 5) were matched for age and gender. After three months of MTX treatment, responders (N = 4) were defined as those with ΔDAS28 > 1.2 and DAS28 ≤ 3.2 post-treatment. The isolated EVs were 50-200 nm in size. The RA patients had a higher proportion of both CD9 and CD81 single positive sEVs compared to healthy controls, while there was a decrease in CD81/CD9 double positive sEVs in patients. Stratification of RA patients into MTX responders and non-responders revealed a distinctly higher proportion of CD81 single positive sEVs in the responder group. The proportion of CD81/CD9 double positive sEVs (anti-CD9 captured) was lower in the non-responders, but increased upon 3 months of MTX treatment. Our exploratory study revealed distinct tetraspanin profiles in RA patients suggesting their implication in RA pathophysiology and MTX treatment response.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Femenino , Humanos , Tetraspanina 29/metabolismo , Tetraspanina 28 , Tetraspaninas , Vesículas Extracelulares/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo
18.
Biomater Adv ; 146: 213283, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640525

RESUMEN

As an organizer of multi-molecular membrane complexes, the tetraspanin CD9 has been implicated in a number of biological processes, including cancer metastasis, and is a candidate therapeutic target. Here, we evaluated the suppressive effects of an eight-mer CD9-binding peptide (CD9-BP) on cancer cell metastasis and its mechanisms of action. CD9-BP impaired CD9-related functions by adversely affecting the formation of tetraspanin webs-networks composed of CD9 and its partner proteins. The anti-cancer metastasis effect of CD9-BP was evidenced by the in vitro inhibition of cancer cell migration and invasion as well as exosome secretion and uptake, which are essential processes during metastasis. Finally, using a mouse model, we showed that CD9-BP reduced lung metastasis in vivo. These findings provide insight into the mechanism by which CD9-BP inhibits CD9-dependent functions and highlight its potential application as an alternative therapeutic nano-biomaterial for metastatic cancers.


Asunto(s)
Neoplasias , Oligopéptidos , Tetraspanina 29 , Humanos , Neoplasias/patología , Neoplasias/terapia , Tetraspanina 29/metabolismo , Metástasis de la Neoplasia , Oligopéptidos/metabolismo , Oligopéptidos/uso terapéutico
19.
Curr Protein Pept Sci ; 24(3): 240-246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718968

RESUMEN

Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.


Asunto(s)
Fertilización , Tetraspaninas , Animales , Masculino , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Espermatozoides/metabolismo , Genitales Masculinos/metabolismo , Mamíferos/metabolismo
20.
J Investig Med ; 71(3): 191-201, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708288

RESUMEN

The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17). The protein and mRNA levels of CD9, CD36, and CD68 were evaluated by the flow cytometry and quantitative polymerase chain reaction (RT-qPCR) methods, respectively. The consumption of atorvastatin, aspirin, and glyceryl trinitrate was found be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD + OA group than in the CAD and Ctrl groups (p = 0.001 and p = 0.005, respectively). MDA levels significantly increased in CAD and CAD + OA patients in comparison with the Ctrl group (p = 0.010 and p = 0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Estudios de Casos y Controles , Antígenos CD36/genética , Enfermedad de la Arteria Coronaria/complicaciones , Inflamación/complicaciones , Opio , Tetraspanina 29/metabolismo , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA