Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.274
Filtrar
1.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731545

RESUMEN

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Asunto(s)
Antibacterianos , Antifúngicos , Antivirales , Cobre , Antifúngicos/farmacología , Antifúngicos/química , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Antivirales/química , Cobre/química , Cobre/farmacología , Celulosa/química , Celulosa/farmacología , Staphylococcus aureus/efectos de los fármacos , Textiles , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/efectos de los fármacos , Lignina/química , Lignina/farmacología , Humanos
2.
ACS Appl Mater Interfaces ; 16(19): 25160-25168, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701174

RESUMEN

Fiber has been considered as an ideal material for virus insulation due to the readily available electrostatic adsorption. However, restricted by the electrostatic attenuation and filtration performance decline, their long-lasting applications are unable to satisfy the requirements of medical protective equipment for major medical and health emergencies such as global epidemics, which results in both a waste of resources and environmental pollution. We overcame these issues by constructing a fiber-in-tube structure, achieving the robust reusability of fibrous membranes. Core fibers within the hollow could form generators with tube walls of shell fibers to provide persistent, renewable static electricity via piezoelectricity and triboelectricity. The PM0.3 insulation efficiency achieved 98% even after 72 h of humidity and heat aging, through beating and acoustic waves, which is greatly improved compared with that of traditional nonwoven fabric (∼10% insulation). A mask spun with our fiber also has a low breathing resistance (differential pressure <24.4 Pa/cm2). We offer an approach to enrich multifunctional fiber for developing electrifiable filters, which make the fiber-in-tube filtration membrane able to durably maintain a higher level of protective performance to reduce the replacement and provide a new train of thought for the preparation of other high-performance protective products.


Asunto(s)
Filtración , Electricidad Estática , Vibración , Filtración/instrumentación , Sonido , SARS-CoV-2/aislamiento & purificación , Textiles , Humanos
3.
Sci Rep ; 14(1): 11510, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769087

RESUMEN

Textile waste contains both natural fibres such as cotton and bamboo viscose, and synthetic fibres such as elastane and polyester. As a complex mixture, textiles present a challenging pollution issue as breakdown in landfill results in microplastics entering water and soil environments, and incineration results in particulate air pollution. Here the use of edible fungi as bioremediation agents of waste textiles is described for the first time. Three species of filamentous fungi were shown to colonise and grow on mixed fibre textile waste (underpants made from 28% cotton: 68% bamboo viscose: 4% elastane). All three fungi were able to metabolise the common textile dye Reactive Black 5 to some extent. The metabolome was captured to elucidate the dye remediation pathway utilized and to characterise the volatiles released during bioremediation with a view to assessing the safety profile of this process for future industrial applications. The results suggest that edible fungi may be cultivated on textiles, and that some interesting and useful compounds may be produced in the process. This has great biotechnological potential. No mushrooms were produced in this study, suggesting that further work will be needed to optimise conditions for crop production from waste textiles.


Asunto(s)
Biodegradación Ambiental , Textiles , Hongos/metabolismo , Residuos Industriales , Naftalenosulfonatos/metabolismo , Celulosa
4.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732243

RESUMEN

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Asunto(s)
Conductividad Eléctrica , Indoles , Tinta , Nanotubos de Carbono , Polímeros , Seda , Indoles/química , Polímeros/química , Seda/química , Nanotubos de Carbono/química , Textiles , Interacciones Hidrofóbicas e Hidrofílicas
5.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732868

RESUMEN

This paper presents the design, development, and validation of a novel e-textile leg sleeve for non-invasive Surface Electromyography (sEMG) monitoring. This wearable device incorporates e-textile sensors for sEMG signal acquisition from the lower limb muscles, specifically the anterior tibialis and lateral gastrocnemius. Validation was conducted by performing a comparative study with eleven healthy volunteers to evaluate the performance of the e-textile sleeve in acquiring sEMG signals compared to traditional Ag/AgCl electrodes. The results demonstrated strong agreement between the e-textile and conventional methods in measuring descriptive metrics of the signals, including area, power, mean, and root mean square. The paired data t-test did not reveal any statistically significant differences, and the Bland-Altman analysis indicated negligible bias between the measures recorded using the two methods. In addition, this study evaluated the wearability and comfort of the e-textile sleeve using the Comfort Rating Scale (CRS). Overall, the scores confirmed that the proposed device is highly wearable and comfortable, highlighting its suitability for everyday use in patient care.


Asunto(s)
Electrodos , Electromiografía , Textiles , Dispositivos Electrónicos Vestibles , Humanos , Electromiografía/métodos , Electromiografía/instrumentación , Masculino , Adulto , Femenino , Músculo Esquelético/fisiología , Pierna/fisiología
6.
Sensors (Basel) ; 24(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38733025

RESUMEN

Concussions, a prevalent public health concern in the United States, often result from mild traumatic brain injuries (mTBI), notably in sports such as American football. There is limited exploration of smart-textile-based sensors for measuring the head impacts associated with concussions in sports and recreational activities. In this paper, we describe the development and construction of a smart textile impact sensor (STIS) and validate STIS functionality under high magnitude impacts. This STIS can be inserted into helmet cushioning to determine head impact force. The designed 2 × 2 STIS matrix is composed of a number of material layered structures, with a sensing surface made of semiconducting polymer composite (SPC). The SPC dimension was modified in the design iteration to increase sensor range, responsiveness, and linearity. This was to be applicable in high impact situations. A microcontroller board with a biasing circuit was used to interface the STIS and read the sensor's response. A pendulum test setup was constructed to evaluate various STISs with impact forces. A camera and Tracker software were used to monitor the pendulum swing. The impact forces were calculated by measuring the pendulum bob's velocity and acceleration. The performance of the various STISs was measured in terms of voltage due to impact force, with forces varying from 180 to 722 N. Through data analysis, the threshold impact forces in the linear range were determined. Through an analysis of linear regression, the sensors' sensitivity was assessed. Also, a simplified model was developed to measure the force distribution in the 2 × 2 STIS areas from the measured voltages. The results showed that improving the SPC thickness could obtain improved sensor behavior. However, for impacts that exceeded the threshold, the suggested sensor did not respond by reflecting the actual impact forces, but it gave helpful information about the impact distribution on the sensor regardless of the accurate expected linear response. Results showed that the proposed STIS performs satisfactorily within a range and has the potential to be used in the development of an e-helmet with a large STIS matrix that could cover the whole head within the e-helmet. This work also encourages future research, especially on the structure of the sensor that could withstand impacts which in turn could improve the overall range and performance and would accurately measure the impact in concussion-causing impact ranges.


Asunto(s)
Traumatismos Craneocerebrales , Dispositivos de Protección de la Cabeza , Textiles , Humanos , Conmoción Encefálica/diagnóstico , Conmoción Encefálica/fisiopatología , Diseño de Equipo
7.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753198

RESUMEN

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Asunto(s)
Biodegradación Ambiental , Colorantes , Cebollas , Industria Textil , Triticum , Colorantes/metabolismo , Colorantes/química , Colorantes/toxicidad , Triticum/microbiología , Cebollas/efectos de los fármacos , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Textiles , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Pruebas de Mutagenicidad
8.
ACS Appl Mater Interfaces ; 16(15): 19605-19614, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568178

RESUMEN

Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Microfluídica , Glucosa/análisis , Monitoreo Fisiológico , Textiles , Técnicas Biosensibles/métodos
9.
PLoS One ; 19(4): e0302037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625923

RESUMEN

The tear strength of textiles is a crucial characteristic of product quality. However, during the laboratory testing of this indicator, factors such as equipment operation, human intervention, and test environment can significantly influence the results. Currently, there is a lack of traceable records for the influencing factors during the testing process, and effective classification of testing activities is not achieved. Therefore, this study proposes a state-awareness and classification approach for fabric tear performance testing based on multi-source data. A systematic design is employed for fabric tear performance testing activities, which can real-time monitor electrical parameters, operational environment, and operator behavior. The data are collected, preprocessed, and a Decision Tree Support Vector Machine (DTSVM) is utilized for classifying various working states, and introducing ten-fold cross-validation to enhance the performance of the classifier, forming a comprehensive awareness of the testing activities. Experimental results demonstrate that the system effectively perceives fabric tear performance testing processes, exhibiting high accuracy in the classification of different fabric testing states, surpassing 98.73%. The widespread application of this system contributes to continuous improvement in the workflow and traceability of fabric tear performance testing processes.


Asunto(s)
Máquina de Vectores de Soporte , Textiles , Humanos , Electricidad , Percepción
10.
Exp Dermatol ; 33(4): e15081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628046

RESUMEN

The close interaction between skin and clothing has become an attractive cornerstone for the development of therapeutic textiles able to alleviate skin disorders, namely those correlated to microbiota dysregulation. Skin microbiota imbalance is known in several skin diseases, including atopic dermatitis (AD), psoriasis, seborrheic dermatitis, rosacea, acne and hidradenitis suppurative (HS). Such microbiota dysregulation is usually correlated with inflammation, discomfort and pruritus. Although conventional treatments, that is, the administration of steroids and antibiotics, have shown some efficacy in treating and alleviating these symptoms, there are still disadvantages that need to be overcome. These include their long-term usage with side effects negatively impacting resident microbiota members, antibiotic resistance and the elevated rate of recurrence. Remarkably, therapeutic textiles as a non-pharmacological measure have emerged as a promising strategy to treat, alleviate the symptoms and control the severity of many skin diseases. This systematic review showcases for the first time the effects of therapeutic textiles on patients with skin dysbiosis, focusing on efficacy, safety, adverse effects and antimicrobial, antioxidant and anti-inflammatory properties. The main inclusion criteria were clinical trials performed in patients with skin dysbiosis who received treatment involving the use of therapeutic textiles. Although there are promising outcomes regarding clinical parameters, safety and adverse effects, there is still a lack of information about the impact of therapeutic textiles on the skin microbiota of such patients. Intensive investigation and corroboration with clinical trials are needed to strengthen, define and drive the real benefit and the ideal biomedical application of therapeutic textiles.


Asunto(s)
Dermatitis Atópica , Disbiosis , Humanos , Piel , Textiles , Dermatitis Atópica/tratamiento farmacológico , Prurito/terapia , Alérgenos
11.
Sci Rep ; 14(1): 8530, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609489

RESUMEN

Functional antibacterial textile materials are in great demand in the medical sector. In this paper, we propose a facile, eco-friendly approach to the design of antibacterial biodegradable cotton fabrics. Cotton fiber fabrics were enhanced with a chitosan coating loaded with plant extracts and essential oils. We employed Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry, optical microscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) to characterize the color, structure, and thermal properties of the modified fabrics. The fabrics were found to effectively induce growth inhibition of Gram-positive and Gram-negative bacteria, especially when a synergic system of aloe vera extract and cinnamon essential oil was applied in the coating formulation. Additionally, we observed significant color and weight changes after 5, 10, and 20 days in soil biodegradability tests. Given the straightforward modification process and the use of non-toxic natural materials, these innovative bio-based and biodegradable cotton fabrics show great promise as protective antimicrobial textiles for healthcare applications.


Asunto(s)
Quitosano , Extractos Vegetales , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Textiles , Microscopía Electrónica de Rastreo
12.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611727

RESUMEN

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Asunto(s)
Antiinfecciosos , Nanopartículas , Plata/farmacología , Gossypium , Textiles , Antiinfecciosos/farmacología , Escherichia coli , Extractos Vegetales/farmacología
13.
Sci Prog ; 107(2): 368504241242282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614468

RESUMEN

This research aims to optimize the silk and wool dyeing process using natural dyes from Bixa orellana (annatto) through response surface methodology. Central composite design experiments highlight the significant enhancement of color outcomes achieved through microwave treatment. For silk, the optimal conditions (80 °C for 40 min) with annatto extract yield a color strength (K/S) of 17.8588, while wool achieves a K/S of 7.5329. Introducing eco-friendly bio-mordants, such as pomegranate peel and red sumac tannins, enhances color strength. Pre-dyeing treatments with 2% red sumac, 1.5% pomegranate peel, and weld flower extracts for silk produce high color strength, with K/S values of 16.4063, 16.3784, and 12.1658, respectively. Post-dyeing, the K/S values increase to 40.1178, 17.4779, and 21.6494. Wool yarn exhibits similar improvements, with pre-dyeing K/S values of 13.1353, 13.5060, and 16.3232, escalating to 10.5892, 15.3141, and 23.4850 post-dyeing. Furthermore, this research underscores improved colorfastness properties, including notable enhancements in light, wash, and rubbing fastness for both silk fabric and wool yarn. These findings underscore the efficacy of the proposed sustainable dyeing methods, offering valuable insights for eco-friendly textile production.


Asunto(s)
Carotenoides , Árboles , Lana , Animales , Bixaceae , Textiles , Semillas , Seda
14.
Environ Sci Pollut Res Int ; 31(21): 30716-30734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613753

RESUMEN

Textile effluent discharge can negatively impact the environment and living organisms due to its potential toxicity, higher percentages of total organic carbon (TOC) contents, and so on. The study investigates the extraordinary performance of the electrocoagulation process (ECP) combined with powdered activated carbon (PAC) as a highly effective and environmental friendly method of treating textile effluents. This scientific work mainly includes the focus on removing toxic components in textile effluents, such as high concentrations of colour and TOC using synthesized PAC derived from coconut shells coupled with the ECP (ECP-PAC). Initially, PAC was characterized by using XRD, Raman, BET, FTIR, and TGA studies. Subsequently, the pilot-scale ECP-PAC batch reactor was constructed with iron (Fe) as an anode and copper (Cu) as a cathode. The pilot-scale ECP-PAC batch reactor has achieved higher treatment efficiency in a shorter reaction time with low energy consumption compared to a stand-alone ECP. Further, the optimum conditions for effective ECP-PAC have been optimized, such as pH 7.5, applied current density (0-50 mA/cm2), reaction time (0-30 min), electrode combinations (Fe-Cu) with electrode distances of 5 cm apart, and an optimum dose of 5 g/L of PAC. Specifically, 98% of the colour and 96% of the TOC contents present in the industrial textile effluent were treated in 15 and 30 min, respectively. In quantitative perspectives, the developed batch reactor has sharply decreased TOC (324.1 mg/L), IC (1410 mg/L) and TC (1019 mg/L) to 13.55 mg/L (96%), 31.49 mg/L (97%), and 48.05 mg/L (95%), respectively, in 30 min demonstrating its sensitivity and selectivity with the utmost care. Moreover, the physicochemical properties of the treated water were convincingly assessed. That is, it remains suitable for the seed germination of mung bean and chlorophyll content study. Thus, the developed methodology could effectively reduce freshwater consumption in the agricultural sector, increase freshwater availability in water-scarce regions, and facilitate the increase of the recharging capacity of groundwater tables.


Asunto(s)
Carbono , Germinación , Textiles , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Carbono/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Color , Electrocoagulación , Semillas/química , Aguas Residuales/química
15.
Chemosphere ; 357: 141920, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636914

RESUMEN

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Asunto(s)
Antimonio , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Antimonio/química , Hierro/química , Adsorción , Industria Textil , Compuestos Férricos/química , Reactores Biológicos/microbiología , Textiles , Biodegradación Ambiental , Aerobiosis
16.
Waste Manag ; 182: 74-90, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643525

RESUMEN

To understand which are the best strategies for textile waste management and to analyse the effects on the environment of applying circular economy practices to textile products, a review of 45 publications where life cycle assessment (LCA) is applied to these topics has been carried out. The separate collection of textiles, followed by reuse and recycling brings relevant environmental benefits, with impacts related to reuse resulting lower than those of recycling. At the opposite, when mixed municipal solid waste is addressed to energy recovery, the textile fraction is the second most impacting on climate change, right after plastics, while for landfill disposal impacts textiles directly follow the more biodegradable fractions. Textiles manufacturing using recycled fibres generally gives lower impacts than using virgin ones, with a few exceptions in some impact categories for cotton and polyester. The circular practices with the lowest impacts are those that ensure the extension of the textiles service life. Another aim of this review is to identify the main variables affecting the life cycle impact assessment (LCIA). These resulted to be the yield and material demand of recycling processes, the use phase variables, the assumptions on virgin production replaced by reuse or recycling, the substitution factor in reuse, and transportation data in business models based on sharing. Thus, in LCA modelling, great attention should be paid to these variables. Future research should address these aspects, to acquire more relevant data, based on industrial-scale processes and on people habits towards the circular economy strategies applied to textiles.


Asunto(s)
Reciclaje , Textiles , Administración de Residuos , Reciclaje/métodos , Administración de Residuos/métodos , Industria Textil , Residuos Sólidos/análisis
17.
Int J Biol Macromol ; 268(Pt 1): 131612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631572

RESUMEN

Cotton fabric is extensively utilized due to its numerous applications, but the flammability associated with cotton fabric poses potential security risks to individuals. A halogen-free efficient flame retardant named poly [(tetramethylcyclosiloxyl spirocyclic pentaerythritol)-piperazin phosphate] (PCPNTSi) was developed to consolidate the fire retardance of cotton fabrics. After PCPNTSi treatment, the limiting oxygen index (LOI) of cotton fabric with 30 % weight gain (CP3) was raised to 32.8 %. In the vertical flammability test (VFT), CP3 has self-extinguished performance with a char length of 8.7 cm. The heat release rate (HRR) of cotton fabric with 20 % weight gain (CP2) is 78.8 % lower than that of pure cotton fabric (CP0). In addition, the total smoke release (TSP) of CP2 is 41.7 % lower than that of CP0, indicating PCPNTSi gives cotton fabric a good capability to inhibit smoke release. Finally, the possible flame retardant mechanism was discussed by the data of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric infrared spectroscopy (TG-IR). The results show that PCPNTSi is an intumescent flame retardant acting in both gas phase and solid phase.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Retardadores de Llama/análisis , Fibra de Algodón/análisis , Nitrógeno/química , Textiles/análisis
18.
Int J Biol Macromol ; 268(Pt 1): 131605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641284

RESUMEN

In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.


Asunto(s)
Polisacáridos , Proteínas , Textiles , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Polisacáridos/química , Humanos , Proteínas/química , Andamios del Tejido/química , Animales , Medicina Regenerativa/métodos , Materiales Biocompatibles/química , Cicatrización de Heridas/efectos de los fármacos
19.
Int J Biol Macromol ; 268(Pt 1): 131750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657923

RESUMEN

Applications for cotton fabrics with multifunctional qualities, such as flame retardancy, hydrophobicity, and anti-ultraviolet properties, are increasingly common and growing daily. The primary objective of this study is to investigate the preparation of flame retardant, hydrophobic, and ultraviolet (UV) protection cotton fabrics through the utilization of Poly-dimethylsiloxane-co-diphenylsiloxane, dihydroxy terminated (HTDMS) and ammonia phytate (AP). The flame retardancy, thermal stability, mechanical properties, anti-UV properties, air permeability and the hydrophobicity properties of coated cotton fabrics were evaluated. The results indicated that the HTDMS/AP coating was successfully deposited on the surface of cotton fabrics. The damaged length of Cotton/HTDMS/AP was 4.7 cm, and the limiting oxygen index reached 31.5 %. The thermogravimetric analysis revealed that the char residues in the high-temperature range were increased. Furthermore, cone calorimetry results indicated that after the HTDMS/AP coating, the peak heat release rate, total heat release, and total smoke production values decreased by 88.7 %, 51.2 %, and 98.4 %, respectively. Moreover, the deposition of HTDMS/AP provided cotton fabrics with hydrophobicity with a water contact angle of over 130°, while Cotton/HTDMS/AP maintained their air permeability, and enhanced the breaking force compared with those of Cotton/AP. Such desirable qualities make HTDMS/AP a meaningful coating for producing multifunctional cotton fabrics.


Asunto(s)
Fibra de Algodón , Dimetilpolisiloxanos , Retardadores de Llama , Interacciones Hidrofóbicas e Hidrofílicas , Dimetilpolisiloxanos/química , Ácido Fítico/química , Amoníaco/química , Textiles , Permeabilidad , Resistencia a la Tracción
20.
ACS Appl Bio Mater ; 7(5): 2911-2923, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619913

RESUMEN

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.


Asunto(s)
Antibacterianos , Grafito , Ensayo de Materiales , Compuestos de Nitrógeno , Antibacterianos/farmacología , Antibacterianos/química , Grafito/química , Grafito/farmacología , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/farmacología , Purinas/química , Purinas/farmacología , Tamaño de la Partícula , Escherichia coli/efectos de los fármacos , Textiles/microbiología , Máscaras , Pruebas de Sensibilidad Microbiana , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA