Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Asian Pac J Cancer Prev ; 25(7): 2509-2513, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068586

RESUMEN

Angiogenesis, the formation of new blood vessels, stimulates tumor growth and spread by delivering oxygen and nutrients, and is a key component of metastasis. This work aimed to evaluate the anti-angiogenic properties of a new synthesized compound. Rat aorta angiogenesis assay was used to evaluate the ability of the carbothioamide derivative to inhibit blood vessels sprouting. The tetrazolium (MTT) assay was used to evaluate the anti-proliferative effect of the synthetic compound on human umbilical vein endothelial cell line (HUVECs) and A549 lung cancer cells line. The (2, 2-diphenyl-1-picrylhydrazyl) DPPH was used to investigate the free radical scavenging action. The study showed that the compound has anti-angiogenic activity with IC50 56.9 µg/mL, moreover the compound managed to inhibit the proliferation of HUVECs and A549 cells (IC50 76.3 µg/mL and 45.5 µg/mL, respectively), and The IC50 concentration for free radical scavenging activity of the compound was 27.8 µg/ml. The study concluded that the compound has significant anti-angiogenic activity may be related to its significant anti-proliferative effect against HUVECs, these pharmacological effect may attributed to its potent free radical scavenging activity.


Asunto(s)
Inhibidores de la Angiogénesis , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proliferación Celular/efectos de los fármacos , Ratas , Inhibidores de la Angiogénesis/farmacología , Animales , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células A549 , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Hidrazinas/farmacología , Tioamidas/farmacología , Tioamidas/química , Masculino
2.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968106

RESUMEN

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Asunto(s)
Proteínas Bacterianas , Cobre , Haemophilus influenzae , Oxazolona , Factores de Virulencia , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Cobre/metabolismo , Cobre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Hierro/metabolismo , Procesamiento Proteico-Postraduccional , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Operón , Cisteína/metabolismo
3.
Methods Enzymol ; 698: 27-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886036

RESUMEN

Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.


Asunto(s)
Amidinas , Imidazoles , Péptidos , Tioamidas , Tioamidas/química , Imidazoles/química , Péptidos/química , Amidinas/química
4.
Chembiochem ; 25(16): e202400364, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38819607

RESUMEN

Recent success of RNA therapeutics has reinvigorated interest in chemical modifications of RNA. As exemplified by the phosphorothioates, modifications of sugar-phosphate backbone have been remarkably impactful but relatively underexplored in therapeutic RNAs. The present study reports synthesis, thermal stability, and RNA interference activity of RNAs modified with thioamide linkages. Compared to the previously studied amide-modified RNA, thioamide linkages strongly destabilized a short self-complementary RNA model duplex. However, in short interfering RNAs amides and thioamides had a similar effect on duplex stability and target RNA cleavage activity and specificity. Hence, the thioamide may be added to the toolbox of chemical biologist as a useful backbone modification well tolerated by the RNA interference machinery.


Asunto(s)
ARN , Tioamidas , Tioamidas/química , Tioamidas/síntesis química , ARN/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/síntesis química
5.
Chem Biodivers ; 21(7): e202400776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733168

RESUMEN

A significant reason for developing innovative insecticidal active agents is the exponential rise in resistance to traditional chemical pesticides. Exploring new classes of insecticidal compounds with distinct mechanisms of action is one way to address this difficulty. So that, novel aryl thioamides derivatives 3-15 has been synthesized viaone-pot, three-component reaction of aroyl chloride, ammonium thiocyanate, and aromatic amines in dry acetone. The newly synthesized compounds' structures were validated by various spectroscopic methods, including elemental analysis, 1H-NMR, 13C NMR, and infrared spectroscopy. Under laboratory circumstances, the synthesized compounds showed good and broad-spectrum insecticidal activities toward S. littorali. When compared to other synthetic target compounds, 2,4-dichloro-N-[(3-fluorophenyl)carbamothioyl]benzamide 11, 2,4-dichloro-N-[(3-fluorophenyl)carbamothioyl]benzenecarbothioamide 13 showed good insecticidal activity, with 46.33 mg/L and LC50 values of 49.25 mg/L for 2nd instar larvae. Furthermore, the compound 3 was the least toxic in controlling the second and fourth instar larvae of S. littoralis on tomato leaves. Additionally, several histopathological and biochemical features of the some synthesized compounds under laboratory circumstances were also examined.


Asunto(s)
Diseño de Fármacos , Insecticidas , Spodoptera , Tioamidas , Animales , Insecticidas/farmacología , Insecticidas/síntesis química , Insecticidas/química , Spodoptera/efectos de los fármacos , Relación Estructura-Actividad , Tioamidas/química , Tioamidas/farmacología , Tioamidas/síntesis química , Larva/efectos de los fármacos , Estructura Molecular , Hormonas Juveniles/farmacología , Hormonas Juveniles/química , Hormonas Juveniles/síntesis química , Relación Dosis-Respuesta a Droga
6.
Angew Chem Int Ed Engl ; 63(31): e202404243, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747847

RESUMEN

6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive. Through dissection and in vitro reconstitution of the thionation process using diverse substrates, we uncover an intermediate, prodrug-like thio-conjugate and elucidate the precise enzyme functions. YcfA not only adenylates GMP but also transfers the mercapto group of l-cysteine to the activated carbonyl. A designated C-S lyase (YcfC) then cleaves the resulting S-adduct to yield the thioamide. This pathway is distinct from canonical tRNA sulfur modifications and known enzymatic peptide thionations. By exploring a wide range of substrate surrogates, we exploited the tolerance of the enzyme pair to produce even a seleno analog. This study provides valuable insight into a previously unexplored area of bacterial thioamide formation and lays the groundwork for synthetic biology approaches to produce thioamide antimetabolites.


Asunto(s)
Profármacos , Tioamidas , Profármacos/química , Profármacos/metabolismo , Tioamidas/química , Tioamidas/metabolismo
7.
Curr Opin Chem Biol ; 80: 102467, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772214

RESUMEN

Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), formerly known as domain of unknown function 692 (DUF692), are involved in the post-translational modification of peptides during the biosynthesis of peptide-based natural products. These enzymes catalyze highly unusual and diverse chemical modifications. Several class-defining features of this large family (>14 000 members) are beginning to emerge. Structurally, the enzymes are characterized by a TIM-barrel fold and a set of conserved residues for a di- or tri-iron binding site. They use molecular oxygen to modify peptide substrates, often in a four-electron oxidation taking place at a cysteine residue. This review summarizes the current understanding of MNIOs. Four modifications are discussed in detail: oxazolone-thioamide formation, ß-carbon excision, hydantoin-macrocycle formation, and 5-thiooxazole formation. Briefly discussed are two other reactions that do not take place on Cys residues.


Asunto(s)
Oxidación-Reducción , Péptidos , Procesamiento Proteico-Postraduccional , Péptidos/química , Péptidos/metabolismo , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Hierro/metabolismo , Hierro/química , Tioamidas/química , Tioamidas/metabolismo , Humanos
8.
Int J Parasitol Drugs Drug Resist ; 25: 100536, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663046

RESUMEN

Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit ß-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Piridinas , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Humanos , Piridinas/farmacología , Piridinas/química , Amidas/farmacología , Línea Celular , Concentración 50 Inhibidora , Resistencia a Medicamentos , Descubrimiento de Drogas , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Tioamidas/farmacología , Tioamidas/química , Pruebas de Sensibilidad Parasitaria
9.
Chemistry ; 30(9): e202303770, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38088462

RESUMEN

Thioamides are naturally occurring isosteres of amide bonds in which the chalcogen atom of the carbonyl is changed from oxygen to sulfur. This substitution gives rise to altered nucleophilicity and hydrogen bonding properties with importance for both chemical reactivity and non-covalent interactions. As such, thioamides have been introduced into biologically active compounds to achieve improved target affinity and/or stability towards hydrolytic enzymes but have also been applied as probes of protein and peptide folding and dynamics. Recently, a series of new methods have been developed for the synthesis of thioamides as well as their utilization in peptide chemistry. Further, novel strategies for the incorporation of thioamides into proteins have been developed, enabling both structural and functional studies to be performed. In this Review, we highlight the recent developments in the preparation of thioamides and their applications for peptide modification and study of protein function.


Asunto(s)
Péptidos , Tioamidas , Tioamidas/química , Péptidos/química , Proteínas/química , Amidas , Azufre
10.
Nat Commun ; 14(1): 6050, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770425

RESUMEN

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Asunto(s)
Amidas , Tioamidas , Ratas , Animales , Amidas/química , Tioamidas/química , Disponibilidad Biológica , Péptidos , Permeabilidad , Aminoácidos , Solventes
11.
Nat Commun ; 14(1): 4626, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532721

RESUMEN

Thioamides are an important, but a largely underexplored class of amide bioisostere in peptides. Replacement of oxoamide units with thioamides in peptide therapeutics is a valuable tactic to improve biological activity and resistance to enzymatic hydrolysis. This tactic, however, has been hampered by insufficient methods to introduce thioamide bonds into peptide or protein backbones in a site-specific and stereo-retentive fashion. In this work, we developed an efficient and mild thioacylation method to react nitroalkanes with amines directly in the presence of elemental sulfur and sodium sulfide to form a diverse range of thioamides in high yields. Notably, this convenient method can be employed for the controlled thioamide coupling of multifunctionalized peptides without epimerization of stereocenters, including the late stage thioacylation of advanced compounds of biological and medicinal interest. Experimental interrogation of postulated mechanisms currently supports the intermediacy of thioacyl species.


Asunto(s)
Amidas , Tioamidas , Tioamidas/química , Amidas/química , Péptidos/química , Aminas
12.
Curr Opin Chem Biol ; 75: 102336, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269675

RESUMEN

Peptides act as biological mediators and play a key role of various physiological activities. Sulfur-containing peptides are widely used in natural products and drug molecules due to their unique biological activity and chemical reactivity of sulfur. Disulfides, thioethers, and thioamides are the most common motifs of sulfur-containing peptides, and they have been extensively studied and developed for synthetic methodology as well as pharmaceutical applications. This review focuses on the illustration of these three motifs in natural products and drugs, as well as the recent advancements in the synthesis of the corresponding core scaffolds.


Asunto(s)
Productos Biológicos , Péptidos , Péptidos/química , Azufre , Tioamidas/química , Sulfuros/química , Productos Biológicos/farmacología , Productos Biológicos/química
13.
Angew Chem Int Ed Engl ; 62(26): e202303625, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37118109

RESUMEN

Thioamide peptides were synthesized in a straightforward one-pot process via the linkage of diverse natural amino acids in the presence of thiolphosphonate and trichlorosilane, wherein carbonyl groups were replaced with thiono compounds with minimal racemization. Experimental and computational mechanistic studies demonstrated that the trichlorosilane enables the activation of carboxylic acids via intense interactions with the Si-O bond, followed by coupling of the carboxylic acids with thiolphosphonate to obtain the key intermediate S-acyl dithiophosphate. Silyl-activated quadrangular metathesis transition states afforded the thioamide peptides. The potential applications of these thioamide peptides were further highlighted via late-stage linkages of diverse natural products and pharmaceutical drugs and the thioamide moiety.


Asunto(s)
Aminoácidos , Tioamidas , Tioamidas/química , Péptidos/química , Aminas , Ácidos Carboxílicos
14.
Chem Commun (Camb) ; 58(81): 11430-11433, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134562

RESUMEN

A novel thio-Ritter-type reaction of alkyl bromides, nitriles, and hydrogen sulfide has been explored, providing a straightforward approach toward functionally important thioamides. This transformation features a broad substrate scope, operational simplicity, use of available feedstock chemicals, and late-stage functionalizations of bioactive molecules. The reaction mechanism is also proposed.


Asunto(s)
Sulfuro de Hidrógeno , Tioamidas , Bromuros , Estructura Molecular , Nitrilos/química , Tioamidas/química
15.
J Org Chem ; 87(18): 12196-12213, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007261

RESUMEN

A novel carbenoid-mediated approach to thioisomünchnones was developed by intermolecular copper-catalyzed reactions of diazoacetamides with aromatic and heteroaromatic thioamides bearing a pyrrolidine moiety. The direction of the reaction can be switched toward 2-amino-2-heteroarylacrylamides by replacing the pyrrolidine with an aniline group or by the use of 2-cyano-2-diazoacetamides. The proposed mechanism and DFT calculations allowed us to rationalize the effect of substituents on the reaction direction. Effective methods were found for the synthesis of previously unknown both 2-heteroarylthioisomünchones and 2-heteroarylacrylamides, based on a wide scope of available reagents with a similar structure. Some of the synthesized thioisomünchnones exhibited multicolor fluorescence in the solid state and solutions.


Asunto(s)
Cobre , Tioamidas , Acrilamidas , Compuestos de Anilina , Catálisis , Cobre/química , Estructura Molecular , Pirrolidinas , Tioamidas/química
16.
Angew Chem Int Ed Engl ; 61(35): e202207346, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35776856

RESUMEN

Amide bond replacement with planar isosteric chalcogen analogues has an important implication for the properties of the N-C(X) linkage in structural chemistry, biochemistry and organic synthesis. Herein, we report the first higher chalcogen derivatives of non-planar twisted amides. The synthesis of twisted thioamide in a versatile system has been accomplished by direct thionation without cleavage of the σ N-C bond. The synthesis of twisted selenoamide has been accomplished by selenation with Woollins' reagent. The structures of higher chalcogen analogues of non-planar amides were unambiguously confirmed by X-ray crystallography. Reactivity studies were conducted to determine the effect of isologous N-C(O) to N-C(X) replacement on the properties of the amide linkage. Computational studies were employed to evaluate structural and energetic parameters of amide bond alteration in higher chalcogen amides. The study provides the first experimental evidence on the effect of chalcogen isologues on the structural and electronic properties of the non-planar amide N-C(X) linkage.


Asunto(s)
Amidas , Calcógenos , Amidas/química , Calcógenos/química , Cristalografía por Rayos X , Tioamidas/química
17.
Methods Mol Biol ; 2530: 69-80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35761043

RESUMEN

A novel synthetic approach to thioamide-substituted peptides is reported. It provides a practical tool for the chemical biology study of peptides and proteins by replacing a carbonyl oxygen atom of an amide bond by an sp2-hybridized sulfur atom to precisely introduce a thioamide bond Ψ[CS-NH] into a peptide backbone. The α-thioacyloxyenamide intermediates, originating from ynamide coupling reagent and proteinogenic amino monothioacids, are proved to be novel effective thioacylating reagents in both the solution and solid phase peptide syntheses. Herein, we describe the detailed synthesis protocol for site-specifically incorporating a thioamide bond at 19 of 20 proteinogenic amino acid residues (except for His) of a peptide backbone in a racemization/epimerization-free manner.


Asunto(s)
Péptidos , Tioamidas , Amidas/química , Indicadores y Reactivos , Péptidos/química , Técnicas de Síntesis en Fase Sólida/métodos , Tioamidas/química
18.
Org Biomol Chem ; 20(30): 5981-5988, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35441645

RESUMEN

Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.


Asunto(s)
Aminas , Tioamidas , Amidas/química , Tioamidas/química
19.
Angew Chem Int Ed Engl ; 61(16): e202200144, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35122374

RESUMEN

Thioamides represent highly valuable isosteric in the strictest sense "single-atom substitution" analogues of amides that have found broad applications in chemistry and biology. A long-standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R-C(S)-NR1 R2 ) into another (R-C(S)-NR3 N4 ). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N-C(S) transacylation. The method relies on site-selective N-tert-butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground-state-destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late-stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.


Asunto(s)
Tioamidas , Elementos de Transición , Amidas , Tioamidas/química
20.
Org Biomol Chem ; 20(7): 1488-1492, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35103273

RESUMEN

A novel method for lactam stapling of Asp/Lys-containing peptides has been developed that does not require coupling agents. A backbone thioamide is incorporated at the N-terminal side of the aspartate residue. Ag(I)-promoted activation of the thioamide in the vicinity of the Asp carboxylate generates a cyclic isoimide intermediate that is trapped by the Lys amine to generate the macrolactam. This method is suitable for generation of i,i+2, i,i+3, and i,i+4-spaced lactam-bridged peptides.


Asunto(s)
Lactamas/química , Sustancias Macromoleculares/síntesis química , Péptidos Cíclicos/síntesis química , Tioamidas/química , Sustancias Macromoleculares/química , Estructura Molecular , Péptidos Cíclicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA