Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985758

RESUMEN

Two aplysiatoxin derivatives, neo-debromoaplysiatoxin I (1) and neo-debromoaplysiatoxin J (2), were isolated from marine cyanobacterium Lyngbya sp. collected from the South China Sea. Their structures including absolute configurations were assigned by spectroscopic analysis, in combination with GIAO NMR shift calculation and DP4+ analysis. Structures of neo-debromoaplysiatoxin I and neo-debromoaplysiatoxin J contained a decahydro-5H-pyrano [2,3,4-de] chromen-5-one 6/6/6 ring skeleton and an intriguing peroxide bridge group, respectively, which are unprecedented structure scaffold and motif in aplysiatoxins. Two compounds displayed comparable inhibitory activities against Kv1.5 K+ channel with IC50 values of 2.59 ± 0.37 µM (1) and 1.64 ± 0.15 µM (2); however, they presented differential cytotoxic effects. It is worth noting that neo-debromoaplysiatoxin J, containing a peroxide bridge, showed remarkable cytotoxicity against four cancer cell lines including SW480, SGC7901, LoVo and PC-9 compared to the human normal cell line.


Asunto(s)
Cianobacterias , Lyngbya , Humanos , Canal de Potasio Kv1.5 , Cianobacterias/química , Toxinas de Lyngbya/química , Línea Celular , Estructura Molecular
2.
J Nat Prod ; 86(4): 1033-1041, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36999535

RESUMEN

Asymmetric total syntheses of aplysiaenal (1) and nhatrangin A (2), truncated derivatives of the aplysiatoxin/oscillatoxin family of marine natural products, from configurationally defined intermediates are described. NMR spectra of our synthesized nhatrangin A did not match with either those obtained from authentic samples of the natural product or material obtained via two other total syntheses, but were similar to that obtained from a sample obtained in a third total synthesis. By independently synthesizing the fragments used in its total syntheses, we were able to confirm the configuration of nhatrangin A and clarified that the discrepancy in the spectroscopic data is due to salt formation of the carboxylic acid moiety.


Asunto(s)
Toxinas de Lyngbya , Toxinas de Lyngbya/química , Espectroscopía de Resonancia Magnética , Estereoisomerismo
3.
Molecules ; 27(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35164089

RESUMEN

Liver cancer is a leading cause of cancer death globally. Marine mollusc-derived drugs have gained attention as potential natural-based anti-cancer agents to overcome the side effects caused by conventional chemotherapeutic drugs during cancer therapy. Using liquid chromatography-mass spectrometry, the main biomolecules in the purple ink secretion released by the sea hare, named Bursatella leachii (B. leachii), were identified as hectochlorin, malyngamide X, malyngolide S, bursatellin and lyngbyatoxin A. The cytotoxic effects of B. leachii ink concentrate against human hepatocarcinoma (HepG2) cells were determined to be dose- and time-dependent, and further exploration of the underlying mechanisms causing the programmed cell death (apoptosis) were performed. The expression of cleaved-caspase-8 and cleaved-caspase-3, key cysteine-aspartic proteases involved in the initiation and completion of the apoptosis process, appeared after HepG2 cell exposure to the B. leachii ink concentrate. The gene expression levels of pro-apoptotic BAX, TP53 and Cyclin D1 were increased after treatment with the B. leachii ink concentrate. Applying in silico approaches, the high scores predicted that bioactivities for the five compounds were protease and kinase inhibitors. The ADME and cytochrome profiles for the compounds were also predicted. Altogether, the B. leachii ink concentrate has high pro-apoptotic potentials, suggesting it as a promising safe natural product-based drug for the treatment of liver cancer.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Gastrópodos/química , Neoplasias Hepáticas/tratamiento farmacológico , Amidas/química , Amidas/aislamiento & purificación , Amidas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Células Hep G2 , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Toxinas de Lyngbya/química , Toxinas de Lyngbya/aislamiento & purificación , Toxinas de Lyngbya/farmacología , Pirrolidinonas/química , Pirrolidinonas/aislamiento & purificación , Pirrolidinonas/farmacología , Tiazoles/química , Tiazoles/aislamiento & purificación , Tiazoles/farmacología
4.
Chembiochem ; 23(3): e202100574, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850512

RESUMEN

Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.


Asunto(s)
Toxinas de Lyngbya/biosíntesis , Péptido Sintasas/metabolismo , Toxinas de Lyngbya/química , Estructura Molecular , Mutagénesis Sitio-Dirigida , Péptido Sintasas/genética
5.
Mar Drugs ; 19(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34822501

RESUMEN

Potassium channel Kv1.5 has been considered a key target for new treatments of atrial tachyarrhythmias, with few side effects. Four new debromoaplysiatoxin analogues with a 6/6/12 fused ring system were isolated from marine cyanobacterium Lyngbya sp. Their planar structures were elucidated by HRESIMS, 1D and 2D NMR. The absolute configuration of oscillatoxin J (1) was determined by single-crystal X-ray diffraction, and the absolute configurations of oscillatoxin K (2), oscillatoxin L (3) and oscillatoxin M (4) were confirmed on the basis of GIAO NMR shift calculation followed by DP4 analysis. The current study confirmed the absolute configuration of the pivotal chiral positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic ring system. Compound 1, 2 and 4 exhibited blocking activities against Kv1.5 with IC50 values of 2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively. However, compound 3 exhibited a minimum effect on Kv1.5 at 10 µM. Furthermore, all of these new debromoaplysiatoxin analogs displayed no apparent activity in a brine shrimp toxicity assay.


Asunto(s)
Canal de Potasio Kv1.5/efectos de los fármacos , Toxinas de Lyngbya/farmacología , Lyngbya , Animales , Organismos Acuáticos , Artemia , Humanos , Concentración 50 Inhibidora , Canal de Potasio Kv1.5/antagonistas & inhibidores , Toxinas de Lyngbya/química , Ratones , Relación Estructura-Actividad
6.
Biosci Biotechnol Biochem ; 85(1): 168-180, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577665

RESUMEN

10-Methyl-aplog-1 (1), a simplified analog of debromoaplysiatoxin, exhibits a high binding affinity for protein kinase C (PKC) isozymes and potent antiproliferative activity against several cancer cells with few adverse effects. A recent study has suggested that its phenol group in the side chain is involved in hydrogen bonding and CH/π interactions with the binding cleft-forming loops in the PKCδ-C1B domain. To clarify the effects of the side chain length on these interactions, four analogs of 1 with various lengths of side chains (2-5) were prepared. The maximal PKC binding affinity and antiproliferative activity were observed in 1. Remarkably, the introduction of a bromine atom into the phenol group of 2 increased not only these activities but also proinflammatory activity. These results indicated that 1 has the optimal side chain length as an anticancer seed. This conclusion was supported by docking simulations of 1-5 to the PKCδ-C1B domain.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacología , Proteína Quinasa C-delta/metabolismo , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Toxinas de Lyngbya/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteína Quinasa C-delta/química , Relación Estructura-Actividad
7.
Chemistry ; 27(9): 2963-2972, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32996659

RESUMEN

Teleocidins are potent protein kinase C activators, and possess a unique indole-fused nine-membered lactam structure. Teleocidin biosynthesis starts from the formation of a dipeptide by non-ribosomal peptide synthetase (NRPS), followed by oxidative C-N bond formation by a cytochrome P450 oxidase, reverse-prenylation by a prenyltransferase, and methylation-initiated terpene cyclization by a C-methyltransferase. This minireview focuses on recent research progress toward the elucidation of the molecular basis for the remarkable P450-catalyzed intramolecular C-N bond-forming reaction, which is challenging in synthetic chemistry, to generate the indolactam scaffold. In addition, precursor-directed biosynthesis with the promiscuous P450 enzymes led to the formation of a series of unnatural and novel molecular scaffolds, including a sulfur-substituted indolactam with a different conformation from that of indolactam V.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Indoles/metabolismo , Lactamas/metabolismo , Toxinas de Lyngbya/biosíntesis , Toxinas de Lyngbya/química , Animales , Ciclización , Humanos
8.
Toxins (Basel) ; 12(11)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238397

RESUMEN

Since 1970s, aplysiatoxins (ATXs), a class of biologically active dermatoxins, were identified from the marine mollusk Stylocheilus longicauda, whilst further research indicated that ATXs were originally metabolized by cyanobacteria. So far, there have been 45 aplysiatoxin derivatives discovered from marine cyanobacteria with various geographies. Recently, we isolated two neo-debromoaplysiatoxins, neo-debromoaplysiatoxin G (1) and neo-debromoaplysiatoxin H (2) from the cyanobacterium Lyngbya sp. collected from the South China Sea. The freeze-dried cyanobacterium was extracted with liquid-liquid extraction of organic solvents, and then was subjected to multiple chromatographies to yield neo-debromoaplysiatoxin G (1) (3.6 mg) and neo-debromoaplysiatoxin H (2) (4.3 mg). They were elucidated with spectroscopic methods. Moreover, the brine shrimp toxicity of the aplysiatoxin derivatives representing differential structural classifications indicated that the debromoaplysiatoxin was the most toxic compound (half inhibitory concentration (IC50) value = 0.34 ± 0.036 µM). While neo-aplysiatoxins (neo-ATXs) did not exhibit apparent brine shrimp toxicity, but showed potent blocking action against potassium channel Kv1.5, likewise, compounds 1 and 2 with IC50 values of 1.79 ± 0.22 µM and 1.46 ± 0.14 µM, respectively. Therefore, much of the current knowledge suggests the ATXs with different structure modifications may modulate multiple cellular signaling processes in animal systems leading to the harmful effects on public health.


Asunto(s)
Toxinas de Lyngbya/química , Toxinas de Lyngbya/toxicidad , Lyngbya , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/toxicidad , Animales , Artemia/efectos de los fármacos , Células CHO , Cricetulus , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/fisiología
9.
Bioorg Med Chem Lett ; 30(24): 127657, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130291

RESUMEN

Debromoaplysiatoxin (DAT) is a potent protein kinase C (PKC) activator with tumor-promoting and pro-inflammatory activities. Irie and colleagues have found that 10-methyl-aplog-1 (1), a simplified analog of DAT, has strong anti-proliferative activity against several cancer cell lines with few adverse effects. Therefore, 1 is a potential lead compound for cancer therapy. We synthesized a new derivative 2 which has a naphthalene ring at the side chain terminal position instead of a benzene ring, to increase CH/π interactions with Pro-241 of the PKCδ-C1B domain. Based on the synthetic route of 1, 2 was convergently synthesized in 26 linear steps from 6-hydroxy-1-naphthoic acid with an overall yield of 0.18%. Although the anti-proliferative activity of 2 was more potent than that of 1, the binding potency of 2 to the PKCδ-C1B domain did not exceed that of 1. Molecular dynamics simulation indicated the capability of 2 to simultaneously form hydrogen bonds and CH/π interactions with the PKCδ-C1B domain. Focusing on the hydrogen bonds, their geometry in the binding modes involving the CH/π interactions seemed to be sub-optimal, which may explain the slightly lower affinity of 2 compared to 1. This study could be of help in optimizing such interactions and synthesizing a promising lead cancer compound.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Toxinas de Lyngbya/síntesis química , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
10.
Angew Chem Int Ed Engl ; 59(10): 3988-3993, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31886618

RESUMEN

C-S bond formation reactions are widely distributed in the biosynthesis of biologically active molecules, and thus have received much attention over the past decades. Herein, we report intramolecular C-S bond formation by a P450 monooxygenase, TleB, which normally catalyzes a C-N bond formation in teleocidin biosynthesis. Based on the proposed reaction mechanism of TleB, a thiol-substituted substrate analogue was synthesized and tested in the enzyme reaction, which afforded the unprecedented sulfur-containing thio-indolactam V, in addition to an unusual indole-fused 6/5/8-tricyclic product whose structure was determined by the crystalline sponge method. Interestingly, conformational analysis revealed that the SOFA conformation is stable in thio-indolactam V, in sharp contrast to the major TWIST form in indolactam V, resulting in differences in their biological activities.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Toxinas de Lyngbya/biosíntesis , Biocatálisis , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/química , Toxinas de Lyngbya/química , Conformación Molecular , Simulación de Dinámica Molecular , Pseudomonas putida/enzimología , Especificidad por Sustrato
11.
Nat Prod Res ; 34(15): 2151-2156, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30835553

RESUMEN

Neo-debromoaplysiatoxin C (1), a new member of the aplysiatoxin family, was isolated from the marine cyanobacterium Lyngbya sp. The structure of 1 was elucidated based on spectroscopic data, and its stereochemistry was determined from NOESY spectrum and biosynthetic considerations. This new compound presents an intriguing 10-membered lactone ring skeleton derived from debromoaplysiatoxin by structural rearrangement, which is the first example in the aplysiatoxin family. Its biological properties were evaluated for cytotoxicity, PKCδ activation and inhibitory effects on potassium channel.


Asunto(s)
Cianobacterias/química , Toxinas de Lyngbya/química , Citotoxinas/farmacología , Lactonas/química , Lactonas/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Bloqueadores de los Canales de Potasio/farmacología , Proteína Quinasa C-delta/efectos de los fármacos , Algas Marinas/química
12.
Nat Prod Rep ; 37(3): 425-463, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31650156

RESUMEN

Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Aminofenoles/química , Aminofenoles/metabolismo , Cannabinoides/química , Cannabinoides/metabolismo , Ciclización , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/metabolismo , Iridoides/química , Iridoides/metabolismo , Toxinas de Lyngbya/química , Toxinas de Lyngbya/metabolismo , Estructura Molecular , Fenazinas/química , Fenazinas/metabolismo , Compuestos Policíclicos/química , Compuestos Policíclicos/metabolismo , Conformación Proteica , Terpenos/química , Terpenos/metabolismo
13.
Mar Drugs ; 17(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766406

RESUMEN

A pair of stereoisomers possessing novel structures with 6/6/5 fused-ring systems, neo-debromoaplysiatoxin E (1) and neo-debromoaplysiatoxin F (2), were isolated from the marine cyanobacterium Lyngbya sp. Their structures were elucidated using various spectroscopic techniques including high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR). The absolute stereochemistry was determined by calculated electronic circular dichroism (ECD) and gauge-independent atomic orbital (GIAO) NMR shift calculation followed by DP4+ analysis. Significantly, this is the first report on aplysiatoxin derivatives with different absolute configurations at C9-C12 (1: 9S, 10R, 11S, 12S; 2: 9R, 10S, 11R, 12R). Compounds 1 and 2 exhibited potent blocking activities against Kv1.5 with IC50 values of 1.22 ± 0.22 µM and 2.85 ± 0.29 µM, respectively.


Asunto(s)
Organismos Acuáticos/química , Cianobacterias/química , Canal de Potasio Kv1.5/antagonistas & inhibidores , Toxinas de Lyngbya/farmacología , Animales , Células CHO , Dicroismo Circular , Cricetulus , Canal de Potasio Kv1.5/metabolismo , Toxinas de Lyngbya/química , Toxinas de Lyngbya/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Estereoisomerismo
14.
J Am Chem Soc ; 141(4): 1494-1497, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30636411

RESUMEN

A unified and modular approach to the teleocidin B family of natural products is presented that proceeds in 11 steps and features an array of interesting strategies and methods. Indolactam V, the known biosynthetic precursor to this family, was accessed through electrochemical amination, Cu-mediated aziridine opening, and a remarkable base-induced macrolactamization. Guided by a desire to minimize concession steps, the tactical combination of C-H borylation and a Sigman-Heck transform enabled the convergent, stereocontrolled synthesis of the teleocidins.


Asunto(s)
Toxinas de Lyngbya/síntesis química , Técnicas de Química Sintética , Lactamas Macrocíclicas/química , Toxinas de Lyngbya/química
15.
Mar Drugs ; 16(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551660

RESUMEN

Certain strains of cyanobacteria produce a wide array of cyanotoxins, such as microcystins, lyngbyatoxins and aplysiatoxins, that are associated with public health issues. In this pilot study, an approach combining LC-MS/MS and molecular networking was employed as a rapid analytical method to detect aplysiatoxins present in four environmental marine cyanobacterial samples collected from intertidal areas in Singapore. Based on 16S-ITS rRNA gene sequences, these filamentous cyanobacterial samples collected from Pulau Hantu were determined as Trichodesmium erythraeum, Oscillatoria sp. PAB-2 and Okeania sp. PNG05-4. Organic extracts were prepared and analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) for the presence of aplysiatoxin-related molecules. From the molecular networking, six known compounds, debromoaplysiatoxin (1), anhydrodebromoaplysiatoxin (2), 3-methoxydebromoaplysiatoxin (3), aplysiatoxin (4), oscillatoxin A (5) and 31-noroscillatoxin B (6), as well as potential new analogues, were detected in these samples. In addition, differences and similarities in molecular networking clusters related to the aplysiatoxin molecular family were observed in extracts of Trichodesmium erythraeum collected from two different locations and from different cyanobacterial species found at Pulau Hantu, respectively.


Asunto(s)
Organismos Acuáticos/química , Toxinas de Lyngbya/análisis , Oscillatoria/química , Trichodesmium/química , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , ADN Bacteriano/aislamiento & purificación , Toxinas de Lyngbya/química , Toxinas de Lyngbya/aislamiento & purificación , Conformación Molecular , Oscillatoria/genética , Proyectos Piloto , ARN Ribosómico 16S/genética , Singapur , Espectrometría de Masas en Tándem/instrumentación , Espectrometría de Masas en Tándem/métodos , Trichodesmium/genética
16.
Org Biomol Chem ; 16(26): 4746-4752, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29774913

RESUMEN

Teleocidin B is a terpenoid indole alkaloid with unique structures including indolactam and cyclic terpenoid, and is a strong protein kinase C activator. Its unique structure and bioactivity have drawn vast interest from chemists and biologists, and numerous isolation and bioactivity studies on this molecule have been performed. Recently, its biosynthetic enzymes were identified, and some of their crystal structures were reported. In this review, we describe the isolation of teleocidin derivatives, biosynthetic studies, and detailed analyses of biosynthetic enzymes, to clarify their biosynthetic reactions toward the enzymatic synthesis of bioactive teleocidin compounds.


Asunto(s)
Toxinas de Lyngbya/biosíntesis , Alcaloides de Triptamina Secologanina/metabolismo , Toxinas de Lyngbya/química , Toxinas de Lyngbya/aislamiento & purificación , Conformación Molecular , Alcaloides de Triptamina Secologanina/química
17.
ChemMedChem ; 13(2): 147-154, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29195005

RESUMEN

Human proteinase-activated receptor 2 (PAR2), a transmembrane G-protein-coupled receptor (GPCR), is an attractive target for a novel anticancer therapy, as it plays a critical role in cell migration and invasion. Selective PAR2 inhibitors therefore have potential as anti-metastatic drugs. Knowing that the natural product teleocidin A2 is able to inhibit PAR2 in tumor cells, the goal of the present study was to elaborate structure-activity relationships and to identify potent PAR2 inhibitors with lower activity against the adverse target, protein kinase C (PKC). For this purpose, an efficient gram-scale total synthesis of indolactam V (i.e., the parent structure of all teleocidins) was developed, and a library of derivatives was prepared. Some compounds were indeed found to exhibit high potency as PAR2 inhibitors at low nanomolar concentrations with improved selectivity (relative to teleocidin A2). The pseudopeptidic fragment bridging the C3 and C4 positions of the indole core proved to be essential for target binding, whereas activity and target selectivity depends on the substituents at N1 or C7. This study revealed novel derivatives that show high efficacy in PAR2 antagonism combined with increased selectivity.


Asunto(s)
Antineoplásicos/síntesis química , Calcio/metabolismo , Indoles/síntesis química , Lactamas/síntesis química , Receptor PAR-2/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/farmacología , Lactamas/farmacología , Toxinas de Lyngbya/química , Estructura Molecular , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Relación Estructura-Actividad
18.
Biochem Biophys Res Commun ; 495(1): 438-445, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129688

RESUMEN

10-Me-aplog-1 is a simplified analog of the tumor-promoting compound debromoaplysiatoxin (DAT) and a unique protein kinase C (PKC) activator with limited tumor-promoting and pro-inflammatory activities. 10-Me-aplog-1 inhibits the growth of several cancer cell lines, but the inhibitory mechanism involving PKC isozymes remains unclear. We quantified the amount of PKC isozymes in nine human cancer cell lines that differ in 10-Me-aplog-1 sensitivity. PKCα and δ were the predominant isozymes expressed in all cell lines, but there was no significant correlation between expression levels and anti-proliferative activity. Knocking down PKCα, and/or PKCδ in the three aplog-sensitive cell lines indicated their involvement in the anti-proliferative and pro-apoptotic activities of 10-Me-aplog-1. This finding suggests that PKCα and/or PKCδ activation could be effective for treating certain cancers. Since the mechanism underlying 10-Me-aplog-1's anti-proliferative activities resembles that of DAT, 10-Me-aplog-1 may be regarded as a special key derived from pleiotropic DAT as a bunch of keys.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacología , Neoplasias/tratamiento farmacológico , Proteína Quinasa C/metabolismo , Carcinógenos/química , Carcinógenos/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Metilación , Neoplasias/metabolismo
19.
Molecules ; 22(4)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406454

RESUMEN

Aplysiatoxin (ATX) is a protein kinase C (PKC) activator with potent tumor-promoting activity. In contrast, 10-methyl-aplog-1 (1), a simplified analog of ATX, was anti-proliferative towards several cancer cell lines without significant tumor-promoting and proinflammatory activities. To determine the effects of the phenolic group on the biological activities of 1, we synthesized new derivatives (2, 3) that lack the phenolic hydroxyl group and/or the aromatic ring. Compound 2, like 1, showed potent anti-proliferative activity against several cancer cell lines, but little with respect to tumor-promoting and proinflammatory activities. In contrast, 3 exhibited weaker growth inhibitory activity, and promoted inflammation and tumorigenesis. The binding affinity of 3 for PKCδ, which is involved in growth inhibition and apoptosis, was several times lower than those of 1 and 2, possibly due to the absence of the hydrogen bond and CH/π interaction between its side chain and either Met-239 or Pro-241 in the PKCδ-C1B domain. These results suggest that both the aromatic ring and phenolic hydroxyl group can suppress the proinflammatory and tumor-promoting activities of 1 and, therefore, at least the aromatic ring in the side chain of 1 is indispensable for developing anti-cancer leads with potent anti-proliferative activity and limited side effects. In accordance with the binding affinity, the concentration of 3 necessary to induce PKCδ-GFP translocation to the plasma membrane and perinuclear regions in HEK293 cells was higher than that of 1 and 2. However, the translocation profiles for PKCδ-GFP due to induction by 1-3 were similar.


Asunto(s)
Carcinógenos/química , Carcinógenos/farmacología , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Relación Estructura-Actividad
20.
J Org Chem ; 82(8): 4072-4112, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28300401

RESUMEN

A total synthesis of the proposed structure of nhatrangin A is described. This strategy relies on two aldol reactions to install the chiral centers at C3/C4 and C3'/C4', a lithium-mediated coupling between an advanced intermediate alkyne and a Weinreb amide to complete the C1-C13 alkyl scaffold, and a Yamaguchi esterification to set the side chain. Discrepancies in the spectroscopic data between synthetic and natural nhatrangins led us to synthesize six more diastereoisomers of the proposed structure of nhatrangin A.


Asunto(s)
Toxinas de Lyngbya/síntesis química , Espectroscopía de Resonancia Magnética con Carbono-13 , Toxinas de Lyngbya/química , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA