Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.111
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791193

RESUMEN

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.


Asunto(s)
Adiponectina , Hormona Folículo Estimulante , Glucosa , Células de la Granulosa , Receptores de Adiponectina , Transducción de Señal , Animales , Femenino , Adiponectina/metabolismo , Adiponectina/genética , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Ratas , Hormona Folículo Estimulante/metabolismo , Glucosa/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Células Cultivadas , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Ratas Sprague-Dawley , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ovario/metabolismo , Piperidinas
2.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791523

RESUMEN

Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glicoconjugados , Simulación de Dinámica Molecular , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/química , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Glucosa/metabolismo , Transporte Biológico , Termodinámica
3.
Brain Behav ; 14(5): e3536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747733

RESUMEN

OBJECTIVE: To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS: We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS: Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION: This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Transportador de Glucosa de Tipo 1/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Células Endoteliales/metabolismo
4.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703775

RESUMEN

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Asunto(s)
Glioblastoma , Glucosa , Histonas , Macrófagos , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Histonas/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Glucosa/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Interleucina-10/metabolismo , Glucólisis , Microglía/metabolismo , Microglía/inmunología , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tolerancia Inmunológica
5.
Eur J Pharm Sci ; 198: 106789, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710335

RESUMEN

BACKGROUND: Cytoplasmic epidermal growth factor receptor (EGFR) is overexpressed in both nasopharyngeal carcinoma (NPC) and triple-negative breast cancer (TNBC), while clinical outcome and prognosis vary greatly among patients treated with gefitinib, and all patients eventually develop resistance to this agent. Therefore, we propose a new concept for synthesizing multitarget compounds and reveal new therapeutic strategies for NPC and TNBC expressing EGFR. METHODS: Compound H was synthesized in our previous study. Molecular docking, and cell thermal shift assays (CETSAs) and drug affinity responsive target stability(DARTS) were used to confirm the binding of compound H to EGFR and GLUT1. Methylthiazolyldiphenyl-tetrazolium bromide(MTT), annexin V-PE assays, mitochondrial membrane potential (MMP) assays, and animal models were used to evaluate the inhibitory effect of compound H on TNBC cell lines. Energy metabolism tests, Western blotting, and immunofluorescence staining were performed to evaluate the synergistic effects on EGFR- and glucose transporter type 1(GLUT1)-mediated energy metabolism. RESULTS: Compound H can simultaneously act on the EGFR tyrosine kinase ATP-binding site and inhibit GLUT1-mediated energy metabolism, resulting in reductions in ATP, MMP, intra-cellular lactic acid, and EGFR nuclear transfer. The anti-tumor activity of compound H is significantly superior to the combination of GLUT1 inhibitor BAY876 and EGFR inhibitor gefitinib. Compound H has remarkable anti-proliferative effects on TNBC MDA-MB231 cells, and importantly, no obvious toxicity effects of compound H were found in vivo. CONCLUSIONS: Synergistic effects of inhibition of EGFR- and GLUT1-mediated energy metabolism by compound H may present a new strategy for the treatment of TNBC and NPC.


Asunto(s)
Antineoplásicos , Receptores ErbB , Transportador de Glucosa de Tipo 1 , Carcinoma Nasofaríngeo , Neoplasias de la Mama Triple Negativas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Animales , Línea Celular Tumoral , Femenino , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Simulación del Acoplamiento Molecular , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Ratones Desnudos , Ratones Endogámicos BALB C , Gefitinib/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731926

RESUMEN

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Glucosa , N-Metiltransferasa de Histona-Lisina , Secreción de Insulina , Células Secretoras de Insulina , Proteína de la Leucemia Mieloide-Linfoide , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Regulación de la Expresión Génica , Ratones Noqueados , Insulina/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Línea Celular , Masculino
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731867

RESUMEN

Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.


Asunto(s)
Proliferación Celular , Epigénesis Genética , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Interleucina-4/metabolismo , Interleucina-4/genética , Transducción de Señal , Glucosa/metabolismo , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética , Regulación Neoplásica de la Expresión Génica , Acetilación , Progresión de la Enfermedad , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética
8.
J Am Chem Soc ; 146(17): 11634-11647, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628144

RESUMEN

Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.


Asunto(s)
Membrana Celular , Electroforesis , Concentración de Iones de Hidrógeno , Concentración Osmolar , Membrana Celular/química , Proteínas de la Membrana/química , Tampones (Química) , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 1/metabolismo
9.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565573

RESUMEN

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Asunto(s)
Glucosa , Factor de Crecimiento Derivado de Plaquetas , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Vesículas Transportadoras/metabolismo
10.
J Med Chem ; 67(9): 7373-7384, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38646851

RESUMEN

Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.


Asunto(s)
Antineoplásicos , Apoptosis , Diseño de Fármacos , Glucosa , Quinazolinas , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Glucosa/metabolismo , Apoptosis/efectos de los fármacos , Ratones , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ratones Desnudos , Ratones Endogámicos BALB C
11.
Cell Signal ; 119: 111170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604344

RESUMEN

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glucosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones Endogámicos C57BL , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Glucosa/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Cadmio/toxicidad , Miocardio/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Cloruro de Cadmio
12.
J Biol Chem ; 300(5): 107270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599381

RESUMEN

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Glucosa , Neoplasias Renales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Humanos , Glucosa/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542435

RESUMEN

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Asunto(s)
Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria , Humanos , Glicosilación , Transportador de Glucosa de Tipo 1/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología
14.
Exp Clin Endocrinol Diabetes ; 132(3): 152-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513652

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic ß cells in obesity-associated T2DM remains poorly understood. METHODS: Human pancreatic ß cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic ß cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS: HG+PA treatment reduced the human pancreatic ß cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic ß cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION: In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic ß cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factores de Crecimiento de Fibroblastos , Transportador de Glucosa de Tipo 1 , Proteínas Sustrato del Receptor de Insulina , Secreción de Insulina , Células Secretoras de Insulina , Obesidad , Humanos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Factores de Crecimiento de Fibroblastos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Obesidad/etiología , Obesidad/terapia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Transportador de Glucosa de Tipo 1/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Glucosa/farmacología
15.
Mol Pharm ; 21(4): 1677-1690, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478716

RESUMEN

Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1ß, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.


Asunto(s)
Periodontitis Crónica , Nanopartículas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Periodontitis Crónica/tratamiento farmacológico , Periodontitis Crónica/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Macrófagos
16.
Ann Clin Lab Sci ; 54(1): 56-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514068

RESUMEN

OBJECTIVE: Multiple Myeloma (MM) is a malignant hematological disease. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) acts as an oncogene in a variety of cancers. However, the role of HNRNPC in MM has not been reported so far. METHODS: The mRNA and protein expressions of HNRN-PC and FOXM1 were detected by qRT-PCR and western blot. CCK8, EDU staining, flow cytometry and western blot were used to detect cell viability and cell cycle. The extracellular flux analyzer XF96 was used to detect the production of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Lactic acid and glucose levels in culture medium were detected by lactic acid assay kits and glucose assay kits, respectively. Then, the binding ability of HNRNPC with FOXM1 was detected by RIP and the stability of FOXM1 mRNA was appraised with qRT-PCR. With the application of qRT-PCR and western blot, the transfection efficacy of si-HNRNPC and Oe-FOXM1 was examined. Western blot was applied for the estimation of GLUT1/LDHA signaling pathway-related proteins. RESULTS: The expression of HNRNPC in MM cell line was abnormally elevated. HNRNPC silence significantly inhibited the proliferation, facilitated the apoptosis, induced cycle arrest, and suppressed aerobic glycolysis in MM cells, which were all reversed by FOXM1 overexpression. It was also found that the regulatory effect of HNRNPC is realized by stabilizing FOXM1 mRNA and regulating GLUT1/LDHA pathway. CONCLUSION: HNRNPC regulated GLUT1/LDHA pathway by stabilizing FOXM1 mRNA to promote the progression and aerobic glycolysis of MM.


Asunto(s)
Proteína Forkhead Box M1 , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Mieloma Múltiple , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ácido Láctico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , L-Lactato Deshidrogenasa/metabolismo
17.
Bone ; 183: 117074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513307

RESUMEN

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS: Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS: The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS: GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Glucocorticoides , Osteonecrosis , Animales , Humanos , Ratas , Dexametasona , Cabeza Femoral/metabolismo , Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/patología , Glucocorticoides/efectos adversos , Transportador de Glucosa de Tipo 1/metabolismo , Osteogénesis , Osteonecrosis/inducido químicamente , Proteómica , Esteroides/efectos adversos
18.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38507654

RESUMEN

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Asunto(s)
Hipoxia de la Célula , Transportador de Glucosa de Tipo 1 , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas Proto-Oncogénicas c-kit , Transducción de Señal , Factor de Células Madre , Animales , Humanos , Factor de Células Madre/metabolismo , Factor de Células Madre/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo , Células Endoteliales/patología , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Ratones , Neovascularización Fisiológica , Células Cultivadas , Modelos Animales de Enfermedad , Glucosa/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417588

RESUMEN

Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVß3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVß3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVß3, and GLUT1 and 8 expression, directly affecting adipocytes.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Humanos , Glucosa/metabolismo , Osteocalcina/metabolismo , Osteocalcina/farmacología , Metabolismo de los Lípidos/genética , Transportador de Glucosa de Tipo 1/metabolismo , Integrina alfaVbeta3 , Adipocitos/metabolismo , Insulina/metabolismo , Moléculas de Adhesión Celular/metabolismo
20.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(6): 590-603, 2024 Feb 04.
Artículo en Chino | MEDLINE | ID: mdl-38413020

RESUMEN

OBJECTIVE: To investigate the effects of Echinococcus multilocularis on the phenotypic transformations of glucose metabolism, polarization types and inflammatory responses in macrophages, so as to provide insights into elucidation of echinococcosis pathogenesis. METHODS: Bone marrow cells were isolated from C57BL/6J mice at ages of 6 to 8 weeks, and induced into bone marrow-derived macrophages (BMDMs) with mouse macrophage colony-stimulating factor (M-CSF), which served as controls (BMDMs-M0). BMDMs-M0 induced M2 macrophages by interleukin-4 for 24 hours served as the IL-4 induction group, and BMDMs-M0 co-cultured with 2.4 ng/mL E. multilocularis cystic fluid (CF) served as the BMDM-CF co-culture group, while BMDMs-M0 co-cultured with E. multilocularis protoscolex (PSC) at a ratio of 500:1 served as the BMDM-PSC co-culture group. The types of polarization of BMDMs co-cultured with E. multilocularis CF and PSC were analyzed using flow cytometry, and the expression of macrophage markers, inflammatory factors, and glucose metabolism-related enzymes was quantified using fluorescent quantitative real-time PCR (qPCR) and Western blotting assays. RESULTS: There were significant differences among the four groups in terms of Arginase-1 (Arg1) (F = 1 457.00, P < 0.000 1), macrophages-derived C-C motif chemokine 22 (Ccl22) (F = 22 203.00, P < 0.000 1), resistin-like α (Retnla) (F = 151.90, P < 0.000 1), inducible nitric oxide synthase (iNOS) (F = 107.80, P < 0.001), hexokinase (HK) (F = 9 389.00, P < 0.000 1), pyruvate kinase (PK) (F = 641.40, P < 0.001), phosphofructokinase 1 (PFK1) (F = 43.97, P < 0.01), glucokinase (GK) (F = 432.50, P < 0.000 1), pyruvate dehydrogenase kinases1 (PDK1) (F = 737.30, P < 0.000 1), lactic dehydrogenase (LDH) (F = 3 632.00, P < 0.000 1), glucose transporter 1 (GLUT1) (F = 532.40, P < 0.000 1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (F = 460.00, P < 0.000 1), citrate synthase (CS) (F = 5 642.00, P < 0.01), glycogen synthase1 (GYS1) (F = 273.30, P < 0.000 1), IL-6 (F = 1 823.00, P < 0.000 1), IL-10 (F = 291.70, P < 0.000 1), IL-1ß (F = 986.60, P < 0.000 1), and tumor necrosis factor (TNF)-α (F = 334.80, P < 0.000 1) and transforming growth factor (TGF)-ß mRNA expression (F = 163.30, P < 0.001). The proportion of M2 macrophages was significantly higher than that of M1 macrophages in the BMDM-PSC co-culture group [(22.87% ±1.48%) vs. (1.70% ±0.17%); t = 24.61, P < 0.001], and the proportion of M2 macrophages was significantly higher than that of M1 macrophages in the BMDM-CF co-culture group [(20.07% ±0.64%) vs. (1.93% ±0.25%); t = 45.73, P < 0.001]. The mRNA expression of M2 macrophages markers Arg1, Ccl22 and Retnla was significantly higher in the BMDM-CF and BMDM-PSC co-culture groups than in the control group (all P values < 0.01), and no significant difference was seen in the mRNA expression of the M1 macrophage marker iNOS among the three groups (P > 0.05), while qPCR assay quantified higher mRNA expression of key glycolytic enzymes HK, PK and PFK, as well as inflammatory factors IL-10, IL-1ß, TNF-α and TGF-ß in the BMDM-CF and BMDM-PSC co-culture groups than in the control group (all P values < 0.01). Western blotting assay determined higher HK, PK and PFK protein expression in the BMDM-PSC co-culture group than in the control group (all P values < 0.05), and qPCR quantified higher GLUT1, GAPDH and IL-6 mRNA expression in the BMDM-CF co-culture group than in the control group (all P values < 0.05), while higher HK, PK and PFK protein and mRNA expression (all P values < 0.01), as well as lower IL-6 and TNF-α and higher TGF-ß mRNA expression (both P values < 0.05) was detected in the IL-4 induction group than in the control group. Glycolytic stress test showed no significant difference in the extracellular acidification rate (ECAR) of mouse BMDM among the control group, IL-4 induction group and BMDM-PSC co-culture group (F = 124.4, P < 0.05), and a higher ECAR was seen in the BMDM-PSC co-culture group and a lower ECAR was found in the IL-4 induction group than in the control group (both P values < 0.05). CONCLUSIONS: Treatment of E. multilocularis CF or PSC mainly causes polarization of BMDM into M2 macrophages, and phenotypic transformation of glucose metabolism into high-energy and high-glycolytic metabolism, and affects inflammatory responses in BMDM.


Asunto(s)
Echinococcus , Interleucina-10 , Animales , Ratones , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Ratones Endogámicos C57BL , Macrófagos , Factor de Crecimiento Transformador beta/metabolismo , Oxidorreductasas/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA