RESUMEN
Objective.The aim of this study was to investigate the impact of the bowtie filter on the image quality of the photon-counting detector (PCD) based CT imaging.Approach.Numerical simulations were conducted to investigate the impact of bowtie filters on image uniformity using two water phantoms, with tube potentials ranging from 60 to 140 kVp with a step of 5 kVp. Subsequently, benchtop PCD-CT imaging experiments were performed to verify the observations from the numerical simulations. Additionally, various correction methods were validated through these experiments.Main results.It was found that the use of a bowtie filter significantly alters the uniformity of PCD-CT images, depending on the size of the object and the x-ray spectrum. Two notable effects were observed: the capping effect and the flattening effect. Furthermore, it was demonstrated that the conventional beam hardening correction method could effectively mitigate such non-uniformity in PCD-CT images, provided that dedicated calibration parameters were used.Significance.It was demonstrated that the incorporation of a bowtie filter results in varied image artifacts in PCD-CT imaging under different conditions. Certain image correction methods can effectively mitigate and reduce these artifacts, thereby enhancing the overall quality of PCD-CT images.
Asunto(s)
Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , ArtefactosRESUMEN
PURPOSE: This research aims to develop an advanced mathematical model using a CT calibration phantom to accurately estimate the CT energy spectrum in clinical settings, enhancing imaging quality and patient dose management. METHODS: Data were collected from a CT scanner using a CT calibration phantom at various energy levels (80, 100, 120, and 135 kVp). The data was optimized to refine the energy spectrum model, followed by cross-validation with Monte Carlo simulations. RESULTS: The developed model demonstrated high precision in estimating the CT energy spectrum at all tested energy levels, with R-squared values above 0.9738 and an R-squared value of 0.9829 at 100 kVp. The model also showed low Normalized Root Mean Square Deviation (NRMSD) ranging from 0.6698 % to 1.8745 %. The Mean Energy Difference (ΔE) between the estimated and simulated spectrum consistently remained under 0.01 keV. These results were comparable to recent studies, which reported higher NRMSD and ΔE. CONCLUSIONS: This study presents a significantly improved model for estimating the CT energy spectrum, offering greater accuracy than existing models. Its strengths include high precision and the use of standard equipment and algorithmic values. While the current use of 13 plugs is adequate, incorporating plugs with varied densities could enhance accuracy. This model has potential for improving imaging quality and optimizing patient dosing in clinical applications. Future trends may include extending energy spectrum estimation to megavoltage domains and integrating technologies like EPID and MVCT for better dose distribution prediction in high-energy photon beam therapy.
Asunto(s)
Método de Montecarlo , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Calibración , Tomografía Computarizada por Rayos X/instrumentación , Modelos Teóricos , HumanosRESUMEN
Accurate quantification of lung density, in Hounsfield Units (HU), is of high importance to monitor progression of diseases such as emphysema using chest CT imaging. Reproducibility of HU quantification on independent photon counting detector CT (PCD-CT) systems with a focus on lung imaging have not yet been evaluated. We thus aimed to evaluate HU reproducibility on 2 independent PCD-CT systems using a repeatable phantom setup with identical acquisition and image reconstruction settings. A COPDGene phantom comprising densities of air, water and lung was scanned on 2 independent PCCT systems using 3 different radiation exposures, 2 medium-sharpness reconstruction kernels (Br40 and Qr36), with and without iterative reconstruction (levels 0 vs 3). Our results demonstrate that acquisitions performed with full dose (3.2 mGy), half dose (1.6 mGy), and one-eighth dose (0.4 mGy) had minimal influence on HU accuracy (<6 HU) when using Br40 and Qr36 kernels. The level of iterative reconstruction also has a minimal impact (<6 HU) with the same kernels. Between the 2 PCD-CT systems evaluated, reproducible HU quantification was achieved for changes to CTDIvol, iterative reconstruction level and reconstruction kernel.
Asunto(s)
Pulmón , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Pulmón/diagnóstico por imagen , Reproducibilidad de los Resultados , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Dosis de RadiaciónRESUMEN
OBJECTIVE: To investigate the feasibility of standardizing RT simulation CT scanner protocols between vendors using target-based image quality (IQ) metrics. METHOD AND MATERIALS: A systematic assessment process in phantom was developed to standardize clinical scan protocols for scanners from different vendors following these steps: (a) images were acquired by varying CTDIvol and using an iterative reconstruction (IR) method (IR: iDose and model-based iterative reconstruction [IMR] of CTp-Philips Big Bore scanner, SAFIRE of CTs-Siemens biograph PETCT scanner), (b) CT exams were classified into body and brain protocols, (c) the rescaled noise power spectrum (NPS) was calculated, (d) quantified the IQ change due to varied CTDIvol and IR, and (e) matched the IR strength level. IQ metrics included noise and texture from NPS, contrast, and contrast-to-noise ratio (CNR), low contrast detectability (d'). Area under curve (AUC) of the receiver operation characteristic curve of d' was calculated and compared. RESULTS: The level of change in the IQ ratio was significant (>0.6) when using IMR. The IQ ratio change was relatively low to moderate when using either iDose in CTp (0.1-0.5) or SAFIRE in CTs (0.1-0.6). SAFIRE-2 in CTs showed a closer match to the reference body protocol when compared to iDose-3 in CTp. In the brain protocol, iDose-3 in CTp could be matched to the low to moderate level of SAFIRE in CTs. The AUC of d' was highest when using IMR in CTp with lower CTDIvol, and SAFIRE in CTs performed better than iDose in CTp CONCLUSION: It is possible to use target-based IQ metrics to evaluate the performance of the system and operations across various scanners in a phantom. This can serve as an initial reference to convert clinical scanned protocols from one CT simulation scanner to another.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/normas , Tomografía Computarizada por Rayos X/instrumentación , Relación Señal-Ruido , Planificación de la Radioterapia Asistida por Computador/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/normas , Dosificación Radioterapéutica , Algoritmos , Tomógrafos Computarizados por Rayos X/normas , Radioterapia de Intensidad Modulada/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapiaRESUMEN
PURPOSE: The measurement of slice sensitivity profile (SSP) in non-helical CT is conventionally performed by repeated scans with moving a micro-coin phantom little by little in the longitudinal direction at a small interval, which is reliable but laborious and time-consuming. The purpose of this study was to propose a simple method for measuring the SSP in non-helical CT based on a previous method that measured the slice thickness using a tilted metal wire. METHODS: In the proposed method, a CT image was obtained by scanning a wire tilted at an angle θ=30° to the scan plane. By deconvolving the image with the point spread function (PSF) measured at the scanner, we obtained an image that was not affected by the PSF blurring. The CT value profile along the wire was acquired on the obtained image. The SSP was determined by multiplying the profile by tan θ. In addition, the SSP was measured by the conventional method using a micro-coin phantom and compared with the SSP obtained by the proposed method. RESULTS: The SSP measured by the proposed method agreed well with that measured by the conventional method. The full-width at half-maximum values of these SSPs were the same. CONCLUSION: The proposed method was demonstrated to easily and accurately measure the SSP in non-helical CT.
Asunto(s)
Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , MetalesRESUMEN
Radiomics features (RFs) serve as quantitative metrics to characterize shape, density/intensity, and texture patterns in radiological images. Despite their promise, RFs exhibit reproducibility challenges across acquisition settings, thus limiting implementation into clinical practice. In this investigation, we evaluate the effects of different CT scanners and CT acquisition protocols (KV, mA, field-of-view, and reconstruction kernel settings) on RFs extracted from lumbar vertebrae of a cadaveric trunk. Employing univariate and multivariate Generalized Linear Models (GLM), we evaluated the impact of each acquisition parameter on RFs. Our findings indicate that variations in mA had negligible effects on RFs, while alterations in kV resulted in exponential changes in several RFs, notably First Order (94.4%), GLCM (87.5%), and NGTDM (100%). Moreover, we demonstrated that a tailored GLM model was superior to the ComBat algorithm in harmonizing CT images. GLM achieved R2 > 0.90 in 21 RFs (19.6%), contrasting ComBat's mean R2 above 0.90 in only 1 RF (0.9%). This pioneering study unveils the effects of CT acquisition parameters on bone RFs in cadaveric specimens, highlighting significant variations across parameters and scanner datasets. The proposed GLM model presents a robust solution for mitigating these differences, potentially advancing harmonization efforts in Radiomics-based studies across diverse CT protocols and vendors.
Asunto(s)
Radiómica , Tomografía Computarizada por Rayos X , Humanos , Algoritmos , Cadáver , Vértebras Lumbares/diagnóstico por imagen , Estándares de Referencia , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/normasRESUMEN
Objective.This study explores the feasibility of a stationary gantry cardiac gated computed tomography (CT) with carbon nanotube (CNT) linear x-ray source arrays.Approach.We developed a stationary gantry CT system utilizing multipixel CNT x-ray sources. Given the advantages of straightforward x-ray pulse control with these sources, we investigated the potential for gated prospective imaging. We implemented prospective respiratory and cardiac gating control and evaluated the system through dynamic phantom imaging studies followed by imaging of a porcine model.Main Results.The findings revealed minimal anatomical motion artifacts in the heart and lungs, confirming successful physiologic gated acquisition in stationary gantry cardiac CT. This indicates the potential of this imaging approach for reducing artifacts and improving image quality.Significance.This study demonstrates the feasibility of prospective physiological gating with CNT x-ray sources in a stationary gantry setup for cardiac imaging. This approach could potentially alleviate the need for beta blocker administration during cardiac CT scans, thereby increasing the flexibility of the imaging system and enabling the imaging of a wider variety of patient cardiac conditions.
Asunto(s)
Corazón , Nanotubos de Carbono , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Animales , Porcinos , Corazón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Técnicas de Imagen Sincronizada Cardíacas/métodos , Estudios Prospectivos , Estudios de Factibilidad , ArtefactosRESUMEN
Photon-counting detectors (PCDs) represent a major milestone in the evolution of CT imaging. CT scanners using PCD systems have already been shown to generate images with substantially greater spatial resolution, superior iodine contrast-to-noise ratio, and reduced artifact compared with conventional energy-integrating detector-based systems. These benefits can be achieved with considerably decreased radiation dose. Recent studies have focused on the advantages of PCD-CT scanners in numerous anatomic regions, particularly the coronary and cerebral vasculature, pulmonary structures, and musculoskeletal imaging. However, PCD-CT imaging is also anticipated to be a major advantage for head and neck imaging. In this paper, we review current clinical applications of PCD-CT in head and neck imaging, with a focus on the temporal bone, facial bones, and paranasal sinuses; minor arterial vasculature; and the spectral capabilities of PCD systems.
Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , Cuello/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Cabeza/irrigación sanguínea , PredicciónRESUMEN
Magneto-acousto-electrical tomography (MAET) is a hybrid imaging method that combines the high spatial resolution of ultrasonography with the high contrast of electrical impedance tomography (EIT). While most previous studies on MAET have focused on two-dimensional imaging, our recent research proposed a novel three-dimensional (3D) MAET method using B-mode and translational scanning. This method has been the first to reconstruct a 3D volume image of conductivity interfaces. However, this method has its limitations in mapping irregular shapes of conductivity. To address this challenge, we propose a 3D magneto-acousto-electrical computed tomography (3D MAE-CT) method utilizing an ultrasound linear array transducer in this work. Both phantom and in vitro experiments were conducted to validate our proposed method. The results from the phantom experiments demonstrate that our method can map the 3D volume conductivity with high spatial resolution. The oblique angles extracted from the 3D image closely match practical value, with the relative error ranging between -2.80% and 4.07%. Furthermore, the in vitro experiment successfully obtained a 3D image of a chicken heart, marking the first MAET 3D conductivity image of a tissue sample to date.
Asunto(s)
Imagenología Tridimensional , Fantasmas de Imagen , Transductores , Imagenología Tridimensional/métodos , Animales , Ultrasonografía/métodos , Ultrasonografía/instrumentación , Tomografía/métodos , Tomografía/instrumentación , Pollos , Diseño de Equipo , Impedancia Eléctrica , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentaciónRESUMEN
PURPOSE: To compare the spectral performance of two different DSCT (DSCT-Pulse and DSCT-Force) on virtual monoenergetic images (VMIs) at low energy levels. METHODS: An image quality phantom was scanned on the two DSCTs at three dose levels: 11/6/1.8 mGy. Level 3 of an advanced modeled iterative reconstruction algorithm was used. Noise power spectrum and task-based transfer function were computed on VMIs from 40 to 70 keV to assess noise magnitude and noise texture (fav) and spatial resolution (f50). A detectability index (d') was computed to assess the detection of one contrast-enhanced abdominal lesion as a function of the keV level used. RESULTS: For all dose levels and all energy levels, noise magnitude was significantly higher (p < 0.05) with DSCT-Pulse than with DSCT-Force (12.6 ± 2.7 % at 1.8 mGy, 9.1 ± 2.9 % at 6 mGy and 4.0 ± 2.7 % at 11 mGy). For all energy levels, fav values were significantly higher (p < 0.05) with DSCT-Pulse than with DSCT-Force at 1.8 mGy (4.8 ± 3.9 %) and at 6 mGy (5.5 ± 2.5 %) but similar at 11 mGy (0.2 ± 3.6 %; p = 0.518). For all energy levels, f50 values were significantly higher with DSCT-Pulse than with DSCT-Force (12.7 ± 5.6 % at 1.8 mGy, 17.9 ± 4.5 % at 6 mGy and 13.1 ± 2.6 % at 11 mGy). For all keV, similar d' values were found with both DSCT-Force and DSCT-Pulse at 11 mGy (-1.0 ± 3.1 %; p = 0.084). For other dose levels, d' values were significantly lower with DSCT-Pulse than with DSCT-Force (9.1 ± 3.2 % at 1.8 mGy and -6.3 ± 3.9 % at 6 mGy). CONCLUSION: Compared with the DSCT-Force, the DSCT-Pulse improved noise texture and spatial resolution, but noise magnitude was slightly higher and detectability slightly lower, particularly when the dose level was reduced.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Dosis de Radiación , Algoritmos , HumanosRESUMEN
Objective.To present and characterize a novel method for x-ray computed tomography (xCT) calibration in proton treatment planning, based on proton CT (pCT) measurements on biological phantoms.Approach.A pCT apparatus was used to perform direct measurements of 3D stopping power relative to water (SPR) maps on stabilized, biological phantoms. Two single-energy xCT calibration curves-i.e. tissue substitutes and stoichiometric-were compared to pCT data. Moreover, a new calibration method based on these data was proposed, and verified against intra- and inter-species variability, dependence on stabilization, beam-hardening conditions, and analysis procedures.Main results.Biological phantoms were verified to be stable in time, with a dependence on temperature conditions, especially in the fat region: (-2.5 0.5) HU °C-1. The pCT measurements were compared with standard xCT calibrations, revealing an average SPR discrepancy within ±1.60% for both fat and muscle regions. In the bone region the xCT calibrations overestimated the pCT-measured SPR of the phantom, with a maximum discrepancy of about +3%. As a result, a new cross-calibration curve was directly extracted from the pCT data. Overall, the SPR uncertainty margin associated with this curve was below 3%; fluctuations in the uncertainty values were observed across the HU range. Cross-calibration curves obtained with phantoms made of different animal species and anatomical parts were reproducible with SPR discrepancies within 3%. Moreover, the stabilization procedure did not affect the resulting curve within a 2.2% SPR deviation. Finally, the cross-calibration curve was affected by the beam-hardening conditions on xCTs, especially in the bone region, while dependencies below 2% resulted from the image registration procedure.Significance.Our results showed that pCT measurements on biological phantoms may provide an accurate method for the verification of current xCT calibrations and may represent a tool for the implementation of a new calibration method for proton treatment planning.
Asunto(s)
Fantasmas de Imagen , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Calibración , Terapia de Protones/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Protones , Animales , HumanosRESUMEN
Significance: Photoacoustic computed tomography (PACT) is a promising non-invasive imaging technique for both life science and clinical implementations. To achieve fast imaging speed, modern PACT systems have equipped arrays that have hundreds to thousands of ultrasound transducer (UST) elements, and the element number continues to increase. However, large number of UST elements with parallel data acquisition could generate a massive data size, making it very challenging to realize fast image reconstruction. Although several research groups have developed GPU-accelerated method for PACT, there lacks an explicit and feasible step-by-step description of GPU-based algorithms for various hardware platforms. Aim: In this study, we propose a comprehensive framework for developing GPU-accelerated PACT image reconstruction (GPU-accelerated photoacoustic computed tomography), to help the research community to grasp this advanced image reconstruction method. Approach: We leverage widely accessible open-source parallel computing tools, including Python multiprocessing-based parallelism, Taichi Lang for Python, CUDA, and possible other backends. We demonstrate that our framework promotes significant performance of PACT reconstruction, enabling faster analysis and real-time applications. Besides, we also described how to realize parallel computing on various hardware configurations, including multicore CPU, single GPU, and multiple GPUs platform. Results: Notably, our framework can achieve an effective rate of â¼ 871 times when reconstructing extremely large-scale three-dimensional PACT images on a dual-GPU platform compared to a 24-core workstation CPU. In this paper, we share example codes via GitHub. Conclusions: Our approach allows for easy adoption and adaptation by the research community, fostering implementations of PACT for both life science and medicine.
Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Gráficos por Computador , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , HumanosRESUMEN
BACKGROUND: Inserting noise into existing patient projection data to simulate lower-radiation-dose exams has been frequently used in traditional energy-integrating-detector (EID)-CT to optimize radiation dose in clinical protocols and to generate paired images for training deep-learning-based reconstruction and noise reduction methods. Recent introduction of photon counting detector CT (PCD-CT) also requires such a method to accomplish these tasks. However, clinical PCD-CT scanners often restrict the users access to the raw count data, exporting only the preprocessed, log-normalized sinogram. Therefore, it remains a challenge to employ projection domain noise insertion algorithms on PCD-CT. PURPOSE: To develop and validate a projection domain noise insertion algorithm for PCD-CT that does not require access to the raw count data. MATERIALS AND METHODS: A projection-domain noise model developed originally for EID-CT was adapted for PCD-CT. This model requires, as input, a map of the incident number of photons at each detector pixel when no object is in the beam. To obtain the map of incident number of photons, air scans were acquired on a PCD-CT scanner, then the noise equivalent photon number (NEPN) was calculated from the variance in the log normalized projection data of each scan. Additional air scans were acquired at various mA settings to investigate the impact of pulse pileup on the linearity of NEPN measurement. To validate the noise insertion algorithm, Noise Power Spectra (NPS) were generated from a 30 cm water tank scan and used to compare the noise texture and noise level of measured and simulated half dose and quarter dose images. An anthropomorphic thorax phantom was scanned with automatic exposure control, and noise levels at different slice locations were compared between simulated and measured half dose and quarter dose images. Spectral correlation between energy thresholds T1 and T2, and energy bins, B1 and B2, was compared between simulated and measured data across a wide range of tube current. Additionally, noise insertion was performed on a clinical patient case for qualitative assessment. RESULTS: The NPS generated from simulated low dose water tank images showed similar shape and amplitude to that generated from the measured low dose images, differing by a maximum of 5.0% for half dose (HD) T1 images, 6.3% for HD T2 images, 4.1% for quarter dose (QD) T1 images, and 6.1% for QD T2 images. Noise versus slice measurements of the lung phantom showed comparable results between measured and simulated low dose images, with root mean square percent errors of 5.9%, 5.4%, 5.0%, and 4.6% for QD T1, HD T1, QD T2, and HD T2, respectively. NEPN measurements in air were linear up until 112 mA, after which pulse pileup effects significantly distort the air scan NEPN profile. Spectral correlation between T1 and T2 in simulation agreed well with that in the measured data in typical dose ranges. CONCLUSIONS: A projection-domain noise insertion algorithm was developed and validated for PCD-CT to synthesize low-dose images from existing scans. It can be used for optimizing scanning protocols and generating paired images for training deep-learning-based methods.
Asunto(s)
Algoritmos , Fotones , Relación Señal-Ruido , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Fantasmas de ImagenRESUMEN
BACKGROUND: The polychromatic X-rays generated by a linear accelerator (Linac) often result in noticeable hardening artifacts in images, posing a significant challenge to accurate defect identification. To address this issue, a simple yet effective approach is to introduce filters at the radiation source outlet. However, current methods are often empirical, lacking scientifically sound metrics. OBJECTIVE: This study introduces an innovative filter design method that optimizes filter performance by balancing the impact of ray intensity and energy on image quality. MATERIALS AND METHODS: Firstly, different spectra under various materials and thicknesses of filters were obtained using GEometry ANd Tracking (Geant4) simulation. Subsequently, these spectra and their corresponding incident photon counts were used as input sources to generate different reconstructed images. By comprehensively comparing the intensity differences and noise in images of defective and non-defective regions, along with considering hardening indicators, the optimal filter was determined. RESULTS: The optimized filter was applied to a Linac-based X-ray computed tomography (CT) detection system designed for identifying defects in graphite materials within high-temperature gas-cooled reactor (HTR), with defect dimensions of 2âmm. After adding the filter, the hardening effect reduced by 22%, and the Defect Contrast Index (DCI) reached 3.226. CONCLUSION: The filter designed based on the parameters of Average Difference (AD) and Defect Contrast Index (DCI) can effectively improve the quality of defect images.
Asunto(s)
Diseño de Equipo , Aceleradores de Partículas , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , ArtefactosRESUMEN
PURPOSE: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. METHODS: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. RESULTS: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. CONCLUSION: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.
Asunto(s)
Método de Montecarlo , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Fantasmas de Imagen , Dosis de Radiación , Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
PURPOSE: To evaluate the efficiency of organ-based tube current modulation (OBTCM) in head Computed Tomography (CT) for different radiology departments and manufacturers. MATERIALS AND METHODS: Five CT scanners from four radiology departments were evaluated in this study. All scans were performed using a standard and a routine head protocol. A scintillating fiber optic detector was placed directly on the gantry to measure the tube exit kerma. Image quality was quantified on a 16-cm HEAD phantom by measuring the signal-to-noise ratio (SNR) and the standard deviation of the Hounsfield units (HU) of circular regions of interest placed in the phantom. The Noise Power Spectrum (NPS) was also studied. Measured values were compared on images with and without OBTCM. RESULTS: The reduction rates in tube exit kerma, on the anterior part, vary between 11 % and 74 % depending on the CT scanner and the protocol used. The tube exit kerma on the posterior part remains unchanged in GE and Canon CT scanners. On the contrary, the tube exit kerma to the posterior part increases by up to 39 % in Siemens CT scanner. Image noise and SNR increase by up to 10 % in the five CT scanners. Nonetheless, the differences in noise and SNR are statistically significant (p-value < 0.05).The analysis of the NPS indicates that the noise texture remains unchanged. CONCLUSION: OBTCM reduces the tube exit kerma to the anterior part of the gantry without reducing substantially image quality for head protocols.
Asunto(s)
Cabeza , Fantasmas de Imagen , Radiometría , Relación Señal-Ruido , Tomografía Computarizada por Rayos X , Cabeza/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Humanos , Radiometría/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Control de Calidad , Tomógrafos Computarizados por Rayos XRESUMEN
BACKGROUND: Edge-on-irradiated silicon detectors are currently being investigated for use in full-body photon-counting computed tomography (CT) applications. The low atomic number of silicon leads to a significant number of incident photons being Compton scattered in the detector, depositing a part of their energy and potentially being counted multiple times. Even though the physics of Compton scatter is well established, the effects of Compton interactions in the detector on image quality for an edge-on-irradiated silicon detector have still not been thoroughly investigated. PURPOSE: To investigate and explain effects of Compton scatter on low-frequency detective quantum efficiency (DQE) for photon-counting CT using edge-on-irradiated silicon detectors. METHODS: We extend an existing Monte Carlo model of an edge-on-irradiated silicon detector with 60 mm active absorption depth, previously used to evaluate spatial-frequency-based performance, to develop projection and image domain performance metrics for pure density and pure spectral imaging tasks with 30 and 40 cm water backgrounds. We show that the lowest energy threshold of the detector can be used as an effective discriminator of primary counts and cross-talk caused by Compton scatter. We study the developed metrics as functions of the lowest threshold energy for root-mean-square electronic noise levels of 0.8, 1.6, and 3.2 keV, where the intermediate level 1.6 keV corresponds to the noise level previously measured on a single sensor element in isolation. We also compare the performance of a modeled detector with 8, 4, and 2 optimized energy bins to a detector with 1-keV-wide bins. RESULTS: In terms of low-frequency DQE for density imaging, there is a tradeoff between using a threshold low enough to capture Compton interactions and avoiding electronic noise counts. For 30 cm water phantom, 4 energy bins, and a root-mean-square electronic noise of 0.8, 1.6, and 3.2 keV, it is optimal to put the lowest energy threshold at 3, 6, and 1 keV, which gives optimal projection-domain DQEs of 0.64, 0.59, and 0.52, respectively. Low-frequency DQE for spectral imaging also benefits from measuring Compton interactions with respective optimal thresholds of 12, 12, and 13 keV. No large dependence on background thickness was observed. For the intermediate noise level (1.6 keV), increasing the lowest threshold from 5 to 35 keV increases the variance in a iodine basis image by 60%-62% (30 cm phantom) and 67%-69% (40 cm phantom), with 8 bins. Both spectral and density DQE are adversely affected by increasing the electronic noise level. Image-domain DQE exhibits similar qualitative behavior as projection-domain DQE. CONCLUSIONS: Compton interactions contribute significantly to the density imaging performance of edge-on-irradiated silicon detectors. With the studied detector topology, the benefit of counting primary Compton interactions outweighs the penalty of multiple counting at all lowest threshold energies. Compton interactions also contribute significantly to the spectral imaging performance for measured energies above 10 keV.
Asunto(s)
Método de Montecarlo , Fotones , Dispersión de Radiación , Silicio , Tomografía Computarizada por Rayos X , Silicio/química , Tomografía Computarizada por Rayos X/instrumentación , Fantasmas de ImagenRESUMEN
BACKGROUND: Measurement of Computed Tomography (CT) beam width is required by accrediting and regulating bodies for routine physics evaluations due to its direct correlation to patient dose. Current methods for performing CT beam width measurement require special hardware, software, and/or consumable films. Today, most 100-mm pencil chambers with a digital interface used to evaluate Computed Tomography Dose Index (CTDIvol) have a sufficiently high sampling rate to reconstruct a high-resolution dose profile for any acquisition mode. PURPOSE: The goal of this study is to measure the CT beam width from the sampled dose profile under a single helical acquisition with the 100-mm pencil chamber used for CTDIvol measurements. METHODS: The dose profiles for different scanners were measured for helical scans with varying collimation settings using a 100-mm pencil chamber placed at the isocenter and co-moving with the patient table. The measured dose profiles from the 100-mm pencil chamber were corrected for table attenuation by extracting a periodic correction function (PCF) to eliminate table interference. The corrected dose profiles were then deconvolved with the response function of the chamber to compute the beam profile. The beam width was defined by the full width half maximum (FWHM) of the resulting beam profile. Reference dose profiles were also measured using Gafchromic film for comparison. RESULTS: The beam widths, estimated using the innovative deconvolution method from the 100-mm pencil chamber, exhibit an average percentage difference of 1.6 ± 1.8 when compared with measurements obtained through Gafchromic film for beam width assessment. CONCLUSION: The proposed approach to deconvolve the pencil chamber response demonstrates the potential of obtaining the CT beam width at high accuracy without the need of special hardware, software, or consumable films. This technique can improve workflow for routine performance evaluation of CT systems.
Asunto(s)
Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Radiometría/instrumentación , Dosis de Radiación , Factores de Tiempo , HumanosRESUMEN
PURPOSE: To compare the breast imaging performance of a clinical whole-body photon-counting CT (PCCT) to that of a dedicated breast CT (BCT) to determine the image quality of opportunistic breast examinations in clinical PCCT. MATERIALS AND METHODS: To quantify image quality for breast cancer applications, acquisitions of a breast phantom including representations of calcifications, fibers, and masses were performed using a clinical PCCT and a dedicated BCT. When imaging with the PCCT, the phantom was also combined with a thorax phantom to simulate realistic patient positioning, while only the breast phantom was imaged in the BCT. Images in BCT were acquired at 7.0 mGy (CTDI16cm) and using 2.6 mGy-25.0 mGy in the PCCT. Spatial resolution between the BCT and PCCT images was matched and data were reconstructed using the default methods of each system. The dose-normalized contrast-to-noise ratio (CNRD) of masses and the structural visibility of fibers and calcifications were evaluated as figures of merit for all reconstructions. RESULTS: CNRD between masses and background was 0.56 mGy-½, on average with BCT and varied between 0.39 mGy-½ to 1.46 mGy-½ with PCCT over all dose levels, phantom configurations, and reconstruction algorithms. Calcifications down to a size of 0.29 mm and fibers down to a size of 0.23 mm could be reliably identified in the images of both systems. CONCLUSIONS: Clinical PCCT provides an image quality superior to that obtained with BCT in terms of CNRD and allows for the identification of calcifications and fibers at comparable dose levels.
Asunto(s)
Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Humanos , Mamografía/métodos , Mamografía/instrumentación , Mama/diagnóstico por imagen , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de la Mama/diagnóstico por imagen , FemeninoRESUMEN
BACKGROUND: The use of Computed Tomography (CT) imaging data to create 3D printable patient-specific devices for radiation oncology purposes is already well established in the literature and has shown to have superior conformity than conventional methods. Using non-ionizing radiation imaging techniques such as photogrammetry or laser scanners in-lieu of a CT scanner presents many desirable benefits including reduced imaging dose and fabrication of the device can be completed prior to simulation. With recent advancements in smartphone-based technology, photographic and LiDAR-based technologies are more readily available than ever before and to a high level of quality. As a result, these non-ionizing radiation imaging methods are now able to generate patient-specific devices that can be acceptable for clinical use. PURPOSE: In this work, we aim to determine if smartphones can be used by radiation oncologists or other radiation oncology staff to generate bolus or brachytherapy surface moulds instead of conventional CT with equivalent or comparable accuracy. METHODS: This work involved two separate studies: a phantom and participant study. For the phantom study, a RANDO anthropomorphic phantom (limited to the nose region) was used to generate 3D models based on three different imaging techniques: conventional CT, photogrammetry & LiDAR which were both acquired on a smartphone. Virtual boli were designed in Blender and 3D printed from PLA plastic material. The conformity of each printed boli was assessed by measuring the air gap volume and approximate thickness between the phantom & bolus acquired together on a CT. For the participant study, photographs, and a LiDAR scan of four volunteers were captured using an iPhone 13 Pro™ to assess their feasibility for generating human models. Each virtual 3D model was visually assessed to identify any issues in their reconstruction. The LiDAR models were registered to the photogrammetry models where a distance to agreement analysis was performed to assess their level of similarity. Additionally, a 3D virtual bolus was designed and printed using ABS material from all models to assess their conformity onto the participants skin surface using a verbal feedback method. RESULTS: The photogrammetry derived bolus showed comparable conformity to the CT derived bolus while the LiDAR derived bolus showed poorer conformity as shown by their respective air gap volume and thickness measurements. The reconstruction quality of both the photogrammetry and LiDAR models of the volunteers was inadequate in regions of facial hair and occlusion, which may lead to clinically unacceptable patient-specific device that are created from these areas. All participants found the photogrammetry 3D printed bolus to conform to their nose region with minimal room to move while three of the four participants found the LiDAR was acceptable and could be positioned comfortably over their entire nose. CONCLUSIONS: Smartphone-based photogrammetry and LiDAR software show great potential for future use in generating 3D reference models for radiation oncology purposes. Further investigations into whether they can be used to fabricate clinically acceptable patient-specific devices on a larger and more diverse cohort of participants and anatomical locations is required for a thorough validation of their clinical usefulness.