Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Physiol Rep ; 12(15): e16138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39079941

RESUMEN

We investigated the effects of neonicotinoid pesticides (NEOs) on the spontaneous swimming and foraging behavior, as well as the morphological and physiological changes of goldfish. Most fish reared in thiamethoxam (THM)-sprayed rice fields showed the scales easily peeled off, and increased ascites. Some individuals showed decreased bio-defense activity and low plasma Ca2+. Similar changes were found in the exposure test to THM (1.0 and 20.0 µg/L) and dinotefuran (1.2 and 23.5 µg/L). Next, the effects of a low concentration of THM (1.0 µg/L) on the spontaneous swimming and foraging behavior of fish were examined. Fish exposed to THM for 1 week became restless and had increased the swimming performance, especially under natural light, white LED lighting and blue LED lighting. Goldfish exposed to THM had also increased intake of shiny white beads under green LED illumination. These results indicate that the exposure to NEO, even for a short period and at low levels, not only suppressed bio-defense activities and metabolic abnormalities, but also stress response, the swimming and foraging behavior of the fish are likely to be significantly suffered.


Asunto(s)
Conducta Alimentaria , Carpa Dorada , Natación , Animales , Carpa Dorada/fisiología , Conducta Alimentaria/efectos de los fármacos , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Tiametoxam/toxicidad , Plaguicidas/toxicidad , Oxazinas/toxicidad , Oxazinas/farmacología , Contaminantes Químicos del Agua/toxicidad , Tiazoles/toxicidad , Insecticidas/toxicidad
2.
Sci Rep ; 14(1): 15709, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977768

RESUMEN

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Asunto(s)
Captano , Sinergismo Farmacológico , Fungicidas Industriales , Insecticidas , Tiametoxam , Animales , Tiametoxam/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/toxicidad , Fungicidas Industriales/toxicidad , Captano/toxicidad , Larva/efectos de los fármacos , Neonicotinoides/toxicidad , Tiazoles/toxicidad , Nitrocompuestos/toxicidad
3.
Environ Toxicol Chem ; 43(9): 2058-2070, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980316

RESUMEN

The toxicity of neonicotinoids and many of their replacement insecticides to nontarget soil invertebrates such as earthworms has previously been established. However, the long-term effects of these substances on these organisms are largely unknown. In the field of soil ecotoxicology, lumbricid earthworms such as Eisenia andrei are used extensively due to the availability of standardized test methods and their adaptability to laboratory culture and testing. Multigenerational studies have gained popularity and attention in recent years, with a shift toward the use of long-term assays and lower concentrations of test chemicals. The use of exposure concentrations that include those measured in a monitoring program carried out by the Government of Ontario presents a realistic exposure scenario that may not show significant effects in contemporary, shorter term studies. We used current standardized test methods as a basis for the development of multigenerational studies on E. andrei. The effects of exposure to a single application of the insecticides thiamethoxam and cyantraniliprole on the survival and reproduction of E. andrei were observed over three (thiamethoxam) or two (cyantraniliprole) generations using consecutive reproduction tests. No significant impacts on adult survival were reported in any generation for either insecticide, whereas reproduction decreased between the first and second generations in the thiamethoxam test, with median effective concentration (EC50) values of 0.022 mg/kg dry weight reported for the first generation compared with 0.002 mg/kg dry weight in the second generation. For cyantraniliprole, an EC50 of 0.064 was determined for the first generation compared with 0.016 mg/kg dry weight in the second generation. A third generation was completed for the thiamethoxam test, and a significant decrease in reproduction was observed in all treatments and controls compared with previous generations. No significant difference between thiamethoxam treatments and the control treatment was reported for the third generation. Collectively, these data indicate that exposure of oligochaetes to these two insecticides at concentrations representative of field conditions may result in long-term stresses. Environ Toxicol Chem 2024;43:2058-2070. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Insecticidas , Oligoquetos , Reproducción , Oligoquetos/efectos de los fármacos , Animales , Insecticidas/toxicidad , Reproducción/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Tiametoxam/toxicidad
4.
Chemosphere ; 363: 142853, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019173

RESUMEN

Bees play a crucial role as pollinating insects in both natural and cultivated areas. However, the use of pesticides, such as thiamethoxam, has been identified as a contributing factor compromising bee health. The current risk assessment primarily relies on the model species Apis mellifera, raising concerns about the applicability of these assessments to other bee groups, including stingless bees. In this study, we investigated the acute toxicity of thiamethoxam on the stingless bee Frieseomelitta varia by determining the average lethal concentration (LC50) and mean lethal time (LT50). Additionally, we evaluated the enzymatic profile of Acetylcholinesterase (AChE), Carboxylesterase-3 (CaE-3), and Glutathione S-Transferase (GST), in the heads and abdomens of F. varia after exposure to thiamethoxam (LC50/10). The LC50 of thiamethoxam was determined to be 0.68 ng ai/µL, and the LT50 values were 37 days for the control group, 25 days at LC50/10, and 27 days at LC50/100. The thiamethoxam significantly decreased the survival time of F. varia. Furthermore, the enzymatic profile exhibited differences in CaE3 activity within one day in the heads and ten days in the abdomen. GST activity showed differences in the abdomen after one and five days of thiamethoxam exposure. These findings suggests that the abdomen is more affected than the head after oral exposure to thiamethoxam. Our study provides evidence of the toxicity of thiamethoxam at both the cellular and organismal levels, reinforcing the need to include non-Apis species in pollinator risk assessments. and provide solid arguments for bee protection.


Asunto(s)
Biomarcadores , Glutatión Transferasa , Insecticidas , Tiametoxam , Abejas/efectos de los fármacos , Abejas/fisiología , Animales , Tiametoxam/toxicidad , Biomarcadores/metabolismo , Glutatión Transferasa/metabolismo , Insecticidas/toxicidad , Acetilcolinesterasa/metabolismo , Dosificación Letal Mediana , Carboxilesterasa/metabolismo , Neonicotinoides/toxicidad
5.
Ecotoxicology ; 33(7): 818-829, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990494

RESUMEN

Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.


Asunto(s)
Áfidos , Insecticidas , Nitrilos , Piretrinas , Temperatura , Tiametoxam , Animales , Áfidos/efectos de los fármacos , Áfidos/fisiología , Insecticidas/toxicidad , Piretrinas/toxicidad , Nitrilos/toxicidad , Tiametoxam/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Reproducción/efectos de los fármacos , Hormesis
6.
Environ Pollut ; 358: 124485, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960115

RESUMEN

New mixtures of pesticides are being placed on the market to increase the spectrum of phytosanitary action. Thus, the eco(geno)toxic effects of the new commercial mixture named Platinum Neo, as well as its constituents the neonicotinoid Thiamethoxam and the pyrethroid Lambda-Cyhalothrin, were investigated using the species Daphnia magna, Raphidocelis subcapitata, Danio rerio, and Allium cepa L. The lowest- and no-observed effect concentration (LOEC and NOEC) were measured in ecotoxicological tests. While Thiamethoxam was ecotoxic at ppm level, Lambda-Cyhalothrin and Platinum Neo formulation were ecotoxic at ppb level. The mitotic index (MI), chromosomal aberrations and micronucleus [MN] frequency were measured as indicators of phytogenotoxicity in A. cepa plants exposed for 12 h to the different insecticides and their mixture under different dilutions. There were significant alterations in the MI and MN frequency in comparison with the A. cepa negative control group, with Thiamethoxam, Lambda-Cyhalothrin, and Platinum Neo treatments all significantly reducing MI and increasing MN frequency. Thus, MI reduction was found at 13.7 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 2.7:2 µg L-1 for Platinum Neo, while MN induction was not observed at 14 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 1.4:1 µg L-1 for Platinum Neo. The insecticide eco(geno)toxicity hierarchy was Platinun Neo > Lambda-Cyhalothrin > Thiamethoxam, and the organism sensitivity hierarchy was daphnids > fish > algae > A. cepa. Eco(geno)toxicity studies of new pesticide mixtures can be useful for management, risk assessment, and avoiding impacts of these products on living beings.


Asunto(s)
Daphnia , Insecticidas , Nitrilos , Cebollas , Piretrinas , Tiametoxam , Piretrinas/toxicidad , Tiametoxam/toxicidad , Animales , Insecticidas/toxicidad , Nitrilos/toxicidad , Cebollas/efectos de los fármacos , Daphnia/efectos de los fármacos , Neonicotinoides/toxicidad , Pez Cebra , Tiazoles/toxicidad , Oxazinas/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Nitrocompuestos/toxicidad , Pruebas de Micronúcleos
7.
Environ Toxicol Chem ; 43(8): 1820-1835, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837715

RESUMEN

Springtails (subclass: Collembola) represent one of the most extensively studied invertebrate groups in soil ecotoxicology. This is because of their ease of laboratory culture, significant ecological role, and sensitivity to environmental contaminants. Folsomia candida (family: Isotomidae) is a globally widespread parthenogenetic species that is prevalent in laboratory toxicity testing with springtails. Conversely, Arrhopalites caecus (family: Arrhopalitidae), a parthenogenic globular springtail species, remains untested in soil ecotoxicology. This species is found in diverse habitats, including cave systems and forest leaf litter, and has a global distribution. The sensitivity of A. caecus to environmental contaminants, such as neonicotinoid insecticides, as well as its life history and optimal culturing conditions, are largely unknown. The present study describes the establishment of a pure A. caecus laboratory culture and characterization of its life cycle and culturing conditions. We assessed the sensitivity of A. caecus to various insecticides, including exposures to the neonicotinoid thiamethoxam in soil and through a novel feeding assay as well as to clothianidin and cyantraniliprole in spiked soil exposures. In 7- and 14-day exposures to thiamethoxam in agricultural soil, the 50% lethal concentration (LC50) values were determined to be 0.129 mg/kg dry weight and 0.010 mg/kg dry weight, respectively. The 14-day LC50 for exposure to thiamethoxam via spiked food was determined to be 0.307 mg/kg dry weight. In addition, the 28-day 50% effect concentration for inhibition of juvenile production from cyantraniliprole exposure in the same soil type was 0.055 mg/kg dry weight. Challenges encountered in using this species included susceptibility to mite infestation and low adult survival rates in the 28-day cyantraniliprole test. Environ Toxicol Chem 2024;43:1820-1835. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Artrópodos , Insecticidas , Contaminantes del Suelo , Pruebas de Toxicidad , Animales , Artrópodos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Suelo/química , Tiametoxam/toxicidad
8.
Ecotoxicology ; 33(6): 608-621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780664

RESUMEN

In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.


Asunto(s)
Insecticidas , Neonicotinoides , Tiametoxam , Abejas/efectos de los fármacos , Abejas/fisiología , Animales , Insecticidas/toxicidad , Tiametoxam/toxicidad , Neonicotinoides/toxicidad , Estaciones del Año , Nitrocompuestos/toxicidad , Aclimatación , Tiazoles/toxicidad
9.
Ecotoxicol Environ Saf ; 277: 116355, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669871

RESUMEN

The neonicotinoid insecticide thiamethoxam (TMX) is widely used to protect crops against insect pests. Despite some desirable properties such as its low toxicity to birds and mammals, concerns have been raised about its toxicity to non-target arthropods, including freshwater insects like chironomids. Whereas multiple studies have investigated chronic effects of neonicotinoids in chironomid larvae at standardized laboratory conditions, a better understanding of their chronic toxicity under variable temperatures and exposure is needed for coherent extrapolation from the laboratory to the field. Here, we developed a quantitative mechanistic effect model for Chironomus riparius, to simulate the species' life history under dynamic temperatures and exposure concentrations of TMX. Laboratory experiments at four different temperatures (12, 15, 20, 23 °C) and TMX concentrations between 4 and 51 µg/L were used to calibrate the model. Observed concentration-dependent effects of TMX in C. riparius included slower growth, later emergence, and higher mortality rates with increasing concentrations. Furthermore, besides a typical accelerating effect on the organisms' growth and development, higher temperatures further increased the effects associated with TMX. With some data-informed modeling decisions, most prominently the inclusion of a size dependence that makes larger animals more sensitive to TMX, the model was parametrized to convincingly reproduce the data. Experiments at both a constant (20 °C) and a dynamically increasing temperature (15-23 °C) with pulsed exposure were used to validate the model. Finally, the model was used to simulate realistic exposure conditions using two reference exposure scenarios measured in Missouri and Nebraska, utilizing a moving time window (MTW) and either a constant temperature (20 °C) or the measured temperature profiles belonging to each respective scenario. Minimum exposure multiplication factors leading to a 10% effect (EP10) in the survival at pupation, i.e., the most sensitive endpoint found in this study, were 25.67 and 21.87 for the Missouri scenario and 38.58 and 44.64 for the Nebraska scenario, when using the respective temperature assumptions. While the results illustrate that the use of real temperature scenarios does not systematically modify the EPx in the same direction (making it either more or less conservative when used as a risk indicator), the advantage of this approach is that it increases the realism and thus reduces the uncertainty associated with the model predictions.


Asunto(s)
Chironomidae , Insecticidas , Larva , Temperatura , Tiametoxam , Animales , Tiametoxam/toxicidad , Chironomidae/efectos de los fármacos , Insecticidas/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Neonicotinoides/toxicidad
10.
Crit Rev Toxicol ; 54(3): 194-213, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470098

RESUMEN

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Asunto(s)
Insecticidas , Neonicotinoides , Nitrocompuestos , Humanos , Animales , Medición de Riesgo , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Nitrocompuestos/toxicidad , Guanidinas/toxicidad , Tiametoxam/toxicidad , Tiazoles/toxicidad , Tiazinas
11.
Environ Toxicol Pharmacol ; 106: 104377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272153

RESUMEN

The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.


Asunto(s)
Antioxidantes , Cíclidos , Animales , Tiametoxam/toxicidad , Tiametoxam/metabolismo , Neonicotinoides/toxicidad , Antioxidantes/farmacología , Cíclidos/metabolismo , Estrés Oxidativo , Adenosina Trifosfatasas/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4365-4379, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38099937

RESUMEN

Synthetic organic insecticides such as pyrethroids, organophosphates, neonicotinoids, and others have the potential to disrupt ecosystems and are often toxic to humans. Thiamethoxam (TMX), a neonicotinoid insecticide , is a widely used insecticide with neurotoxic potential. L-Carnitine (LC) is regarded as the "gatekeeper" in charge of allowing long-chain fatty acids into cell mitochondria. LC is an endogenous chemical that is renowned for its prospective biological activity in addition to its role in energy metabolism. This study investigated the protective effects of LC against TMX-induced neurotoxicity in male Wistar rats. For 28 days, animals were divided into four groups and treated daily with either LC (300 mg/kg), TMX (100 mg/kg), or both at the aforementioned doses. Our results revealed marked serum lipid profile and electrolyte changes, declines in brain antioxidants and neurotransmitters (acetylcholine, dopamine, and serotonin levels) with elevations in thiobarbituric acid reactive substances and proinflammatory cytokine levels, as well as acetylcholinesterase and monoamine oxidase brain activity in TMX-treated rats. TMX also increased the expression of caspase-3 and glial fibrillary acidic protein. In contrast, pretreatment with LC attenuated TMX-induced brain injury by suppressing oxidative stress and proinflammatory cytokines and modulating neurotransmitter levels. It also ameliorated the expression of apoptotic and astrogliosis markers. It could be concluded that LC has antioxidant, anti-inflammatory, anti-astrogliosis, and anti-apoptotic potential against TMX neurotoxicity.


Asunto(s)
Apoptosis , Encéfalo , Carnitina , Insecticidas , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Wistar , Tiametoxam , Animales , Masculino , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Tiametoxam/toxicidad , Tiametoxam/farmacología , Carnitina/farmacología , Fármacos Neuroprotectores/farmacología , Insecticidas/toxicidad , Ratas , Gliosis/inducido químicamente , Gliosis/prevención & control , Gliosis/patología , Neurotransmisores/metabolismo , Acetilcolinesterasa/metabolismo , Antioxidantes/farmacología , Caspasa 3/metabolismo , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Citocinas/metabolismo , Monoaminooxidasa/metabolismo
13.
Mar Environ Res ; 193: 106294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096712

RESUMEN

Contamination of the aquatic environment with different insecticides is a major concern in the aquatic ecosystem today. For this reason, in the designed study, Thiamethoxam (TMX) for which there is limited information on its negative effects on Oncorhynchus mykiss was investigated, its effects on hematotoxicity, oxidative status, cytotoxicity, DNA damage and apoptotic status indicators in blood/liver tissue. However, the antitoxic potential of ulexite (UX) supplementation in the elimination of TMX-mediated toxicity has been determined. LC50-96h value determined for TMX 0.73 mg/L has been determined. As a result of hematology profile, TMX application, RBC, Hgb and Hct values showed a temporal decrease compared to the control group, while increases were determined in MCV, MCH and MCHC values. It was determined that the inhibition/induction of hematological parameters was slowed down by adding UX to the medium. During the trial (48th and 96th hours), it was noted that TMX induced cortisol level, while UX supplementation slowed this induction at 48th hour. Antioxidant enzyme activities were significantly inhibited by TMX application, and MDA and MPO values increased as a result of the stimulation of ROS. It was determined that UX added to the medium showed activity in favor of antioxidants and tried to inhibit MDA and MPO levels. When Nrf-2, one of the inflammation parameters, was compared with the administration and control groups, it was determined that it inhibited depending on time, TNF-α, IL-6, DNA damage and apoptosis were induced, and UX suppressed this situation. The results obtained were evaluated as statistically meaningful. Briefly, it was determined that TMX induced oxidative damage in all tissues at 48th - 96th hours, whereas UX mitigated this situation. The results provide possible in vivo evidence that UX supplements can reduce TMX-mediated oxidative stress and tissues damage in O. mykiss blood and liver tissues.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Insecticidas , Humanos , Tiametoxam/toxicidad , Ecosistema , Estrés Oxidativo , Antioxidantes , Insecticidas/toxicidad
14.
Environ Pollut ; 334: 122230, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479172

RESUMEN

The similarity of sensitivity of adult Africanised and European honeybees following acute oral exposure to thiamethoxam has been questioned. Data collated from adult acute contact and oral toxicity testing of a range of thiamethoxam containing products (solo and mixtures) shows that the toxicity of these products to Africanised honeybees can be directly predicted from the toxicity of the active substances to European honeybees. Similarly, the acute contact and oral toxicity of dimethoate to Africanised bees lies within the same range as European honeybees. There are no major differences in the sensitivity of Africanised and European honeybee individuals to thiamethoxam and dimethoate.


Asunto(s)
Dimetoato , Insecticidas , Abejas , Animales , Tiametoxam/toxicidad , Dimetoato/toxicidad , Neonicotinoides/toxicidad , Tiazoles/toxicidad , Pruebas de Toxicidad , Insecticidas/toxicidad
15.
Chemosphere ; 338: 139448, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37437626

RESUMEN

Thiamethoxam (THIA) is a widely used neonicotinoid insecticide. However, the toxicity and defense mechanisms activated in THIA-exposed insects are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology to identify changes in protein expression in THIA-exposed Drosophila. We found that the antioxidant proteins Cyp6a23 and Dys were upregulated, whereas vir-1 was downregulated, which may have been detoxification in response to THIA exposure. Prx5 downregulation promoted the generation of reactive oxygen species. Furthermore, the accumulation of reactive oxygen species led to the induction of antioxidant defenses in THIA-exposed Drosophila, thereby enhancing the levels of oxidative stress markers (e.g., superoxide dismutase, glutathione S-transferase, and glutathione) and reducing catalase expression. Furthermore, the Hippo signaling transcription coactivator Yki was inactivated by THIA. Our results suggesting that Hippo signaling may be necessary to promote insect survival in response to neonicotinoid insecticide toxicity.


Asunto(s)
Insecticidas , Proteómica , Tiametoxam , Animales , Antioxidantes/metabolismo , Drosophila/fisiología , Vía de Señalización Hippo , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Estrés Oxidativo/fisiología , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Tiametoxam/toxicidad , Proteoma/metabolismo , Proteínas de Drosophila/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Transferasa/metabolismo
16.
Sci Rep ; 13(1): 8537, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237012

RESUMEN

Dung beetles (Coleoptera: Scarabaeinae) frequently traverse agricultural matrices in search of ephemeral dung resources and spend extended periods of time burrowing in soil. Neonicotinoids are among the most heavily applied and widely detected insecticides used in conventional agriculture with formulated products designed for row crop and livestock pest suppression. Here, we determined the comparative toxicity of two neonicotinoids (imidacloprid and thiamethoxam) on dung beetles, Canthon spp., under two exposure profiles: direct topical application (acute) and sustained contact with treated-soil (chronic). Imidacloprid was significantly more toxic than thiamethoxam under each exposure scenario. Topical application LD50 values (95% CI) for imidacloprid and thiamethoxam were 19.1 (14.5-25.3) and 378.9 (200.3-716.5) ng/beetle, respectively. After the 10-day soil exposure, the measured percent mortality in the 3 and 9 µg/kg nominal imidacloprid treatments was 35 ± 7% and 39 ± 6%, respectively. Observed mortality in the 9 µg/kg imidacloprid treatment was significantly greater than the control (p = 0.04); however, the 3 µg/kg imidacloprid dose response may be biologically relevant (p = 0.07). Thiamethoxam treatments had similar mortality as the controls (p > 0.8). Environmentally relevant concentrations of imidacloprid measured in airborne particulate matter and non-target soils pose a potential risk to coprophagous scarabs.


Asunto(s)
Escarabajos , Insecticidas , Animales , Insecticidas/toxicidad , Tiametoxam/toxicidad , Oxazinas/toxicidad , Tiazoles/toxicidad , Guanidinas/toxicidad , Imidazoles/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Suelo
17.
Environ Toxicol Chem ; 42(5): 1167-1177, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861216

RESUMEN

In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Beta vulgaris , Insecticidas , Abejas , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Tiametoxam/toxicidad , Azúcares
18.
Neurotoxicology ; 96: 28-36, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958429

RESUMEN

Thiamethoxam (TMX), a neonicotinoid insecticide, is a widely used insecticide with neurotoxic potential. Silymarin (SM), a milk thistle-derived flavonoid, is known with its promising biological activities. This study explored the neuroprotective effects of SM against TMX-triggered cortical injury in male rats. Animals were divided into four groups and treated daily either with SM (150 mg/kg), TMX (78.15 mg/kg), or both at the aforementioned doses for 28 days. Our results revealed marked declines in cortical SOD and CAT activities with elevations in MDA, IL-1b and TNF-α levels in TMX-treated rats. Further, TMX induced down-regulation in the gene expressions of Sod, Cat, Gpx, and Nrf-2, with up-regulation in the gene expressions of IL-1b, IL-6, iNOS, TNF-α and NF-kB. Interestingly, pre-treatment with SM provided a notable neuroprotective action against TMX-mediated cortical damage that indicates its promising antioxidant and anti-inflammatory activities. This effect may be mediated by Nrf2/NF-kB/iNOS signalling and suppression of excess free radicals and production of inflammatory cytokines. In brief, SM could be a promising therapeutic agent against TMX-mediated neural complication via its antioxidant and anti-inflammatory properties. PRACTICAL APPLICATIONS: The using of neonicotinoids as thiamethoxam is recently increased and is associated with brain damage. TMX induced excessive oxidative and inflammatory damage. Therefore, new therapeutic approaches are needed to counteract its adverse effects on the nervous system. SM, a flavonoid, is extracted from the seeds and fruits of milk thistle. Due to its potent antioxidative activity, SM have been applied to mitigate the oxidative stress as well as inflammatory disorders. Herein, we examined the potential therapeutic role of SM against TMX-induced brain oxidative stress and inflammation in rats through evaluating oxidative markers, inflammatory response, and histopathological changes in the brain cortical tissue.


Asunto(s)
Insecticidas , Fármacos Neuroprotectores , Silimarina , Ratas , Masculino , Animales , Tiametoxam/toxicidad , Silimarina/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Insecticidas/toxicidad , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Sistema Nervioso/metabolismo , Superóxido Dismutasa/metabolismo
19.
Int J Toxicol ; 42(4): 345-351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36723994

RESUMEN

Neonicotinoid insecticides, known for their selectivity and low mammalian toxicity, have been widely used in recent years as alternatives to organophosphate insecticides. Although neonicotinoids are generally considered to be safe, data show that they can cause harmful effects on human and environmental health. Due to the lack of information on their mechanism of toxicity, the effects of imidacloprid and thiamethoxam on DNA methylation as the most used marker for epigenetic effects were investigated in human neuroblastoma (SH-SY5Y) cells. The cells were exposed to imidacloprid and thiamethoxam in concentrations of 100, 200, and 500 µM for 24 hours, then global DNA methylation and expression of genes involved in global DNA methylation (DNMT1, DNMT3a and DNMT3b) were investigated. Global DNA methylation significantly increased after imidacloprid exposure at 100 µM, and thiamethoxam exposures at 200 µM and 500 µM (>1.5-fold). Imidacloprid significantly decreased the expression of DNMT1 and DNMT3a, whereas thiamethoxam did not cause any significant changes in the expression of DNMT genes. Our findings suggested that alteration in global DNA methylation may be involved in the toxic mechanisms of imidacloprid and thiametoxam.


Asunto(s)
Insecticidas , Neuroblastoma , Animales , Humanos , Tiametoxam/toxicidad , Insecticidas/toxicidad , Metilación de ADN , Oxazinas/toxicidad , Tiazoles/toxicidad , Guanidinas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Mamíferos
20.
Environ Int ; 173: 107823, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809708

RESUMEN

Previous studies suggest that exposure to thiamethoxam (TMX) may cause adverse effects to human. However, the distribution of TMX in various organs of human body and the associated risk are little-known. This study aimed to explore the distribution of TMX in human organs by extrapolation from a toxicokinetic experiment in rats and to assess the associated risk based on literature data. The rat exposure experiment was performed using 6-week female SD rats. Five groups of rats were oral-exposed to 1 mg/kg TMX (water as solvent) and executed at 1 h, 2 h, 4 h, 8 h and 24 h after treatment, respectively. The concentrations of TMX and its metabolites in rat liver, kidney, blood, brain, muscle, uterus and urine were measured in different time points using LC-MS. Data on concentrations of TMX in food, human urine and blood as well as human cell-based in vitro toxicity of TMX were collected from the literature. After oral exposure, TMX and its metabolite clothianidin (CLO) were detected in all organs of the rats. The steady-state tissue-plasma partition coefficients of TMX for liver, kidney, brain, uterus and muscle were 0.96, 1.53, 0.47, 0.60 and 1.10, respectively. Based on literature analysis, the concentration of TMX in human urine and blood for general population were 0.06-0.5 ng/mL and 0.04-0.6 ng/mL, respectively. For some people, the concentration of TMX in human urine reached 222 ng/mL. By extraplation from rat experiment, the estimated concentrations of TMX in human liver, kidney, brain, uterus and muscle for general population were 0.038-0.58, 0.061-0.92, 0.019-0.28, 0.024-0.36 and 0.044-0.66 ng/g, respectively, well below the relevant concentrations for cytotoxic endpoints (HQs ≤ 0.012); however, for some people they could be up to 253.44, 403.92, 124.08, 158.40 and 290.40 ng/g, respectively, with very high developmental toxicity (HQ = 5.4). Therefore, the risk for highly exposed people should not be neglected.


Asunto(s)
Insecticidas , Hígado , Humanos , Ratas , Femenino , Animales , Tiametoxam/toxicidad , Tiametoxam/metabolismo , Toxicocinética , Ratas Sprague-Dawley , Hígado/metabolismo , Encéfalo/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA