Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
N Engl J Med ; 389(13): 1203-1210, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754285

RESUMEN

We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).


Asunto(s)
Distrofina , Terapia Genética , Distrofia Muscular de Duchenne , Síndrome de Dificultad Respiratoria , Transgenes , Adulto , Humanos , Anticuerpos , Distrofina/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/inmunología , Transgenes/genética , Transgenes/inmunología , Resultado Fatal , Inmunidad Innata/genética , Inmunidad Innata/inmunología
2.
Front Immunol ; 12: 655478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040605

RESUMEN

Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients' CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.


Asunto(s)
Acetilglucosaminidasa/inmunología , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Inmunidad Celular , Mucopolisacaridosis III/complicaciones , Transgenes/inmunología , Acetilglucosaminidasa/genética , Niño , Citocinas/metabolismo , Vías de Administración de Medicamentos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Memoria Inmunológica , Activación de Linfocitos , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transgenes/genética
3.
Transgenic Res ; 30(1): 77-89, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33386504

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.


Asunto(s)
Antígenos de Plantas/genética , Sistemas CRISPR-Cas/genética , Glycine max/genética , Proteínas de Soja/genética , Transgenes/genética , Antígenos de Plantas/efectos adversos , Antígenos de Plantas/inmunología , Biolística , Productos Agrícolas/genética , Edición Génica , Genoma de Planta , Humanos , Mutagénesis Sitio-Dirigida , Mutación/genética , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/inmunología , Proteínas de Soja/efectos adversos , Proteínas de Soja/inmunología , Glycine max/crecimiento & desarrollo , Glycine max/inmunología , Transgenes/inmunología
4.
Cancer Immunol Res ; 9(3): 291-308, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33355229

RESUMEN

ONCR-177 is an engineered recombinant oncolytic herpes simplex virus (HSV) with complementary safety mechanisms, including tissue-specific miRNA attenuation and mutant UL37 to inhibit replication, neuropathic activity, and latency in normal cells. ONCR-177 is armed with five transgenes for IL12, FLT3LG (extracellular domain), CCL4, and antagonists to immune checkpoints PD-1 and CTLA-4. In vitro assays demonstrated that targeted miRNAs could efficiently suppress ONCR-177 replication and transgene expression, as could the HSV-1 standard-of-care therapy acyclovir. Although ONCR-177 was oncolytic across a panel of human cancer cell lines, including in the presence of type I IFN, replication was suppressed in human pluripotent stem cell-derived neurons, cardiomyocytes, and hepatocytes. Dendritic cells activated with ONCR-177 tumor lysates efficiently stimulated tumor antigen-specific CD8+ T-cell responses. In vivo, biodistribution analyses suggested that viral copy number and transgene expression peaked approximately 24 to 72 hours after injection and remained primarily within the injected tumor. Intratumoral administration of ONCR-177 mouse surrogate virus, mONCR-171, was efficacious across a panel of syngeneic bilateral mouse tumor models, resulting in partial or complete tumor regressions that translated into significant survival benefits and to the elicitation of a protective memory response. Antitumor effects correlated with local and distant intratumoral infiltration of several immune effector cell types, consistent with the proposed functions of the transgenes. The addition of systemic anti-PD-1 augmented the efficacy of mONCR-171, particularly for abscopal tumors. Based in part upon these preclinical results, ONCR-177 is being evaluated in patients with metastatic cancer (ONCR-177-101, NCT04348916).


Asunto(s)
Herpesvirus Humano 1/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Animales , Línea Celular Tumoral/trasplante , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Herpesvirus Humano 1/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inyecciones Intralesiones , Ratones , MicroARNs/genética , MicroARNs/inmunología , Neoplasias/inmunología , Neoplasias/patología , Virus Oncolíticos/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Distribución Tisular , Transgenes/genética , Transgenes/inmunología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Replicación Viral/genética
5.
Dev Comp Immunol ; 117: 103986, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359739

RESUMEN

Entomopathogenic fungi have high potential for controlling insect pests, although the slow killing speed has blocked their widespread application. To increase the virulence of entomopathogenic fungi, genetic modification can be employed. Egf1.0 is an immunosuppressive protein encoded by polydnavirus, carried by parasitoid wasp Microplitis demolitor, which blocks the prophenoloxidase (PPO) activation response of host insects. In this study, we explored the feasibility of genetically modifying entomopathogenic fungi with increased virulence by expressing Egf1.0. In comparison with the wild-type parents, the median lethal concentration (LC50) of Beauveria bassiana expressing Egf1.0 against Helicoverpa armigera was reduced by 2.7-fold, and the median lethal time (LT50) was reduced by 22.8%. In vitro assay showed that recombinant Egf1.0 was able to inhibit the PPO activation response of H. armigera. In vivo assay revealed that the expression of Egf1.0 in B. bassiana caused a higher degree of suppression to PPO activation response of H. armigera. These assays suggested that the increased virulence of the transgenic fungi is due to the increased ability to suppress the host insect's immune response. Moreover, colony growth, conidia yield, and germination assays revealed that the expression of Egf1.0 in B. bassiana had no effect on its growth and development. In conclusion, the expression of Egf1.0 can significantly enhance the pathogenicity of B. bassiana against host insects.


Asunto(s)
Beauveria/inmunología , Proteínas de Insectos/inmunología , Monofenol Monooxigenasa/inmunología , Mariposas Nocturnas/inmunología , Transgenes/inmunología , Proteínas Virales/inmunología , Animales , Secuencia de Bases , Beauveria/genética , Beauveria/patogenicidad , Activación Enzimática/genética , Activación Enzimática/inmunología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/microbiología , Transgenes/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia/genética , Virulencia/inmunología
6.
Genes (Basel) ; 11(11)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158084

RESUMEN

Baculovirus expression systems have been widely used to produce recombinant mammalian proteins owing to the lack of viral replication in vertebrates. Although several lines of evidence have demonstrated impacts of baculovirus infection in mammalian hosts, genome-wide effects have not been fully elucidated. Here, we provide comparative transcriptome profiles of baculovirus and host-immune response genes in recombinant baculovirus-infected mammalian and insect cells. Specifically, to decipher the impacts of baculovirus infection in mammalian cells, we conducted total RNA-seq on human 293TT cells and insect Sf9 cells infected with recombinant baculovirus. We found that baculovirus genes were rarely expressed under the control of baculoviral promoters in 293TT cells. Although some baculovirus early genes, such as PE38 and IE-01, showed limited expression in 293TT cells, baculoviral late genes were mostly silent. We also found modest induction of a small number of mammalian immune response genes associated with Toll-like receptors, cytokine signaling, and complement in baculovirus-infected 293TT cells. These comprehensive transcriptome data will contribute to improving recombinant baculovirus as tools for gene delivery, gene therapy, and vaccine development.


Asunto(s)
Proteínas Recombinantes/efectos adversos , Transcriptoma/genética , Transgenes/inmunología , Animales , Baculoviridae/genética , Línea Celular , Terapia Genética/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Insectos/genética , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Transcriptoma/inmunología , Transgenes/genética , Replicación Viral/genética
7.
Parasit Vectors ; 13(1): 343, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650837

RESUMEN

BACKGROUND: Poultry coccidiosis is a parasitic enteric disease with a highly negative impact on chicken production. In-feed chemoprophylaxis remains the primary method of control, but the increasing ineffectiveness of anticoccidial drugs, and potential future restrictions on their use has encouraged the use of commercial live vaccines. Availability of such formulations is constrained by their production, which relies on the use of live chickens. Several experimental approaches have been taken to explore ways to reduce the complexity and cost of current anticoccidial vaccines including the use of live vectors expressing relevant Eimeria proteins. We and others have shown that vaccination with transgenic Eimeria tenella parasites expressing Eimeria maxima Apical Membrane Antigen-1 or Immune Mapped Protein-1 (EmAMA1 and EmIMP1) partially reduces parasite replication after challenge with a low dose of E. maxima oocysts. In the present study, we have reassessed the efficacy of these experimental vaccines using commercial birds reared at high stocking densities and challenged with both low and high doses of E. maxima to evaluate how well they protect chickens against the negative impacts of disease on production parameters. METHODS: Populations of E. tenella parasites expressing EmAMA1 and EmIMP1 were obtained by nucleofection and propagated in chickens. Cobb500 broilers were immunised with increasing doses of transgenic oocysts and challenged two weeks later with E. maxima to quantify the effect of vaccination on parasite replication, local IFN-γ and IL-10 responses (300 oocysts), as well as impacts on intestinal lesions and body weight gain (10,000 oocysts). RESULTS: Vaccination of chickens with E. tenella expressing EmAMA1, or admixtures of E. tenella expressing EmAMA1 or EmIMP1, was safe and induced partial protection against challenge as measured by E. maxima replication and severity of pathology. Higher levels of protection were observed when both antigens were delivered and was associated with a partial modification of local immune responses against E. maxima, which we hypothesise resulted in more rapid immune recognition of the challenge parasites. CONCLUSIONS: This study offers prospects for future development of multivalent anticoccidial vaccines for commercial chickens. Efforts should now be focused on the discovery of additional antigens for incorporation into such vaccines.


Asunto(s)
Pollos/parasitología , Coccidiosis/veterinaria , Eimeria tenella , Vacunas Antiprotozoos , Animales , Antígenos de Protozoos/inmunología , Peso Corporal/efectos de los fármacos , Pollos/inmunología , Coccidiosis/prevención & control , Coccidiosis/terapia , Eimeria/efectos de los fármacos , Eimeria/crecimiento & desarrollo , Eimeria/inmunología , Eimeria tenella/efectos de los fármacos , Eimeria tenella/crecimiento & desarrollo , Eimeria tenella/inmunología , Genes Protozoarios/inmunología , Interferón gamma/efectos de los fármacos , Interleucina-10/metabolismo , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Antiprotozoos/biosíntesis , Vacunas Antiprotozoos/uso terapéutico , Transfección , Transgenes/inmunología , Vacunación/métodos , Vacunación/veterinaria , Vacunas Atenuadas/biosíntesis , Vacunas Atenuadas/uso terapéutico
8.
Commun Biol ; 3(1): 273, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472011

RESUMEN

Reporter proteins have become an indispensable tool in biomedical research. However, exogenous introduction of these reporters into mice poses a risk of rejection by the immune system. Here, we describe the generation, validation and application of a multiple reporter protein tolerant 'Tol' mouse model that constitutively expresses an assembly of shuffled reporter proteins from a single open reading frame. We demonstrate that expression of the Tol transgene results in the deletion of CD8+ T cells specific for a model epitope, and substantially improves engraftment of reporter-gene transduced T cells. The Tol strain provides a valuable mouse model for cell transfer and viral-mediated gene transfer studies, and serves as a methodological example for the generation of poly-tolerant mouse strains.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Genes Reporteros/inmunología , Transgenes/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos
9.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414007

RESUMEN

The humoral immune response elicited by adeno-associated virus (AAV)-mediated gene therapy for the treatment of mucopolysaccharidoses (MPS) poses a significant challenge to achieving therapeutic levels of transgene expression. Antibodies targeting the AAV capsid as well as the transgene product diminish the production of glycosaminoglycan (GAG)-degrading enzymes essential for the treatment of MPS. Patients who have antibodies against AAV capsid increase in number with age, serotype, and racial background and are excluded from the clinical trials at present. In addition, patients who have undergone AAV gene therapy are often excluded from the additional AAV gene therapy with the same serotype, since their acquired immune response (antibody) against AAV will limit further efficacy of treatment. Several methods are being developed to overcome this immune response, such as novel serotype design, antibody reduction by plasmapheresis and immunosuppression, and antibody evasion using empty capsids and enveloped AAV vectors. In this review, we examine the mechanisms of the anti-AAV humoral immune response and evaluate the strengths and weaknesses of current evasion strategies in order to provide an evidence-based recommendation on evading the immune response for future AAV-mediated gene therapies for MPS.


Asunto(s)
Dependovirus/genética , Terapia Genética , Inmunidad Humoral/genética , Mucopolisacaridosis/genética , Anticuerpos/inmunología , Cápside/inmunología , Dependovirus/inmunología , Humanos , Mucopolisacaridosis/inmunología , Mucopolisacaridosis/terapia , Transgenes/genética , Transgenes/inmunología
10.
Gastroenterology ; 158(4): 1072-1082.e7, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31419436

RESUMEN

BACKGROUND & AIMS: Mutations in the trypsinogen gene (PRSS1) cause human hereditary pancreatitis. However, it is not clear how mutant forms of PRSS1 contribute to disease development. We studied the effects of expressing mutant forms of human PRSS1 in mice. METHODS: We expressed forms of PRSS1 with and without the mutation encoding R122H (PRSS1R122H) specifically in pancreatic acinar cells under control of a full-length pancreatic elastase gene promoter. Mice that did not express these transgenes were used as controls. Mice were given injections of caerulein to induce acute pancreatitis or injections of lipopolysaccharide to induce chronic pancreatitis. Other groups of mice were fed ethanol or placed on a high-fat diet to induce pancreatitis. Pancreata were collected and analyzed by histology, immunoblots, real-time polymerase chain reaction, and immunohistochemistry. Trypsin enzymatic activity and chymotrypsin enzymatic activity were measured in pancreatic homogenates. Blood was collected and serum amylase activity was measured. RESULTS: Pancreata from mice expressing transgenes encoding PRSS1 or PRSS1R122H had focal areas of inflammation; these lesions were more prominent in mice that express PRSS1R122H. Pancreata from mice that express PRSS1 or PRSS1R122H had increased levels of heat shock protein 70 and nuclear factor (erythroid-derived 2)-like 2, and reduced levels of chymotrypsin C compared with control mice. Increased expression of PRSS1 or PRSS1R122H increased focal damage in pancreatic tissues and increased the severity of acute pancreatitis after caerulein injection. Administration of lipopolysaccharide exacerbated inflammation in mice that express PRSS1R122H compared to mice that express PRSS1 or control mice. Mice that express PRSS1R122H developed more severe pancreatitis after ethanol feeding or a high-fat diet than mice that express PRSS1 or control mice. Pancreata from mice that express PRSS1R122H had more DNA damage, apoptosis, and collagen deposition and increased trypsin activity and infiltration by inflammatory cells than mice that express PRSS1 or control mice. CONCLUSIONS: Expression of a transgene encoding PRSS1R122H in mice promoted inflammation and increased the severity of pancreatitis compared with mice that express PRSS1 or control mice. These mice might be used as a model for human hereditary pancreatitis and can be studied to determine mechanisms of induction of pancreatitis by lipopolysaccharide, ethanol, or a high-fat diet.


Asunto(s)
Inmunidad Adaptativa/genética , Expresión Génica/inmunología , Pancreatitis/genética , Transgenes/inmunología , Tripsina/inmunología , Células Acinares/inmunología , Animales , Humanos , Ratones , Ratones Transgénicos , Mutación , Páncreas/inmunología , Pancreatitis/inmunología , Tripsinógeno/inmunología
11.
Mol Ther ; 27(7): 1215-1227, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31060789

RESUMEN

Mucopolysaccharidosis type I (MPS-I) is a severe genetic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) enzyme. Ex vivo hematopoietic stem cell (HSC) gene therapy is a promising therapeutic approach for MPS-I, as demonstrated by preclinical studies performed in naive MPS-I mice. However, after enzyme replacement therapy (ERT), several MPS-I patients develop anti-IDUA immunity that may jeopardize ex vivo gene therapy efficacy. Here we treat MPS-I mice with an artificial immunization protocol to mimic the ERT effect in patients, and we demonstrate that IDUA-corrected HSC engraftment is impaired in pre-immunized animals by IDUA-specific CD8+ T cells spared by pre-transplant irradiation. Conversely, humoral anti-IDUA immunity does not impact on IDUA-corrected HSC engraftment. The inclusion of lympho-depleting agents in pre-transplant conditioning of pre-immunized hosts allowes rescue of IDUA-corrected HSC engraftment, which is proportional to CD8+ T cell eradication. Overall, these data demonstrate the relevance of pre-existing anti-transgene T cell immunity on ex vivo HSC gene therapy, and they suggest the application of tailored immune-depleting treatments, as well as a deeper immunological characterization of patients, to safeguard the therapeutic effects of ex vivo HSC gene therapy in immunocompetent hosts.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Mucopolisacaridosis I/terapia , Transgenes/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/efectos adversos , Técnicas de Inactivación de Genes , Vectores Genéticos , Humanos , Iduronidasa/genética , Iduronidasa/inmunología , Inmunidad Celular/efectos de los fármacos , Inmunización/métodos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/patología
12.
Vaccine ; 37(47): 6951-6961, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31047679

RESUMEN

A variety of Good Manufacturing Practice (GMP) compliant processes have been reported for production of non-replicating adenovirus vectors, but important challenges remain. Most clinical development of adenovirus vectors now uses simian adenoviruses or rare human serotypes, whereas reported manufacturing processes mainly use serotypes such as AdHu5 which are of questionable relevance for clinical vaccine development. Many clinically relevant vaccine transgenes interfere with adenovirus replication, whereas most reported process development uses selected antigens or even model transgenes such as fluorescent proteins which cause little such interference. Processes are typically developed for a single adenovirus serotype - transgene combination, requiring extensive further optimization for each new vaccine. There is a need for rapid production platforms for small GMP batches of non-replicating adenovirus vectors for early-phase vaccine trials, particularly in preparation for response to emerging pathogen outbreaks. Such platforms must be robust to variation in the transgene, and ideally also capable of producing adenoviruses of more than one serotype. It is also highly desirable for such processes to be readily implemented in new facilities using commercially available single-use materials, avoiding the need for development of bespoke tools or cleaning validation, and for them to be readily scalable for later-stage studies. Here we report the development of such a process, using single-use stirred-tank bioreactors, a transgene-repressing HEK293 cell - promoter combination, and fully single-use filtration and ion exchange components. We demonstrate applicability of the process to candidate vaccines against rabies, malaria and Rift Valley fever, each based on a different adenovirus serotype. We compare performance of a range of commercially available ion exchange media, including what we believe to be the first published use of a novel media for adenovirus purification (NatriFlo® HD-Q, Merck). We demonstrate the need for minimal process individualization for each vaccine, and that the product fulfils regulatory quality expectations. Cell-specific yields are at the upper end of those previously reported in the literature, and volumetric yields are in the range 1 × 1013 - 5 × 1013 purified virus particles per litre of culture, such that a 2-4 L process is comfortably adequate to produce vaccine for early-phase trials. The process is readily transferable to any GMP facility with the capability for mammalian cell culture and aseptic filling of sterile products.


Asunto(s)
Adenovirus de los Simios/inmunología , Vectores Genéticos/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Células HEK293 , Humanos , Rabia/inmunología , Vacunas Antirrábicas/inmunología , Serogrupo , Transgenes/inmunología , Replicación Viral/inmunología
13.
J Immunol ; 202(8): 2502-2510, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814307

RESUMEN

IFN-γ is a key cytokine of innate and adaptive immunity. It is important to understand temporal changes in IFN-γ production and how these changes relate to the role of IFN-γ in diverse models of infectious and autoimmune disease, making the ability to monitor and track IFN-γ production in vivo of a substantial benefit. IFN-γ ELISPOTs have been a central methodology to measure T cell immunity for many years. In this study, we add the capacity to analyze IFN-γ responses with high sensitivity and specificity, longitudinally, in vitro and in vivo. This allows the refinement of experimental protocols because immunity can be tracked in real-time through a longitudinal approach. We have generated a novel murine IFN-γ reporter transgenic model that allows IFN-γ production to be visualized and quantified in vitro and in vivo as bioluminescence using an imaging system. At baseline, in the absence of an inflammatory stimulus, IFN-γ signal from lymphoid tissue is detectable in vivo. Reporter transgenics are used in this study to track the IFN-γ response to Pseudomonas aeruginosa infection in the lung over time in vivo. The longitudinal development of the adaptive T cell immunity following immunization with Ag is identified from day 7 in vivo. Finally, we show that we are able to use this reporter transgenic to follow the onset of autoimmune T cell activation after regulatory T cell depletion in an established model of systemic autoimmunity. This IFN-γ reporter transgenic, termed "Gammaglow," offers a valuable new modality for tracking IFN-γ immunity, noninvasively and longitudinally over time.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Inmunidad Celular , Interferón gamma/inmunología , Mediciones Luminiscentes , Pulmón/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Interferón gamma/genética , Pulmón/patología , Ratones , Ratones Transgénicos , Transgenes/inmunología
14.
Fish Shellfish Immunol ; 89: 1-11, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30902722

RESUMEN

Recently, our laboratory had produced five families of transgenic rainbow trout harboring cecropin P1 transgene, and via repeated challenge studies these fish exhibited a significant elevation of resistance to infection by microbial pathogens. By cDNA microarray and mRNA deep sequencing (mRNA-seq) analyses on two of the five families of cecropin P1 transgenic fish, differentially expressed genes (DEGs) relevant to the innate and adaptive immune pathways in three different immune-related tissues, (i.e. spleen, kidney and liver) were profiled. These results supported our hypothesis that in addition to its direct microbicidal activity, the transgene product of cecropin P1 induces immunomodulatory activity in the transgenic host. Here, we have adapted the technique of quantitative reverse transcription real time PCR (RT-qPCR) array to analyze the expression of genes relevant to the innate and adaptive immune pathways in the rest three families. A RT-qPCR array was constructed with oligonucleotide primers of fifty-two innate/adaptive immune relevant DEGs shown to be the most perturbed by cecropin P1 transgene product in previous studies. Messenger RNA isolated from the spleen, kidney and liver of transgenic fish and non-transgenic fish control were studied on this array. Results of RT-qPCR array revealed that statistically significant perturbations of gene expression were detected in pathways of cytokine/chemokine signaling, Toll-like receptor signaling, complement cascade, antigen processing/presentation, lysosomal phagocytosis and leukocyte trans-endothelial migration in the transgenic spleen; extracellular matrix (ECM) organization and leukocyte trans-endothelial migration pathways in the transgenic kidney; lysosomal activity pathway in the transgenic liver. Furthermore, genes related to the pathways of the peroxisome proliferator-activated receptors (PPAR) signaling, lipid metabolism process and arachidonic acid metabolism were also impacted in the transgenic liver. Findings of the current study are in good agreement with those discoveries in previous two transgenic families by cDNA microarray and mRNA-seq analyses.


Asunto(s)
Inmunidad Innata/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/inmunología , Péptidos/genética , Transgenes/inmunología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Marcadores Genéticos/inmunología , Masculino , Reacción en Cadena de la Polimerasa/veterinaria
15.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541847

RESUMEN

A key aspect to consider for vaccinal protection is the induction of a local line of defense consisting of nonrecirculating tissue-resident memory T cells (TRM), in parallel to the generation of systemic memory CD8+ T cell responses. The potential to induce TRM has now been demonstrated for a number of pathogens and viral vectors. This potential, however, has never been tested for recombinant adeno-associated virus (rAAV) vectors, which are weakly inflammatory and poor transducer of dendritic cells. Using a model rAAV2/1-based vaccine, we determined that a single intradermal immunization with rAAV2/1 vectors in mice induces fully functional TRM at the local site of immunization. The optimal differentiation of rAAV-induced transgene-specific skin TRM was dependent on local transgene expression and additional CD4+ T cell help. Transgene expression in dendritic cells, however, appeared to be dispensable for the priming of transgene-specific skin TRM, suggesting that this process solely depends on the cross-presentation of transgene products. Overall, this study provides needed information to properly assess rAAV vectors as T cell-inducing vaccine carriers.IMPORTANCE rAAVs display numerous characteristics that could make them extremely attractive as vaccine carriers, including an excellent safety profile in humans and great flexibility regarding serotypes and choice of target tissue. Studies addressing the ability of rAAV to induce protective T cell responses, however, are scarce. Notably, the potential to induce a tissue-resident memory T cell response has never been described for rAAV vectors, strongly limiting further interest for their use as vaccine carriers. Using a model rAAV2/1 vaccine delivered to the skin, our study demonstrated that rAAV vectors can induce bona fide skin resident TRM and provides additional clues regarding the cellular mechanisms underlying this process. These results will help widen the field of rAAV applications.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Parvovirinae/inmunología , Animales , Células Dendríticas/inmunología , Dependovirus , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos C57BL , Parvovirinae/genética , Piel/citología , Piel/inmunología , Transgenes/genética , Transgenes/inmunología , Vacunación , Vacunas Virales/inmunología
16.
Cell Immunol ; 342: 103728, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-29576315

RESUMEN

Immune tolerance is a vital component of immunity, as persistent activation of immune cells causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in which patients lack any expression of protein, during treatment with enzyme replacement therapy, or gene therapy. While the liver has long been known as being tolerogenic, it was only recently appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver induced tolerance, discuss different factors influencing successful tolerance induction with AAV, and applications where AAV mediated tolerance may be helpful.


Asunto(s)
Dependovirus/inmunología , Vectores Genéticos/inmunología , Tolerancia Inmunológica , Hígado/inmunología , Transgenes/inmunología , Enfermedades Autoinmunes/terapia , Células Dendríticas/inmunología , Dependovirus/genética , Terapia Genética , Humanos , Linfocitos T Reguladores/inmunología
17.
J Vis Exp ; (141)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30582589

RESUMEN

Upon viral infection, antigen-specific CD8+ cytotoxic T cells (CTLs) arise and contribute to the elimination of infected cells to prevent the spread of pathogens. Therefore, the frequency of antigen-specific CTLs is indicative of the strength of the T cell response against a specific antigen. Such analysis is important in basic immunology, vaccine development, cancer immunobiology and the adaptive immunology. In the vaccine field, the CTL response directed against components of a viral vector co-determines how effective the generation of antigen-specific cells against the antigen of interest (i.e., transgene) is. Antigen-specific CTLs can either be detected by stimulation with specific peptides followed by intracellular cytokine staining or by the direct staining of antigen-specific T cell receptors (TCRs) and analysis by flow cytometry. The first method is rather time-consuming since it requires sacrificing of animals to isolate cells from organs. Also, it requires isolation of blood from small animals which is difficult to perform. The latter method is rather fast, can be easily done with small amounts of blood and is not dependent on specific effector functions, such as cytolytic activity. MHC tetramers are an ideal tool to detect antigen-specific TCRs. Here, we describe a protocol to simultaneously detect antigen-specific CTLs for the immunodominant peptides of the viral vector VSV-GP (LCMV-GP, VSV-NP) and transgenes (OVA, HPV 16 E7, eGFP) by MHC I tetramer staining and flow cytometry. Staining is possible either directly from blood or from single cell suspensions of organs, such as spleen. Blood or single cell suspensions of organs are incubated with tetramers. After staining with antibodies against CD3 and CD8, antigen-specific CTLs are quantified by flow cytometry. Optionally, antibodies against CD43, CD44, CD62L or others can be included to determine the activation status of antigen-specific CD8+T cells and to discriminate between naïve and effector cells.


Asunto(s)
Linfocitos T CD8-positivos/química , Vectores Genéticos/análisis , Spiruroidea/química , Coloración y Etiquetado/métodos , Transgenes , Vacunación/métodos , Animales , Linfocitos T CD8-positivos/inmunología , Citometría de Flujo/métodos , Genes MHC Clase I/inmunología , Vectores Genéticos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/análisis , Receptores de Antígenos de Linfocitos T/inmunología , Spiruroidea/inmunología , Transgenes/inmunología
18.
PLoS One ; 13(6): e0198154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29874260

RESUMEN

A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dependovirus/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Inmunomodulación/fisiología , Primates/genética , Primates/inmunología , Animales , Animales Modificados Genéticamente , Autoantígenos/inmunología , Sistema Nervioso Central/inmunología , Dependovirus/inmunología , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/inmunología , Macaca fascicularis , Distribución Aleatoria , Transducción Genética , Transgenes/inmunología
19.
Vaccine ; 36(24): 3423-3426, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29735324

RESUMEN

Therapeutic HPV vaccine is an agent to induce E7-specific Th1 immune responses to treat cervical neoplasia (CIN2-3). Our previous clinical trial has demonstrated that oral administration of HPV16 E7-expressing Lactobacillus casei (L. casei), GLBL101c, resulted in the regression of HPV16-related CIN3. Here we examined optimization of the E7-expressing L. casei for induction of the mucosal immune responses to E7. Various doses of HPV16 E7 molecule were displayed on the L. casei. Immunization with E7-bound L. casei showed the induction of E7-specific mucosal IFNγ-producing cells was dependent on displayed E7-doses but saturated beyond 0.3 µg/108 cells. A new agent, L. casei with endogenous expression of E7 (IGMKK16E7), showed the optimal amount of displayed-E7. Immunization with IGMKK16E7 demonstrated 4-fold higher induction of E7-specific mucosal IFNγ-producing cells when compared with the former one. Our new system provided the optimal E7-expressing L. casei for displayed-E7 amount and induction of mucosal Th1 immune response.


Asunto(s)
Antígenos Virales/inmunología , Papillomavirus Humano 16/inmunología , Interferón gamma/biosíntesis , Lacticaseibacillus casei/inmunología , Proteínas E7 de Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Células TH1/inmunología , Administración Oral , Animales , Antígenos Virales/genética , Relación Dosis-Respuesta Inmunológica , Femenino , Expresión Génica , Ingeniería Genética , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Papillomavirus Humano 16/genética , Humanos , Inmunidad Mucosa , Inmunización/métodos , Interferón gamma/metabolismo , Lacticaseibacillus casei/genética , Ratones , Ratones Endogámicos C57BL , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/genética , Células TH1/virología , Transgenes/inmunología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/virología , Displasia del Cuello del Útero/inmunología , Displasia del Cuello del Útero/prevención & control , Displasia del Cuello del Útero/virología
20.
Front Immunol ; 9: 554, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616042

RESUMEN

Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs) are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based) antigen receptors (CARs) in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Terapia Genética/métodos , Linfocitos T Reguladores/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Enfermedades Autoinmunes/genética , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Lentivirus/genética , Lentivirus/inmunología , Modelos Inmunológicos , Transgenes/genética , Transgenes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA