Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Toxins (Basel) ; 16(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38922163

RESUMEN

The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.


Asunto(s)
Toxinas Bacterianas , Toxinas de Cianobacterias , Toxinas Marinas , Microcistinas , Purificación del Agua , Toxinas de Cianobacterias/química , Humanos , Microcistinas/toxicidad , Microcistinas/química , Microcistinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Alcaloides/química , Alcaloides/toxicidad , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Tropanos/química , Tropanos/toxicidad , Tropanos/aislamiento & purificación , Nanoestructuras/química , Nanoestructuras/toxicidad , Uracilo/análogos & derivados , Uracilo/química , Uracilo/toxicidad , Cianobacterias/química , Supervivencia Celular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
2.
Mar Drugs ; 20(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35200651

RESUMEN

A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.


Asunto(s)
Toxinas Marinas/toxicidad , Microalgas/metabolismo , Intoxicación por Mariscos/prevención & control , Animales , Bioensayo/métodos , Bivalvos/química , Bivalvos/metabolismo , Chile , Humanos , Toxinas Marinas/aislamiento & purificación , Ratones
3.
Mar Drugs ; 20(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35200672

RESUMEN

The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary.


Asunto(s)
Cromatografía Liquida/métodos , Toxinas Marinas/aislamiento & purificación , Espectrometría de Masas/métodos , Mytilus/metabolismo , Animales , Toxinas Marinas/análisis , Toxinas Marinas/química
4.
Mar Drugs ; 20(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35200676

RESUMEN

Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands.


Asunto(s)
Venenos de Cnidarios/química , Toxinas Marinas/farmacología , Péptidos/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Femenino , Toxinas Marinas/aislamiento & purificación , Péptidos/aislamiento & purificación , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Anémonas de Mar/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Xenopus laevis
5.
Anal Bioanal Chem ; 413(30): 7597-7607, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34739557

RESUMEN

Accurate analysis of paralytic shellfish toxins (PSTs) in shellfish is important to protect seafood safety and human health. In this study, the performance of different extraction protocols for PSTs from scallop tissues is compared and discussed, including regular extraction solvents hydrochloric acid (HCl) and acetic acid (AcOH) followed by heating and solid-phase extraction (SPE) purification, and a novel technique of matrix solid-phase dispersion (MSPD) without heating. The possible conversion of C1/2 and GTX2/3 standards after heating, and the stability of PSTs in wet scallop tissues stored at -20 °C for a 6-month period are also explored. Results showed that the MSPD technique could effectively mitigate matrix interference, but its recoveries of PSTs were significantly lower than those of the HCl and AcOH extraction methods followed by carbon SPE purification. The molar concentrations of M-toxins obtained by the MSPD method were generally lower than those analyzed by the HCl and AcOH extraction methods, which demonstrated a weak chemical conversion of C1/2 and GTX2/3 due to the heating process. Most of the PSTs were relatively stable in scallop tissues during 1-month storage at -20 °C, while the concentrations of PSTs in scallop tissues obviously changed after 6 months due to the degradation and transformation of PSTs during long-term storage at -20 °C. This work helps improve our understanding of the performance of different extraction methods and the stability of PSTs in scallop tissues stored at -20 °C.


Asunto(s)
Conservación de Alimentos , Toxinas Marinas/aislamiento & purificación , Intoxicación por Mariscos/metabolismo , Mariscos/análisis , Animales , Cromatografía Liquida/métodos , Frío , Límite de Detección , Toxinas Marinas/química , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-34343946

RESUMEN

A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2. A rapid dispersive extraction was used as well as a fast six-minute UHPLC-MS/MS analysis. Mobile phase prepared using ammonium fluoride and methanol was optimised for both chromatographic separation and MS/MS response to suit all analytes. Method performance verification checks for both matrices were carried out. Matrix influence was acceptable for the majority of analogues with the MS response for all analogues being linear across an appropriate range of concentrations. In terms of limits of detection and quantitation the method was shown to be highly sensitive when compared with other methods. Acceptable recoveries were found with most analogues, with laboratory precision in terms of intra- and inter-batch precision deemed appropriate. The method was applied to environmental shellfish samples with results showing low concentrations of cyclic imines to be present. The method is fast and highly sensitive for the detection and quantification of all targeted analogues, in both mussel and oyster matrices. Consequently, the method has been shown to provide a useful tool for simultaneous monitoring for the presence or future emergence of these two toxin groups in shellfish.


Asunto(s)
Bivalvos/química , Cromatografía Líquida de Alta Presión/métodos , Toxinas Marinas/análisis , Ostreidae/química , Espectrometría de Masas en Tándem/métodos , Animales , Iminas/análisis , Iminas/química , Iminas/aislamiento & purificación , Límite de Detección , Modelos Lineales , Extracción Líquido-Líquido , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Oxocinas/análisis , Oxocinas/química , Oxocinas/aislamiento & purificación , Reproducibilidad de los Resultados
7.
Toxins (Basel) ; 13(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065929

RESUMEN

Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.


Asunto(s)
Antibacterianos/farmacología , Macrólidos/farmacología , Toxinas Marinas/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/toxicidad , Citoesqueleto/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macrólidos/aislamiento & purificación , Macrólidos/toxicidad , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/toxicidad
8.
Mar Drugs ; 19(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947080

RESUMEN

Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of "difficult" stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.


Asunto(s)
Organismos Acuáticos/metabolismo , Éteres Cíclicos/síntesis química , Técnicas de Química Sintética , Ciguatoxinas/síntesis química , Ciguatoxinas/aislamiento & purificación , Éteres/síntesis química , Éteres/aislamiento & purificación , Éteres Cíclicos/aislamiento & purificación , Humanos , Espectroscopía de Resonancia Magnética , Toxinas Marinas/síntesis química , Toxinas Marinas/aislamiento & purificación , Estructura Molecular , Oxocinas/síntesis química , Oxocinas/aislamiento & purificación , Polímeros/síntesis química , Polímeros/aislamiento & purificación , Metabolismo Secundario , Estereoisomerismo , Relación Estructura-Actividad
9.
Cells ; 10(3)2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801135

RESUMEN

Cyanotoxins are harmful to aquatic and water-related organisms. In this study, Lemna trisulca was tested as a phytoremediation agent for three common cyanotoxins produced by bloom-forming cyanobacteria. Cocultivation of L. trisulca with Dolichospermum flos-aquae in BG11 medium caused a release of the intracellular pool of anatoxin-a into the medium and the adsorption of 92% of the toxin by the plant-after 14 days, the total amount of toxin decreased 3.17 times. Cocultivation with Raphidopsis raciborskii caused a 2.77-time reduction in the concentration of cylindrospermopsin (CYN) in comparison to the control (62% of the total pool of CYN was associated with the plant). The greatest toxin limitation was noted for cocultivation with Microcystis aeruginosa. After two weeks, the microcystin-LR (MC-LR) concentration decreased more than 310 times. The macrophyte also influenced the growth and development of cyanobacteria cells. Overall, 14 days of cocultivation reduced the biomass of D. flos-aquae, M. aeruginosa, and R. raciborskii by 8, 12, and 3 times, and chlorophyll a concentration in comparison to the control decreased by 17.5, 4.3, and 32.6 times, respectively. Additionally, the macrophyte stabilized the electrical conductivity (EC) and pH values of the water and affected the even uptake of cations and anions from the medium. The obtained results indicate the biotechnological potential of L. trisulca for limiting the development of harmful cyanobacterial blooms and their toxicity.


Asunto(s)
Alcaloides/aislamiento & purificación , Araceae/metabolismo , Toxinas Marinas/aislamiento & purificación , Microcistinas/aislamiento & purificación , Tropanos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Biodegradación Ambiental , Biomasa , Clorofila A/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Iones , Cinética , Fotosíntesis
10.
Toxins (Basel) ; 13(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572944

RESUMEN

Cyanobacterial blooms and the associated release of cyanotoxins pose problems for many conventional water treatment plants due to their limited removal by typical unit operations. In this study, a conventional water treatment process consisting of coagulation, flocculation, sedimentation, filtration, and sludge dewatering was assessed in lab-scale experiments to measure the removal of microcystin-LR and Microcystis aeruginosa cells using liquid chromatography with mass spectrometer (LC-MS) and a hemacytometer, respectively. The overall goal was to determine the effect of recycling cyanotoxin-laden dewatered sludge supernatant on treated water quality. The lab-scale experimental system was able to maintain the effluent water quality below relevant the United States Environmental Protection Agency (US EPA) and World Health Organisation (WHO) standards for every parameter analyzed at influent concentrations of M. aeruginosa above 106 cells/mL. However, substantial increases of 0.171 NTU (Nephelometric Turbidity Unit), 7 × 104 cells/L, and 0.26 µg/L in turbidity, cyanobacteria cell counts, and microcystin-LR concentration were observed at the time of dewatered supernatant injection. Microcystin-LR concentrations of 1.55 µg/L and 0.25 µg/L were still observed in the dewatering process over 24 and 48 h, respectively, after the initial addition of M.aeruginosa cells, suggesting the possibility that a single cyanobacterial bloom may affect the filtered water quality long after the bloom has dissipated when sludge supernatant recycling is practiced.


Asunto(s)
Agua Potable/microbiología , Floraciones de Algas Nocivas , Toxinas Marinas/aislamiento & purificación , Microcistinas/aislamiento & purificación , Microcystis/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Microbiología del Agua , Purificación del Agua , Calidad del Agua , Precipitación Química , Cromatografía Liquida , Filtración , Espectrometría de Masas , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Nefelometría y Turbidimetría
11.
Mar Drugs ; 19(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445445

RESUMEN

As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans' biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions' main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein-protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails' potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.


Asunto(s)
Anélidos , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Toxinas Marinas/uso terapéutico , Neoplasias Ováricas/patología , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
12.
Toxins (Basel) ; 13(1)2021 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477326

RESUMEN

The ZnO-based visible-LED photocatalytic degradation and mineralization of two typical cyanotoxins, microcystin-LR (MC-LR), and anatoxin-A were examined. Al-doped ZnO nanoparticle photocatalysts, in Al:Zn ratios between 0 and 5 at.%, were prepared via sol-gel method and exhaustively characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and nitrogen adsorption-desorption isotherms. With both cyanotoxins, increasing the Al content enhances the degradation kinetics, hence the use of nanoparticles with 5 at.% Al content (A5ZO). The dosage affected both cyanotoxins similarly, and the photocatalytic degradation kinetics improved with photocatalyst concentrations between 0.5 and 1.0 g L-1. Nevertheless, the pH study revealed that the chemical state of a species decisively facilitates the mutual interaction of cyanotoxin and photocatalysts. A5ZO nanoparticles achieved better outcomes than other photocatalysts to date, and after 180 min, the mineralization of anatoxin-A was virtually complete in weak alkaline medium, whereas only 45% of MC-LR was in neutral conditions. Moreover, photocatalyst reusability is clear for anatoxin-A, but it is adversely affected for MC-LR.


Asunto(s)
Aluminio/química , Toxinas Marinas/aislamiento & purificación , Nanopartículas del Metal/química , Microcistinas/aislamiento & purificación , Procesos Fotoquímicos , Tropanos/aislamiento & purificación , Óxido de Zinc/química , Catálisis , Toxinas de Cianobacterias , Concentración de Iones de Hidrógeno , Cinética , Luz , Fotoquímica , Fotólisis , Contaminantes Químicos del Agua/aislamiento & purificación
13.
Toxins (Basel) ; 12(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261221

RESUMEN

Gymnodimines and spirolides are cyclic imine phycotoxins and known antagonists of nicotinic acetylcholine receptors (nAChRs). We investigated the effect of gymnodimine A (GYM A) and 13-desmethyl spirolide C (SPX 1) from Alexandrium ostenfeldii on rat pheochromocytoma (PC12) cells by monitoring intracellular calcium levels ([Ca]i). Using whole cells, the presence of 0.5 µM of GYM A or SPX 1 induced an increase in [Ca]i mediated by acetylcholine receptors (AChRs) and inhibited further activation of AChRs by acetylcholine (ACh). To differentiate the effects of GYM A or SPX 1, the toxins were applied to cells with pharmacologically isolated nAChRs and muscarinic AChRs (mAChRs) as mediated by the addition of atropine and tubocurarine, respectively. GYM A and SPX 1 activated nAChRs and inhibited the further activation of nAChRs by ACh, indicating that both toxins mimicked the activity of ACh. Regarding mAChRs, a differential response was observed between the two toxins. Only GYM A activated mAChRs, resulting in elevated [Ca]i, but both toxins prevented a subsequent activation by ACh. The absence of the triketal ring system in GYM A may provide the basis for a selective activation of mAChRs. GYM A and SPX 1 induced no changes in [Ca]i when nAChRs and mAChRs were inhibited simultaneously, indicating that both toxins target AChRs.


Asunto(s)
Calcio/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Iminas/farmacología , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Compuestos de Espiro/farmacología , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Dinoflagelados/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/aislamiento & purificación , Iminas/aislamiento & purificación , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/farmacología , Antagonistas Muscarínicos , Agonistas Nicotínicos , Células PC12 , Ratas , Compuestos de Espiro/aislamiento & purificación
14.
Toxins (Basel) ; 12(12)2020 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291341

RESUMEN

Pectenotoxins (PTXs) are produced by Dinophysis spp., along with okadaic acid, dinophysistoxin 1, and dinophysistoxin 2. The okadaic acid group toxins cause diarrhetic shellfish poisoning (DSP), so are therefore regulated. New Zealand currently includes pectenotoxins within the DSP regulations. To determine the impact of this decision, shellfish biotoxin data collected between 2009 and 2019 were examined. They showed that 85 samples exceeded the DSP regulatory limit (0.45%) and that excluding pectenotoxins would have reduced this by 10% to 76 samples. The incidence (1.3%) and maximum concentrations of pectenotoxins (0.079 mg/kg) were also found to be low, well below the current European Food Safety Authority (EFSA) safe limit of 0.12 mg/kg. Inclusion within the DSP regulations is scientifically flawed, as pectenotoxins and okadaic acid have a different mechanism of action, meaning that their toxicities are not additive, which is the fundamental principle of grouping toxins. Furthermore, evaluation of the available toxicity data suggests that pectenotoxins have very low oral toxicity, with recent studies showing no oral toxicity in mice dosed with the PTX analogue PTX2 at 5000 µg/kg. No known human illnesses have been reported due to exposure to pectenotoxins in shellfish, a fact which combined with the toxicity data indicates that they pose negligible risk to humans. Regulatory policies should be commensurate with the level of risk, thus deregulation of PTXs ought to be considered, a stance already adopted by some countries.


Asunto(s)
Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Intoxicación por Mariscos/prevención & control , Mariscos/análisis , Mariscos/toxicidad , Animales , Bivalvos , Nueva Zelanda , Ácido Ocadaico/análogos & derivados , Ácido Ocadaico/aislamiento & purificación , Ácido Ocadaico/toxicidad , Fitoplancton/aislamiento & purificación , Medición de Riesgo/métodos , Intoxicación por Mariscos/etiología
15.
Mar Drugs ; 18(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339248

RESUMEN

Okadaic acid (OA) group toxins may accumulate in shellfish and can result in diarrhetic shellfish poisoning when consumed by humans, and are therefore regulated. Purified toxins are required for the production of certified reference materials used to accurately quantitate toxin levels in shellfish and water samples, and for other research purposes. An improved procedure was developed for the isolation of dinophysistoxin-2 (DTX2) from shellfish (M. edulis), reducing the number of purification steps from eight to five, thereby increasing recoveries to ~68%, compared to ~40% in a previously reported method, and a purity of >95%. Cell densities and toxin production were monitored in cultures of Prorocentrum lima, that produced OA, DTX1, and their esters, over ~1.5 years with maximum cell densities of ~70,000 cells mL-1 observed. Toxin accumulation progressively increased over the study period, to ~0.7 and 2.1 mg L-1 of OA and DTX1 (including their esters), respectively, providing information on appropriate harvesting times. A procedure for the purification of OA and DTX1 from the harvested biomass was developed employing four purification steps, with recoveries of ~76% and purities of >95% being achieved. Purities were confirmed by LC-HRMS, LC-UV, and NMR spectroscopy. Additional stability observations led to a better understanding of the chemistry of these toxins.


Asunto(s)
Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Microalgas/química , Mytilus edulis/química , Ácido Ocadaico/química , Ácido Ocadaico/aislamiento & purificación , Animales , Biomasa , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Ácido Ocadaico/análogos & derivados , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem
16.
Mar Drugs ; 18(11)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167356

RESUMEN

A new cytotoxic thiodepsipeptide, verrucosamide (1), was isolated along with the known, related cyclic peptide thiocoraline, from the extract of a marine-derived actinomycete, a Verrucosispora sp., our strain CNX-026. The new peptide, which is composed of two rare seven-membered 1,4-thiazepane rings, was elucidated by a combination of spectral methods and the absolute configuration was determined by a single X-ray diffraction study. Verrucosamide (1) showed moderate cytotoxicity and selectivity in the NCI 60 cell line bioassay. The most susceptible cell lines were MDA-MB-468 breast carcinoma with an LD50 of 1.26 µM, and COLO 205 colon adenocarcinoma with an LD50 of 1.4 µM. Also isolated along with verrucosamide were three small 3-hydroxy(alkoxy)-quinaldic acid derivatives that appear to be products of the same biosynthetic pathway.


Asunto(s)
Antineoplásicos/farmacología , Toxinas Marinas/farmacología , Micromonosporaceae/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/aislamiento & purificación , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Toxinas Marinas/aislamiento & purificación , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad
17.
Mar Drugs ; 18(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752009

RESUMEN

The cytotoxic marine natural product discorhabdin C contains a 2,6-dibromo-cyclohexa-2,5-diene moiety, previously proposed to be a critical feature required for biological activity. We have determined that the dienone-ring of discorhabdin C is indeed electrophilic, reacting with thiol and amine nucleophiles, affording debrominated adducts. In the case of reaction with 1-aminopentane the product contains an unusual C-2/N-18 ring closed, double-hydrate moiety. This electrophilic reactivity also extends to proteins, with lysozyme-discorhabdin C adducts being detected by ESI mass spectrometry. These results prompted further examination of an extract of discorhabdin C-producing sponge, Latrunculia (Latrunculia) trivetricillata, leading to the isolation and characterisation of a new example of a C-1/N-13 linked discorhabdin dimer that shared structural similarities with the 1-aminopentane-discorhabdin C adduct. To definitively assess the influence of the dienone moiety of discorhabdin C on cytotoxicity, a semi-synthetic hydrogenation derivative was prepared, affording a didebrominated ring-closed carbinolamine that was essentially devoid of tumour cell line cytotoxicity. Antiparasitic activity was assessed for a set of 14 discorhabdin alkaloids composed of natural products and semi-synthetic derivatives. Three compounds, (-)-discorhabdin L, a dimer of discorhabdin B and the discorhabdin C hydrogenation carbinolamine, exhibited pronounced activity towards Plasmodium falciparum K1 (IC50 30-90 nM) with acceptable to excellent selectivity (selectivity index 19-510) versus a non-malignant cell line.


Asunto(s)
Antimaláricos/química , Antineoplásicos/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Toxinas Marinas/química , Quinonas/química , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Dimerización , Células HCT116 , Compuestos Heterocíclicos de 4 o más Anillos/aislamiento & purificación , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/farmacología , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Poríferos/química , Quinonas/aislamiento & purificación , Quinonas/farmacología , Relación Estructura-Actividad
18.
Toxins (Basel) ; 12(8)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751635

RESUMEN

The marine environment is known to be occupied by microorganisms. The potential toxicity of some of these marine microorganisms, that are capable of producing unknown biotoxins, has always been underestimated. Indeed, these biotoxins may be a threat to human health through the consumption of contaminated seafood and fish. For more than ten years, recurrent but atypical toxicity has been detected in mussels from Bizerte lagoon (North of Tunisia) during routine tests. In this study, we have isolated and characterized a new proteinaceous marine biotoxin, named Mussel Toxic Peptide (MTP). Using HPLC, electrophoresis and LC/MS studies, we showed that MTP has a protein characteristic UV-spectrum, can be visualized by protein specific reagents such as Coomassie, and has a molecular mass of 6.4 kDa. Patch-clamp experiments performed on cultured N18 neuroblastoma cells revealed that MTP (0.9-18 µM) markedly inhibited voltage-gated Na current, but was about 23 times less active in blocking voltage-gated K current at equimolar concentrations. To the best of our knowledge, this is the first time that a proteinaceous marine biotoxin with relatively high molecular mass is isolated and involved in the contamination of mussels harvested from shellfish farming areas.


Asunto(s)
Toxinas Marinas , Mytilus , Animales , Línea Celular Tumoral , Estuarios , Masculino , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Ratones Endogámicos C57BL , Canales de Potasio/fisiología , Canales de Sodio/fisiología , Túnez
19.
Toxins (Basel) ; 12(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429280

RESUMEN

Coolia is a genus of marine benthic dinoflagellates which is widely distributed in tropical and temperate zones. Toxicity has been reported in selected Coolia species, although the identity of causative compounds is still controversial. In this study, we investigated the taxonomical and toxicological aspects of Coolia species from Brazil. Since light- and electron microscopy-based morphology was not enough to distinguish small-celled species, ITS and LSU D1-D3 phylogenetic analyses were used for species definition. Cultures of Coolia palmyrensis and Coolia santacroce were established from samples collected along the northeastern Brazilian coast, the first record of both species in South Atlantic waters. Cultures of Coolia malayensis and Coolia tropicalis were also established and exhibited acute in vivo toxicity to adults of Artemia salina, while C. palmyrensis and C. santacroce were non-toxic. The presence of 30 yessotoxin analogues, 7 metabolites of Coolia and 44 Gambierdiscus metabolites was screened in 14 strains of Coolia. 44-methyl gambierone (formerly referred to as MTX3) and a new isomer of this compound were detected only in C. tropicalis, using both low- and high-resolution LC-MS/MS. To our knowledge, this is the first report of gambierone analogues in dinoflagellates other than Gambierdiscus; the role of C. tropicalis in ciguatera poisoning thus deserves to be considered in further investigations.


Asunto(s)
Dinoflagelados/clasificación , Toxinas Marinas/aislamiento & purificación , Agua de Mar/parasitología , Animales , Artemia/efectos de los fármacos , Océano Atlántico , Brasil , Dinoflagelados/química , Dinoflagelados/genética , Dinoflagelados/ultraestructura , Toxinas Marinas/toxicidad , Filogenia
20.
Food Chem Toxicol ; 141: 111386, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32376337

RESUMEN

Paralytic shellfish poisoning (PSP) episodes cause important economic impacts due to closure of shellfish production areas in order to protect human health. These closures, if are frequent and persistent, can seriously affect shellfish producers and the seafood industry, among others. In this study, we have developed an alternative processing method for bivalves with PSP content above the legal limit, which allows reducing toxicity to acceptable levels. A modification of the PSP detoxifying procedure stablished by Decision 96/77/EC of the European Union in Acanthocardia tuberculata, was developed and implemented for PSP elimination in other bivalves species. The procedure was applied to 6 batches of mussels, 2 batches of clams and 2 batches of scallops, achieving detoxification rates of around 85%. A viable industrial protocol which allows the transformation of a product at risk into a safe product was developed. Although a significant reduction was obtained, in a sample circa 9000 µg STX diHCl equiv/kg, the final toxin level in these highly toxic mussels did not fall below the European limit. The processing protocol described may be applied efficiently to mussels, clams and scallops and it may be a major solution to counteract the closure of shellfish harvesting areas, especially if persistent.


Asunto(s)
Toxinas Marinas/aislamiento & purificación , Intoxicación por Mariscos/metabolismo , Mariscos/análisis , Animales , Toxinas Marinas/metabolismo , Mariscos/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA