Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Nanobiotechnology ; 22(1): 558, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267061

RESUMEN

Breast cancer therapy has significantly advanced by targeting the programmed cell death-ligand 1/programmed cell death-1 (PD-L1/PD-1) pathway. BMS-202 (a smallmolecule PD-L1 inhibitor) induces PD-L1 dimerization to block PD-1/PD-L1 interactions, allowing the T-cell-mediated immune response to kill tumor cells. However, immunotherapy alone has limited effects. Clinically approved photodynamic therapy (PDT) activates immunity and selectively targets malignant cells. However, PDT aggravates hypoxia, which may compromise its therapeutic efficacy and promote tumor metastasis. We designed a tumor-specific delivery nanoplatform of liposomes that encapsulate the hypoxia-sensitive antitumor drug tirapazamine (TPZ) and the small-molecule immunosuppressant BMS. New indocyanine green (IR820)-loaded polyethylenimine-folic acid (PEI-FA) was complexed with TPZ and BMS-loaded liposomes via electrostatic interactions to form lipid nanocomposites. This nanoplatform can be triggered by near-infrared irradiation to induce PDT, resulting in a hypoxic tumor environment and activation of the prodrug TPZ to achieve efficient chemotherapy. The in vitro and in vivo studies demonstrated excellent combined PDT, chemotherapy, and immunotherapy effects on the regression of distant tumors and lung metastases, providing a reference method for the preparation of targeted agents for treating breast cancer.


Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Liposomas , Liposomas/química , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Animales , Ratones , Humanos , Línea Celular Tumoral , Fotoquimioterapia/métodos , Verde de Indocianina/química , Verde de Indocianina/uso terapéutico , Verde de Indocianina/análogos & derivados , Ratones Endogámicos BALB C , Tirapazamina/química , Tirapazamina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Fototerapia/métodos
2.
ACS Appl Mater Interfaces ; 16(31): 40641-40652, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051862

RESUMEN

Photothermal therapy (PTT) has emerged as a noninvasive and precise cancer treatment modality known for its high selectivity and lack of drug resistance. However, the clinical translation of many PTT agents is hindered by the limited biodegradability of inorganic nanoparticles and the instability of organic dyes. In this study, a peptide conjugate, IR820-Cys-Trp-Glu-Trp-Thr-Trp-Tyr (IR820-C), was designed to self-assemble into nanoparticles for both potent PTT and vascular disruption in melanoma treatment. When co-assembled with the poorly soluble vascular disrupting agent (VDA) combretastatin A4 (CA4), the resulting nanoparticles (IR820-C@CA4 NPs) accumulate efficiently in tumors, activate systemic antitumor immune responses, and effectively ablate melanoma with a single treatment and near-infrared irradiation, as confirmed by our in vivo experiments. Furthermore, by exploiting the resulting tumor hypoxia, we subsequently administered the hypoxia-activated prodrug tirapazamine (TPZ) to capitalize on the created microenvironment, thereby boosting therapeutic efficacy and antimetastatic potential. This study showcases the potential of short-peptide-based nanocarriers for the design and development of stable and efficient photothermal platforms. The multifaceted therapeutic strategy, which merges photothermal ablation with vascular disruption and hypoxia-activated chemotherapy, holds great promise for advancing the efficacy and scope of cancer treatment modalities.


Asunto(s)
Melanoma , Animales , Ratones , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Línea Celular Tumoral , Humanos , Terapia Fototérmica , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Estilbenos/química , Estilbenos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Hipoxia Tumoral/efectos de los fármacos , Tirapazamina/química , Tirapazamina/farmacología , Verde de Indocianina/análogos & derivados
3.
Biomater Adv ; 163: 213962, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032435

RESUMEN

Solid tumors create a hypoxic microenvironment and this character can be utilized for cancer therapy, but the hypoxia levels are insufficient to achieve satisfactory therapeutic benefits. Some tactics have been used to improve hypoxia, which however will cause side effects due to the uncontrolled drug release. We herein report near-infrared (NIR) photoactivatable three-in-one nanoagents (PCT) to aggravate tumor hypoxia and enable amplified photo-combinational chemotherapy. PCT are formed based on a thermal-responsive liposome nanoparticle containing three therapeutic agents: a hypoxia responsive prodrug tirapazamine (TPZ) for chemotherapy, a vascular targeting agent combretastatin A-4 (CA4) for vascular disturbance and a semiconducting polymer for both photodynamic therapy (PDT) and photothermal therapy (PTT). With NIR laser irradiation, PCT generate heat for PTT and destructing thermal-responsive liposomes to achieve activatable releases of TPZ and CA4. Moreover, PCT produce singlet oxygen (1O2) for PDT via consuming tumor oxygen. CA4 can disturb the blood vessels in tumor microenvironment to aggravate the hypoxic microenvironment, which results in the activation of TPZ for amplified chemotherapy. PCT thus enable PTT, PDT and hypoxia-amplified chemotherapy to afford a high therapeutic efficacy to almost absolutely eradicate subcutaneous 4 T1 tumors and effectively inhibit tumor metastases in lung and liver. This work presents an activatable three-in-one therapeutic nanoplatform with remotely controllable and efficient therapeutic actions to treat cancer.


Asunto(s)
Rayos Infrarrojos , Liposomas , Nanopartículas , Fotoquimioterapia , Tirapazamina , Animales , Humanos , Fotoquimioterapia/métodos , Tirapazamina/farmacología , Tirapazamina/química , Tirapazamina/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Ratones , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Terapia Fototérmica/métodos , Estilbenos/farmacología , Estilbenos/uso terapéutico , Estilbenos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Hipoxia Tumoral/efectos de los fármacos
4.
J Photochem Photobiol B ; 258: 112977, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991294

RESUMEN

To solve the problems existing in the clinical application of hypericin (Hyp) and tirapazamine (TPZ), a nano-drug delivery system with synergistic anti-tumor functions was constructed using mesoporous silica nanoparticles (MSN) and sodium alginate (SA). The system exhibited excellent stability, physiological compatibility and targeted drug release performance in tumor tissues. In the in vitro and in vivo experiments, Hyp released from MSN killed tumor cells through photodynamic therapy (PDT). The degree of hypoxia in the tumor tissue site was exacerbated, enabling TPZ to fully exert its anti-tumor activity. Our studies suggested that the synergistic effects between the components of the nano-drug delivery system significantly improve the anti-tumor properties of Hyp and TPZ.


Asunto(s)
Alginatos , Antracenos , Nanopartículas , Perileno , Dióxido de Silicio , Tirapazamina , Microambiente Tumoral , Dióxido de Silicio/química , Microambiente Tumoral/efectos de los fármacos , Alginatos/química , Animales , Humanos , Tirapazamina/química , Tirapazamina/farmacología , Nanopartículas/química , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Ratones , Antracenos/química , Línea Celular Tumoral , Fotoquimioterapia , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Porosidad , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Sinergismo Farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química
5.
J Nanobiotechnology ; 22(1): 358, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907270

RESUMEN

BACKGROUND: Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS: A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS: This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.


Asunto(s)
Fluorocarburos , Nanopartículas , Profármacos , Protoporfirinas , Tirapazamina , Humanos , Tirapazamina/farmacología , Tirapazamina/química , Protoporfirinas/farmacología , Protoporfirinas/química , Fluorocarburos/química , Fluorocarburos/farmacología , Profármacos/farmacología , Profármacos/química , Línea Celular Tumoral , Nanopartículas/química , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Ondas Ultrasónicas , Animales , Matriz Extracelular/metabolismo , Ratones , Neoplasias/tratamiento farmacológico
6.
Adv Mater ; 36(30): e2404901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723206

RESUMEN

Intrinsic characteristics of microorganisms, including non-specific metabolism sites, toxic byproducts, and uncontrolled proliferation constrain their exploitation in medical applications such as tumor therapy. Here, the authors report an engineered biohybrid that can efficiently target cancerous sites through a pre-determined metabolic pathway to enable precise tumor ablation. In this system, DH5α Escherichia coli is engineered by the introduction of hypoxia-inducible promoters and lactate oxidase genes, and further surface-armored with iron-doped ZIF-8 nanoparticles. This bioengineered E. coli can produce and secrete lactate oxidase to reduce lactate concentration in response to hypoxic tumor microenvironment, as well as triggering immune activation. The peroxidase-like functionality of the nanoparticles extends the end product of the lactate metabolism, enabling the conversion of hydrogen peroxide (H2O2) into highly cytotoxic hydroxyl radicals. This, coupled with the transformation of tirapazamine loaded on nanoparticles to toxic benzotriazinyl, culminates in severe tumor cell ferroptosis. Intravenous injection of this biohybrid significantly inhibits tumor growth and metastasis.


Asunto(s)
Escherichia coli , Ferroptosis , Oxigenasas de Función Mixta , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Ferroptosis/efectos de los fármacos , Ratones , Escherichia coli/metabolismo , Línea Celular Tumoral , Humanos , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Tirapazamina/química , Tirapazamina/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Estructuras Metalorgánicas/química , Imidazoles/química , Ácido Láctico/química , Nanopartículas/química , Radical Hidroxilo/metabolismo , Radical Hidroxilo/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología
7.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726798

RESUMEN

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Humanos , Femenino , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/prevención & control , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Ratones , Hipoxia de la Célula/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Células MCF-7 , Línea Celular Tumoral , FN-kappa B/metabolismo , Tirapazamina/farmacología , Tirapazamina/química , Tirapazamina/metabolismo
8.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658965

RESUMEN

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Sulfuro de Hidrógeno , Mitocondrias , Nanopartículas , Terapia Fototérmica , Profármacos , Tirapazamina , Terapia Fototérmica/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Cobre/química , Cobre/farmacología , Ratones , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Tirapazamina/farmacología , Tirapazamina/química , Nanopartículas/química , Ácido Hialurónico/química , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
9.
Adv Mater ; 36(23): e2310875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450765

RESUMEN

Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70-mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.


Asunto(s)
Fulerenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Tirapazamina , Fulerenos/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Fotoquimioterapia/métodos , Ratones , Línea Celular Tumoral , Tirapazamina/química , Tirapazamina/farmacología , Humanos , Terapia Combinada , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Hipoxia Tumoral/efectos de los fármacos , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
10.
Adv Mater ; 36(3): e2307929, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856705

RESUMEN

Combination therapy has emerged as a promising approach for effective tumor treatment. However, the combination of sonodynamic therapy (SDT) and hypoxia-activated prodrugs (HAPs) has not been explored due to the contradictory requirement of oxygen (O2 ) for reactive oxygen species (ROS) generation and the necessity to avoid O2 for the activation of HAPs. In this study, this challenge is addressed by developing BiOCl-Au-Ag2 S Z-scheme heterostructure nanoparticles loaded with tirapazamine (TPZ) to achieve O2 -independent therapy. These nanoparticles demonstrate efficient electron-hole separation under ultrasound irradiation while maintaining a high redox potential. The generated holes react with water to efficiently produce hydroxyl radicals, while the electrons autonomously activate TPZ, negating the need for O2 . In vitro and in vivo assessments validate the effective tumor elimination by these Z-scheme nanoparticles without disrupting the hypoxic environment. This innovative design overcomes the limitations associated with O2 requirement in SDT and introduces a novel strategy for HAP activation and synergistic therapy between ROS and HAPs-based therapy.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Humanos , Oxígeno , Especies Reactivas de Oxígeno , Profármacos/química , Tirapazamina/química , Hipoxia , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
11.
J Photochem Photobiol B ; 248: 112798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820499

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) has a promising application prospect in Echinococcus granulosus (Egs), however, the hypoxic environment of Egs and the hypoxia associated with PDT will greatly limit its effects. As a hypoxic-activated pre-chemotherapeutic drug, tirapazamine (TPZ) can be only activated and produce cytotoxicity under hypoxia environment. Albendazole sulfoxide (ABZSO) is the first choice for the treatment of Egs. This study aimed to explore the effects of ABZSO nanoparticles (ABZSO NPs), TPZ combined with PDT on the activity of Egs in vitro and in vivo. METHODS: The Egs were divided into control, ABZSO NPs, ABZSO NPs + PDT, and ABZSO NPs + TPZ + PDT groups, and the viability of Egs was determined using methylene blue staining. Then, the ROS, LDH and ATP levels were measured using their corresponding assay kit, and H2AX and TopoI protein expression was detected by western blot. The morphology of Egs with different treatments was observed using hematoxylin eosin (HE) staining and scanning electron microscopy (SEM). After that, the in vivo efficacy of ABZSO NPs, TPZ and PDT on Egs was determined in a Egs infected mouse model. RESULTS: In vitro experiments showed that the combined treatment of TPZ, ABZSO NPs and PDT significantly inhibited Egs viability; and significantly increased ROS levels and LDH contents, while decreased ATP contents in Egs; as well as up-regulated H2AX and down-regulated TopoI protein expression. HE staining and SEM results showed that breaking-then-curing treatment seriously damaged the Egs wall. Additionally, in vivo experiments found that the combination of ABZSO NPs, PDT and TPZ had more serious calcification and damage of the wall structure of cysts. CONCLUSIONS: ABZSO NPs combined with TPZ and PDT has a better inhibitory effect on the growth of Egs in vitro and in vivo based on the strategy of "breaking-then-curing".


Asunto(s)
Equinococosis , Echinococcus granulosus , Nanopartículas , Fotoquimioterapia , Animales , Ratones , Tirapazamina/farmacología , Tirapazamina/química , Tirapazamina/uso terapéutico , Echinococcus granulosus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hipoxia , Fotoquimioterapia/métodos , Equinococosis/tratamiento farmacológico , Nanopartículas/química , Adenosina Trifosfato
12.
Biomater Sci ; 11(16): 5674-5679, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37439102

RESUMEN

Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Nanomedicina , Metalocenos/farmacología , Metalocenos/uso terapéutico , Peróxido de Hidrógeno/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Tirapazamina/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Oxígeno , Hipoxia/tratamiento farmacológico , Glutatión , Disulfuros/farmacología , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
13.
J Colloid Interface Sci ; 634: 495-508, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542978

RESUMEN

Chemodynamic therapy (CDT), an emerging oncology treatment, has received considerable attention owing to its high selectivity, less aggressiveness, and endogenous stimulation. However, the complex intra-tumor environment limits the therapeutic effect. In this study, Cu+ was directly doped into the structure of the UiO-66 matrix using an in situ one-pot oil bath method. The as-formed UiO-66/Cu possessed a large surface area, making it feasible to modify folic acid (FA) and carry more chemotherapeutic agents like tirapazamine (TPZ), thus forming UiO-66/Cu-FA-TPZ nanoplatforms. For CDT, the nanoplatform catalyzed the cyclic generation of the highly oxidizing hydroxyl radical (·OH) from H2O2. Particularly, low-frequency ultrasound enhanced the curative effect. Notably, in a tumor, a severe hypoxic environment and ultrasound can activate more TPZ for safe and efficient chemotherapy, achieving synergistic and hypoxia-activated tumor treatment with a low risk of side effects. Moreover, the nanoplatform exhibits computed tomography imaging functions for combined diagnosis and treatment. Our designed nanoplatform overcomes the dilemma of insufficient efficacy from conventional therapy attributed to a hypoxic environment, expecting to guide the design of future treatment regimens for hypoxic tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Tirapazamina/farmacología , Tirapazamina/química , Antineoplásicos/química , Peróxido de Hidrógeno , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral
14.
J Photochem Photobiol B ; 234: 112535, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35930948

RESUMEN

The treatment efficacy of anticancer drugs in complex physiological environments is still restricted by multi-drug resistance. To overcome this issue, a nanodrug system of HA-SS@CuS@ZIF-8@TPZ&TBMACN (HSCZTT) that breaks through the detoxification barrier for tirapazamine (TPZ) delivery was developed in this manuscript. In addition to the photothermal effect aroused by CuS in HSCZTT, which can damage tumour cells, TBMACN with photostable fluorescence in the aggregate state can also generate sufficient reactive oxygen species (ROS) to destroy tumour cells. The continuous consumption of oxygen in PDT aggravates the hypoxic environment of tumours, which further activates the TPZ released in the acidic microenvironment of the tumour to achieve apoptosis of the tumour cells. The HSCZTT can not only target the CD44 receptor overexpressed on the surface of the cancer cell, but can also effectively consume a large amount of glutathione (GSH) through the disulphide bond-modified hyaluronic acid, which serves as a targeted disulphide bond, interfering with the detoxification barrier. Our finding presents a rational strategy to overcome multidrug resistance for the improved efficacy of anticancer drugs by the targeting of Hyaluronic acid (HA), release of the drug by the acid response of ZIF-8, breakthrough of the detoxification barrier, precise positioning of the drug release and combined treatment with phototherapy and hypoxia-activated chemotherapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Antineoplásicos/química , Línea Celular Tumoral , Disulfuros , Humanos , Ácido Hialurónico/química , Hipoxia , Nanopartículas/química , Neoplasias/patología , Fármacos Fotosensibilizantes/química , Tirapazamina/química , Tirapazamina/metabolismo , Tirapazamina/farmacología , Microambiente Tumoral
15.
J Mater Chem B ; 10(20): 3849-3860, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35470367

RESUMEN

With the advantages of deep tissue penetration and controllability, external X-ray-induced photodynamic therapy (X-PDT) is highly promising for combined cancer therapy. In addition to the low efficiency of photosensitizer (PS) delivery to tumor sites, however, the radiation- and drug-resistance of hypoxic cells inside the tumor after X-PDT also limit its benefits. Herein, we develop a combined therapeutic modality based on an intelligent nanosized platform (DATAT-NPVT) with tumor acidity-activated TAT presenting and redox-boosted release of tirapazamine (TPZ) for more precise and synchronous X-PDT and selective hypoxia-motivated chemotherapy. After DATAT-NPVT has accumulated in tumor tissues via decreased blood clearance by masking of the TAT ligand, its targeting ability is reactivated by tumor pH (∼6.8), which enhances tumoral cellular uptake. Upon low-dose X-ray irradiation, the encapsulated verteporfin (VP) generates reactive oxygen species (ROS) to carry out X-PDT against MDA-MB-231 breast tumors. As a result of the abundant GSH-triggered degradation of ditelluride bridged bonds, the cascaded TPZ release and activation in the hypoxic environment following X-PDT would produce highly cytotoxic radicals to serve as antitumor agents to kill the remaining hypoxic tumor cells. This concept provides new avenues for the design of hierarchical-responsive drug delivery systems and represents a proof-of-concept combinatorial tumor treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Fotoquimioterapia , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Hipoxia , Nanopartículas/química , Oxidación-Reducción , Tirapazamina/química , Rayos X
16.
ACS Biomater Sci Eng ; 8(4): 1604-1612, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35348331

RESUMEN

The low sensitivity of hypoxic regions in solid tumors to radiotherapy and chemotherapy remains a major obstacle to cancer treatment. By taking advantage of hypoxic-activated prodrugs, tirapazamine (TPZ), generating cytotoxic reductive products and the glucose oxidase (GOx)-based glucose oxidation reaction, we designed a nanodrug-loading system that combined TPZ-induced chemotherapy with GOx-mediated cancer-orchestrated starvation therapy and cancer oxidation therapy. In this work, we first prepared mesoporous silica (MSN) loaded with TPZ. Then, in order to prevent the leakage of TPZ in advance, the surface was coated with a layer of carMOF formed by Fe3+ and carbenicillin (car), and GOx was adsorbed on the outermost layer to form the final nanosystem MSN-TPZ@carMOF-GOx (MT@c-G). GOx could effectively consume oxygen and catalyzed glucose into gluconic acid and hydrogen peroxide. First, the generated gluconic acid lowered the pH of tumor tissues, promoted the decomposition of carMOF, and released TPZ. Second, oxygen consumption could improve the degree of hypoxia in tumor tissues, so that enhanced the activity of TPZ. Furthermore, GOx could generate cancer-orchestrated starvation/oxidation therapy. Therefore, our study provided a new strategy that TPZ combined with GOx achieved starvation/oxidation/chemotherapy for enhancing anticancer effects in hypoxic regions.


Asunto(s)
Profármacos , Línea Celular Tumoral , Glucosa , Humanos , Hipoxia , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Tirapazamina/química , Tirapazamina/farmacología
17.
J Nanobiotechnology ; 19(1): 298, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592996

RESUMEN

BACKGROUND: Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. RESULTS: The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. CONCLUSIONS: By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Osteosarcoma/metabolismo , Ácidos Ftálicos , Tirapazamina , Hipoxia Tumoral , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Indoles/química , Indoles/farmacología , Masculino , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/toxicidad , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacología , Polímeros/química , Polímeros/farmacología , Tirapazamina/química , Tirapazamina/farmacología
18.
J Mater Chem B ; 9(44): 9142-9152, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34693960

RESUMEN

Multimodal synergistic therapy has gained increasing attention in cancer treatment to overcome the limitations of monotherapy and achieve high anticancer efficacy. In this study, a synergistic phototherapy and hypoxia-activated chemotherapy nanoplatform based on natural melanin nanoparticles (MPs) loaded with the bioreduction prodrug tirapazamine (TPZ) and decorated with hyaluronic acid (HA) was developed. A self-reporting aggregation-induced emission (AIE)-active photosensitizer (PS) (BATTMN) was linked to the prepared nanoparticles by boronate ester bonds. The MPs and BATTMN-HA played roles as quenchers for PS and cancer targeting/photodynamic moieties, respectively. As a pH sensitive bond, the borate ester bonds between HA and BATTMN are hydrolysed in the acidic cancer environment, thereby separating BATTMN from the nanoparticles and leading to the induction of fluorescence for imaging-guided synergistic phototherapy/hypoxia-activated chemotherapy under dual irradiation. TPZ can be released upon activation by pH, near-infrared (NIR) and hyaluronidase (Hyal). Particularly, the hypoxia-dependent cytotoxicity of TPZ was amplified by oxygen consumption in the tumor intracellular environment induced by the AIE-active PS in photodynamic therapy (PDT). The nanoparticles developed in our research showed favorable photothermal conversion efficiency (η = 37%), desired cytocompatibility, and excellent synergistic therapeutic efficacy. The proposed nanoplatform not only extends the application scope of melanin materials with AIE-active PSs, but also offers useful insights into developing multistimulus as well as multimodal synergistic tumor treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Melaninas/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Antineoplásicos/química , Ácidos Borónicos/química , Ácidos Borónicos/efectos de la radiación , Ácidos Borónicos/uso terapéutico , Terapia Combinada , Quimioterapia , Femenino , Humanos , Células MCF-7 , Melaninas/química , Melaninas/efectos de la radiación , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Nanopartículas/efectos de la radiación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Terapia Fototérmica , Profármacos/química , Profármacos/uso terapéutico , Tirapazamina/química , Tirapazamina/uso terapéutico , Hipoxia Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Adv Mater ; 33(41): e2104504, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34436814

RESUMEN

One of the main challenges for tumor vascular infarction in combating cancer lies in failing to produce sustained complete thrombosis. Inspired by the capability of vascular infarction in blocking the delivery of oxygen to aggravate tumor hypoxia, the performance of selective tumor thrombus inducing hypoxia activation therapy to improve the therapeutic index of coagulation-based tumor therapy is presented. By encapsulating coagulation-inducing protease thrombin and a hypoxia-activated prodrug (HAP) tirapazamine into metal-organic framework nanoparticles with a tumor-homing ligand, the obtained nanoplatform selectively activates platelet aggregation at the tumor to induce thrombosis and vascular obstruction therapy by the exposed thrombin. Meanwhile, the thrombus can cut off the blood oxygen supply and potentiate the hypoxia levels to enhance the HAP therapy. This strategy not only addresses the dissatisfaction of vascular therapy, but also conquers the dilemma of inadequate hypoxia in HAP treatment. Since clinical operations such as surgery can be used to induce coagulation, coagulation-based synergistic therapy is promising for translation into a clinical combination regimen.


Asunto(s)
Profármacos/química , Trombina/química , Hipoxia Tumoral , Animales , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Estructuras Metalorgánicas/química , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Agregación Plaquetaria/efectos de los fármacos , Profármacos/farmacología , Profármacos/uso terapéutico , Trombosis/patología , Tirapazamina/química , Trasplante Heterólogo , Hipoxia Tumoral/efectos de los fármacos
20.
Nanotechnology ; 32(46)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34325415

RESUMEN

The therapeutic effect of oxygen-concentration-dependent photodynamic therapy (PDT) can be diminished in the hypoxic environment of solid tumours, the effective solution to this problem is utilising hypoxic-activated bioreduction therapy (BRT). In this research, a biocompatible HA-C60/TPENH2nanogel which can specifically bind to CD44 receptor was developed for highly efficient PDT-BRT synergistic therapy. The nanogel was degradable in acidic microenvironments of tumours and facilitated the release of biological reduction prodrug tirapazamine (TPZ). Importantly, HA-C60/TPENH2nanogel produced reactive oxygen species and consumed oxygen content in the cell to activate TPZ, leading to higher cytotoxicity than the free TPZ did. The intracellular observation of nanogel indicated that the HA-C60/TPENH2nanogel was self-fluorescence for cell imaging. This study applied PDT-BRT to design smart HA-based nanogel with targeted delivery, pH response, and AIEgen feature for efficient cancer therapy.


Asunto(s)
Fulerenos/química , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Hipoxia/tratamiento farmacológico , Nanogeles/química , Polietilenglicoles/química , Polietileneimina/química , Tirapazamina/administración & dosificación , Tirapazamina/química , Antineoplásicos/administración & dosificación , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células Hep G2 , Humanos , Hipoxia/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Profármacos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA