Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 74(4): 794-800, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33188905

RESUMEN

BACKGROUND & AIMS: HBeAg seroconversion during the natural history of chronic hepatitis B (CHB) is associated with a strong drop in serum HBV DNA levels and a reduction of intrahepatic covalently closed circular DNA (cccDNA) content. Of particular interest is the transition to HBeAg-negative chronic infection (ENCI). ENCI, previously known as inactive carrier state, is characterized by very low or negative viremia and the absence of liver disease. The molecular mechanisms responsible for the transition to ENCI and for the control of viral replication in ENCI are still poorly understood. METHODS: To identify which step(s) in the viral life cycle are controlled during the transition to ENCI, we quantified cccDNA, pre-genomic RNA (pgRNA), total HBV RNA and DNA replicative intermediates in 68 biopsies from patients in different phases of CHB. RESULTS: HBeAg seroconversion is associated with a reduction of cccDNA amounts as well as transcriptional activity. Silencing of cccDNA is particularly pronounced in ENCI, where there was ~46 times less pgRNA per cccDNA compared to HBeAg-negative CHB. Furthermore, a subgroup of patients with HBeAg-negative CHB can be characterized by reduced replication efficiency downstream of pgRNA. CONCLUSIONS: The reduction in serum viral load during the transition to ENCI seems to primarily result from strong inhibition of the transcriptional activity of cccDNA which can be maintained in the absence of liver disease. LAY SUMMARY: During the natural course of chronic hepatitis B virus infections, the immune response can gain control of viral replication. Quantification of viral DNA and RNA in liver biopsies of patients in different stages of chronic hepatitis B allowed us to identify the steps in the viral life cycle that are affected during the transition from active to inactive disease. Therapeutic targeting of these steps might induce sustained inhibition of viral transcription.


Asunto(s)
ADN Circular/análisis , Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B , Hepatitis B Crónica , Activación Transcripcional/genética , Transcripción Viral/fisiología , Replicación Viral/fisiología , Biopsia , Portador Sano/inmunología , Portador Sano/virología , ADN Viral/aislamiento & purificación , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Humanos , Fenómenos del Sistema Inmunológico , Hígado/patología , Seroconversión/fisiología , Carga Viral/inmunología
2.
Nat Commun ; 11(1): 6041, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247108

RESUMEN

The etiologic agent of the Covid-19 pandemic is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral membrane of SARS-CoV-2 surrounds a helical nucleocapsid in which the viral genome is encapsulated by the nucleocapsid protein. The nucleocapsid protein of SARS-CoV-2 is produced at high levels within infected cells, enhances the efficiency of viral RNA transcription, and is essential for viral replication. Here, we show that RNA induces cooperative liquid-liquid phase separation of the SARS-CoV-2 nucleocapsid protein. In agreement with its ability to phase separate in vitro, we show that the protein associates in cells with stress granules, cytoplasmic RNA/protein granules that form through liquid-liquid phase separation and are modulated by viruses to maximize replication efficiency. Liquid-liquid phase separation generates high-density protein/RNA condensates that recruit the RNA-dependent RNA polymerase complex of SARS-CoV-2 providing a mechanism for efficient transcription of viral RNA. Inhibition of RNA-induced phase separation of the nucleocapsid protein by small molecules or biologics thus can interfere with a key step in the SARS-CoV-2 replication cycle.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/fisiología , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/epidemiología , Proteínas de la Nucleocápside de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Células HeLa , Humanos , Insectos , Microscopía Intravital , Microscopía Fluorescente , Simulación de Dinámica Molecular , Pandemias/prevención & control , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , ARN Viral/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Transcripción Viral/efectos de los fármacos , Transcripción Viral/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
3.
Commun Biol ; 3(1): 376, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665623

RESUMEN

Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.


Asunto(s)
VIH-1/fisiología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microambiente Celular , Citometría de Flujo , Humanos , Hipoxia/metabolismo , Hipoxia/virología , Tejido Linfoide/metabolismo , Tejido Linfoide/virología , Oxígeno , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Viral/fisiología , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA