Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
Nat Commun ; 15(1): 4925, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858373

RESUMEN

Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.


Asunto(s)
Biocatálisis , Terpenos , Ciclización , Terpenos/metabolismo , Terpenos/química , Estereoisomerismo , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/química , Ciclodextrinas/química , Ciclodextrinas/metabolismo
2.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780624

RESUMEN

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Ácido Salicílico , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Ácidos Pipecólicos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
3.
Biochem Biophys Res Commun ; 721: 150122, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776834

RESUMEN

Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.


Asunto(s)
MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Unión Proteica , Modelos Moleculares , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Conformación de Ácido Nucleico , Sitios de Unión , Secuencia de Aminoácidos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
4.
J Agric Food Chem ; 72(18): 10584-10595, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652774

RESUMEN

Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a ß-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.


Asunto(s)
Camellia sinensis , Transferasas Intramoleculares , Proteínas de Plantas , Triterpenos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Triterpenos/metabolismo , Triterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Camellia sinensis/genética , Camellia sinensis/enzimología , Camellia sinensis/metabolismo , Camellia sinensis/química , Simulación del Acoplamiento Molecular , Genoma de Planta
5.
J Chem Inf Model ; 64(9): 3933-3941, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38666964

RESUMEN

ß-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra ß-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.


Asunto(s)
Biocatálisis , Dominio Catalítico , Transferasas Intramoleculares , Simulación de Dinámica Molecular , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Mutagénesis Sitio-Dirigida
6.
Biochemistry ; 63(7): 913-925, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38471967

RESUMEN

Several anaerobic bacterial species, including the Gram-negative oral bacterium Fusobacterium nucleatum, ferment lysine to produce butyrate, acetate, and ammonia. The second step of the metabolic pathway─isomerization of ß-l-lysine to erythro-3,5-diaminohexanoate─is catalyzed by the adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme, lysine 5,6-aminomutase (5,6-LAM). Similar to other AdoCbl-dependent enzymes, 5,6-LAM undergoes mechanism-based inactivation due to loss of the AdoCbl 5'-deoxyadenosyl moiety and oxidation of the cob(II)alamin intermediate to hydroxocob(III)alamin. Herein, we identified kamB and kamC, two genes responsible for ATP-dependent reactivation of 5,6-LAM. KamB and KamC, which are encoded upstream of the genes corresponding to α and ß subunits of 5,6-LAM (kamD and kamE), co-purified following coexpression of the genes in Escherichia coli. KamBC exhibited a basal level of ATP-hydrolyzing activity that was increased 35% in a reaction mixture that facilitated 5,6-LAM turnover with ß-l-lysine or d,l-lysine. Ultraviolet-visible (UV-vis) spectroscopic studies performed under anaerobic conditions revealed that KamBC in the presence of ATP/Mg2+ increased the steady-state concentration of the cob(II)alamin intermediate in the presence of excess ß-l-lysine. Using a coupled UV-visible spectroscopic assay, we show that KamBC is able to reactivate 5,6-LAM through exchange of the damaged hydroxocob(III)alamin for AdoCbl. KamBC is also specific for 5,6-LAM as it had no effect on the rate of substrate-induced inactivation of the homologue, ornithine 4,5-aminomutase. Based on sequence homology, KamBC is structurally distinct from previously characterized B12 chaperones and reactivases, and correspondingly adds to the list of proteins that have evolved to maintain the cellular activity of B12 enzymes.


Asunto(s)
Transferasas Intramoleculares , Lisina , Lisina/metabolismo , Transferasas Intramoleculares/metabolismo , Cobamidas/metabolismo , Adenosina Trifosfato
7.
RNA ; 30(5): 530-536, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531650

RESUMEN

Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.


Asunto(s)
ARN Mensajero , Investigación , ARN Mensajero/química , ARN Mensajero/metabolismo , Transferasas Intramoleculares/metabolismo , Transcripción Genética , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Biosíntesis de Proteínas , Unión Proteica , Humanos , Animales , Investigación/tendencias
8.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
9.
Mol Microbiol ; 121(5): 912-926, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400525

RESUMEN

Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched ß-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.


Asunto(s)
Pared Celular , Colletotrichum , Proteínas Fúngicas , Galactosa , Mananos , Enfermedades de las Plantas , UDPglucosa 4-Epimerasa , Factores de Virulencia , Zea mays , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Zea mays/microbiología , Galactosa/metabolismo , Galactosa/análogos & derivados , Enfermedades de las Plantas/microbiología , Pared Celular/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , UDPglucosa 4-Epimerasa/metabolismo , UDPglucosa 4-Epimerasa/genética , Mananos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Hifa/metabolismo , Virulencia/genética
10.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38375885

RESUMEN

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Asunto(s)
Seudouridina , ARN de Archaea , ARN de Transferencia , Sulfolobus , Seudouridina/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Archaea/química , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Procesamiento Postranscripcional del ARN , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
11.
Chemistry ; 30(23): e202304163, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258332

RESUMEN

Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.


Asunto(s)
Aminoácidos Diaminos , Hidroliasas , Hierro , Simulación de Dinámica Molecular , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Hierro/química , Hierro/metabolismo , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Biocatálisis , Bacterias/enzimología , Catálisis , Ciclización , Ligandos , Agua/química
12.
Plant J ; 118(3): 731-752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38226777

RESUMEN

Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and ß-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Triterpenos Pentacíclicos , Prunella , Prunella/genética , Prunella/metabolismo , Triterpenos Pentacíclicos/metabolismo , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Triterpenos/metabolismo
13.
Gene ; 894: 147971, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37949417

RESUMEN

Saponins derived from holothurians have high potential medicinal value. However, the de novo synthesis of the derivatization of triterpenes is still unclear. Oxidative squalene cyclase (OSC) can catalyze 2,3-Oxidosqualene into diverse products that serve as important precursors for triterpene synthesis. However, the function of theOSCgene in Chiridotasp. hasnot been elucidated. In this study, an OSCgenederived from the deep-sea holothurianChiridota sp. was cloned and characterized functionally in a yeast system. The open reading frame of the OSC gene was 2086 bp, which encoded 695 amino acids. The Chiridota sp. OSC gene has a similarity of 66.89 % to the OSC of other holothurian species and 63.51 % to that of Acanthaster planci. The phylogenetic tree showed that the echinozoan OSCsclustered together, and then they formeda sister group to fungi and plant homologs. Chiridota sp. OSC catalyzed 2,3-Oxidosqualene into parkeol.Under high pressure, the relative enzymatic activity and stability of cyclase inChiridota sp. was higher than that in the shallow-sea holothurianStichopus horrens. The newly cloned OSC of Chiridota sp.provideskey information for the interpretation of the saponin synthesis pathway in deep-sea holothurians.


Asunto(s)
Transferasas Intramoleculares , Triterpenos , Filogenia , Triterpenos/metabolismo , Clonación Molecular , Estrés Oxidativo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
14.
New Phytol ; 241(2): 764-778, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37904576

RESUMEN

Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic ß-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis ß-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.


Asunto(s)
Chenopodium quinoa , Transferasas Intramoleculares , Triterpenos , Chenopodium quinoa/metabolismo , Triterpenos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
15.
Plant Physiol ; 194(4): 2580-2599, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38101922

RESUMEN

Triterpenes are a class of bioactive compounds with diverse biological functions, playing pivotal roles in plant defense against biotic stressors. Oxidosqualene cyclases (OSCs) serve as gatekeepers in the biosynthesis of triterpenes. In this study, we utilized a Nicotiana benthamiana heterologous expression system to characterize NaOSC1 from Nicotiana attenuata as a multifunctional enzyme capable of synthesizing lupeol, dammarenediol II, 3-alpha,20-lupanediol, and 7 other triterpene scaffolds. We also demonstrated that NaOSC2 is, in contrast, a selective enzyme, producing only the ß-amyrin scaffold. Through virus-induced gene silencing and in vitro toxicity assays, we elucidated the roles of NaOSC1 and NaOSC2 in the defense of N. attenuata against Manduca sexta larvae. Metabolomic and feature-based molecular network analyses of leaves with silenced NaOSC1 and NaOSC2 unveiled 3 potential triterpene glycoside metabolite clusters. Interestingly, features identified as triterpenes within these clusters displayed a significant negative correlation with larval mass. Our study highlights the pivotal roles of NaOSC1 and NaOSC2 from N. attenuata in the initial steps of triterpene biosynthesis, subsequently influencing defense against M. sexta through the modulation of downstream triterpene glycoside compounds.


Asunto(s)
Transferasas Intramoleculares , Manduca , Triterpenos , Animales , Nicotiana/genética , Triterpenos/metabolismo , Triterpenos Pentacíclicos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Larva/metabolismo
16.
PLoS One ; 18(11): e0291267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939088

RESUMEN

The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or 'PUS' enzymes include those that rely on guide RNA molecules and others that function as 'stand-alone' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.


Asunto(s)
Transferasas Intramoleculares , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , ARN de Transferencia/metabolismo , Seudouridina/metabolismo
17.
Biochemistry ; 62(17): 2587-2596, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37552766

RESUMEN

Because purine nucleotides are essential for all life, differences between how microbes and humans metabolize purines can be exploited for the development of antimicrobial therapies. While humans biosynthesize purine nucleotides in a 10-step pathway, most microbes utilize an additional 11th enzymatic activity. The human enzyme, aminoimidazole ribonucleotide (AIR) carboxylase generates the product 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) directly. Most microbes, however, require two separate enzymes, a synthetase (PurK) and a mutase (PurE), and proceed through the intermediate, N5-CAIR. Toward the development of therapeutics that target these differences, we have solved crystal structures of the N5-CAIR mutase of the human pathogens Legionella pneumophila (LpPurE) and Burkholderia cenocepacia (BcPurE) and used a structure-guided approach to identify inhibitors. Analysis of the structures reveals a highly conserved fold and active site architecture. Using this data, and three additional structures of PurE enzymes, we screened a library of FDA-approved compounds in silico and identified a set of 25 candidates for further analysis. Among these, we identified several new PurE inhibitors with micromolar IC50 values. Several of these compounds, including the α1-blocker Alfuzosin, inhibit the microbial PurE enzymes much more effectively than the human homologue. These structures and the newly described PurE inhibitors are valuable tools to aid in further studies of this enzyme and provide a foundation for the development of compounds that target differences between human and microbial purine metabolism.


Asunto(s)
Transferasas Intramoleculares , Ribonucleótidos , Humanos , Ribonucleótidos/química , Escherichia coli/metabolismo , Transferasas Intramoleculares/metabolismo , Nucleótidos de Purina/metabolismo
18.
Environ Microbiol ; 25(11): 2163-2181, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37321960

RESUMEN

Mycolicibacterium gadium IBE100 and Mycobacterium paragordonae IBE200 are aerobic, chemoorganoheterotrophic bacteria isolated from activated sludge from a wastewater treatment plant. They use 2-methylpropene (isobutene, 2-MP) as the sole source of carbon and energy. Here, we postulate a degradation pathway of 2-methylpropene derived from whole genome sequencing, differential expression analysis and peptide-mass fingerprinting. Key genes identified are coding for a 4-component soluble diiron monooxygenase with epoxidase activity, an epoxide hydrolase, and a 2-hydroxyisobutyryl-CoA mutase. In both strains, involved genes are arranged in clusters of 61.0 and 58.5 kbp, respectively, which also contain the genes coding for parts of the aerobic pathway of adenosylcobalamin synthesis. This vitamin is essential for the carbon rearrangement reaction catalysed by the mutase. These findings provide data for the identification of potential 2-methylpropene degraders.


Asunto(s)
Alquenos , Transferasas Intramoleculares , Alquenos/metabolismo , Aguas del Alcantarillado , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Carbono
19.
Haematologica ; 108(10): 2677-2689, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37165848

RESUMEN

Aged hematopoietic stem cells (HSC) exhibit compromised reconstitution capacity and differentiation-bias towards myeloid lineage, however, the molecular mechanism behind it remains not fully understood. In this study, we observed that the expression of pseudouridine (Ψ) synthase 10 is increased in aged hematopoietic stem and progenitor cells (HSPC) and enforced protein of Ψ synthase 10 (PUS10) recapitulates the phenotype of aged HSC, which is not achieved by its Ψ synthase activity. Consistently, we observed no difference of transcribed RNA pseudouridylation profile between young and aged HSPC. No significant alteration of hematopoietic homeostasis and HSC function is observed in young Pus10-/- mice, while aged Pus10-/- mice exhibit mild alteration of hematopoietic homeostasis and HSC function. Moreover, we observed that PUS10 is ubiquitinated by E3 ubiquitin ligase CRL4DCAF1 complex and the increase of PUS10 in aged HSPC is due to aging-declined CRL4DCAF1- mediated ubiquitination degradation signaling. Taken together, this study for the first time evaluated the role of PUS10 in HSC aging and function, and provided a novel insight into HSC rejuvenation and its clinical application.


Asunto(s)
Transferasas Intramoleculares , ARN , Animales , Ratones , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Envejecimiento
20.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985754

RESUMEN

The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and ß-amyrin synthases (ß-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that ß-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.


Asunto(s)
Transferasas Intramoleculares , Potentilla , Triterpenos , Farnesil Difosfato Farnesil Transferasa/genética , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Filogenia , Potentilla/genética , Escualeno , Triterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA