Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Mol Genet Genomic Med ; 12(5): e2453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769888

RESUMEN

BACKGROUND: 46,XY sex reversal 11 (SRXY11) [OMIM#273250] is characterized by genital ambiguity that may range from mild male genital defects to gonadal sex reversal in severe cases. DHX37 is an RNA helicase that has recently been reported as a cause of SRXY11. So far, a total of 21 variants in DHX37 have been reported in 58 cases with 46,XY disorders of sex development (DSD). METHODS: Whole exome sequencing (WES) was conducted to screen for variations in patients with 46,XY DSD. The subcellular localization of mutant DHX37 proteins was detected by immunofluorescence. And the levels of mutant DHX37 proteins were detected via Western blotting. RESULTS: A novel pathogenic variant of DHX37 was identified in a patient with 46,XY DSD c.2012G > C (p.Arg671Thr). Bioinformatics analysis showed that the protein function of the variant was impaired. Compared with the structure of the wild-type DHX37 protein, the number of hydrogen bonds and interacting amino acids of the variant protein were changed to varying degrees. In vitro assays revealed that the variant had no significant effect on the intracellular localization of the protein but significantly reduced the expression level of the protein. CONCLUSIONS: Our finding further expands the spectrum of the DHX37 variant and could assist in the molecular diagnosis of 46,XY DSD patients.


Asunto(s)
ARN Helicasas DEAD-box , Trastorno del Desarrollo Sexual 46,XY , Humanos , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/patología , Masculino , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Células HEK293
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 239-243, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311567

RESUMEN

OBJECTIVE: To analyze the clinical features and genetic basis of a child with Disorder of sex development (DSD). METHODS: A child who was admitted to the Linyi People's Hospital for primary amenorrhoea on July 29, 2019 was selected as the study subject. Clinical data of the child was collected. Chromosomal karyotyping and quantitative real-time PCR were used to detect Y chromosome microdeletions and other chromosomal aberrations. Next-generation sequencing was carried out for the child and her parents. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 13-year-old girl, has featured primary amenorrhoea and onset of secondary sex characteristics of males. Ultrasound exam had detected no uterus and definite ovarian structure, but narrow band vaginal hypoecho and curved cavernoid structure. The child was found to have a 46,XY karyotype without an AZF deletion. DNA sequencing revealed that she has harbored a maternally derived c.323delA (p.Q108Rfs*188) variant in the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene, which may result in a truncated protein. The variant was classified as pathogenic (PVS1+PM2_Supporting+PP4) based on the guidelines from the American College of Medical Genetics and Genomics. CONCLUSION: The NR5A1: c.323delA variant probably underlay the pathogenesis of 46,XY DSD in this child. The discovery of the novel variant has enriched the mutational spectrum of the NR5A1 gene and provided a basis for clinical diagnosis, treatment and prenatal diagnosis.


Asunto(s)
Amenorrea , Trastorno del Desarrollo Sexual 46,XY , Adolescente , Niño , Femenino , Humanos , Amenorrea/genética , Secuencia de Bases , Deleción Cromosómica , Mutación , Factor Esteroidogénico 1/genética , Trastorno del Desarrollo Sexual 46,XY/genética
3.
Andrology ; 12(1): 98-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37147882

RESUMEN

PURPOSE: The etiology of 46, XY disorders of sex development (46, XY DSD) is complex, and studies have shown that different series of patients with 46, XY DSD has different genetic spectrum. In this study, we aimed to investigate the underlying genetic etiology in a Chinese series of patients with 46, XY DSD by whole exome sequencing (WES). METHODS: Seventy patients with 46, XY DSD were enrolled from the Peking Union Medical College Hospital (Beijing, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for WES to find the patients' rare variants (RVs) of genes related to 46, XY DSD. The clinical significance of the RVs was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A total of 57 RVs from nine genes were identified in 56 patients with 46, XY DSD, which include 21 novel RVs and 36 recurrent RVs. Based on the American ACMG guidelines, 43 variants were classified as pathogenic(P) or likely pathogenic (LP) variants and 14 variants were defined as variants of uncertain significance (VUS). P or LP variants were identified in 64.3% (45/70) patients of the series. Thirty-nine, 14, and 4 RVs were involved in the process of androgen synthesis and action, testicular determination and developmental process, and syndromic 46, XY DSD, respectively. The top three genes most frequently affected to cause 46, XY DSD were AR, SRD5A2, and NR5A1. Seven patients were found harboring RVs of the 46, XY DSD pathogenic genes identified in recent years, namely DHX37 in four patients, MYRF in two patients, and PPP2R3C in one patient. CONCLUSION: We identified 21 novel RVs of nine genes, which extended the genetic spectrum of 46, XY DSD pathogenic variants. Our study showed that 60% of the patients were caused by AR, SRD5A2 or NR5A1 P/LP variants. Therefore, polymerase chain reaction (PCR) amplification and Sanger sequencing of these three genes could be performed first to identify the pathogeny of the patients. For those patients whose pathogenic variants had not been found, whole-exome sequencing could be helpful in determining the etiology.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , China , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/patología , Proteínas de la Membrana/genética , Mutación , Desarrollo Sexual , Testículo/patología , Pueblos del Este de Asia/genética , Factor Esteroidogénico 1/genética , Receptores de Antígenos/genética
4.
Am J Med Genet A ; 194(5): e63522, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38131126

RESUMEN

Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Retroelementos , Humanos , Mutación , Intrones/genética , Retroelementos/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Enfermedades Raras/genética , Desarrollo Sexual , Factor Esteroidogénico 1/genética
5.
Elife ; 122023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847154

RESUMEN

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


Animals that reproduce sexually have organs called gonads, the ovaries and testes, which produce eggs and sperm. These organs, which are different in males and females, originate from the same cells during the development of the embryo. As a general rule, the chromosomal sex of an embryo, which gets determined at fertilization, leads to the activation and repression of specific genes. This in turn, controls whether the cells that will form the gonads will differentiate to develop testes or ovaries. Disruption of the key genes involved in the differentiation of the gonads can lead to fertility problems, and in some cases, it can cause the gonads to develop in the 'opposite' direction, resulting in a sex reversal. Identifying these genes is therefore essential to know how to maintain or restore fertility. DMRT1 is a gene that drives the differentiation of gonadal cells into the testicular pathway in several species of animals with backbones, including species of fish, frogs and birds. However, its role in mammals ­ where testis differentiation is driven by a different gene called SRY ­ is not well understood. Indeed, when DMRT1 is disrupted in male humans it leads to disorders of sex development, while disrupting this gene in male mice causes infertility. To obtain more information about the roles of DMRT1 in mammalian species, Dujardin et al. disrupted the gene in a third species of mammal: the rabbit. Dujardin et al. observed that chromosomally-male rabbits lacking DMRT1 developed ovaries instead of testes, showing that in rabbits, both SRY and DMRT1 are both required to produce testes. Additionally, this effect is similar to what is seen in humans, suggesting that rabbits may be a better model for human gonadal differentiation than mice are. Additionally, Dujardin et al. were also able to show that in female rabbits, lack of DMRT1 led to infertility, an effect that had not been previously described in other species. The results of Dujardin et al. may lead to better models for gonadal development in humans, involving DMRT1 in the differentiation of testes. Interestingly, they also suggest the possibility that mutations in this gene may be responsible for some cases of infertility in women. Overall, these findings indicate that DMRT1 is a key fertility gene.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Testículo , Animales , Femenino , Masculino , Conejos , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/metabolismo , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Mamíferos/genética , Procesos de Determinación del Sexo/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo
6.
Stem Cell Res ; 71: 103154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37413951

RESUMEN

The nuclear receptor subfamily 5, Group A, Member 1 (NR5A1) gene encodes steroidogenic factor 1 (SF1), which is necessary for development of steroid hormone-producing tissues including the gonad and adrenal gland. An induced pluripotent stem cell line (iPSC) LCHi002-B was generated from a participant with differences (disorders) of sex development (DSD) and multiple genetic variants including a large deletion in NR5A1, and three single nucleotide changes in DYNC2H1, PDE4D, and ZFPM2. The line presented typical morphology, expressed stem cell markers, differentiated into three germ layers, had normal karyotype, was mycoplasma-free, and carried mutations in NR5A1, DYNC2H1, PDE4D, and ZFPM2.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Células Madre Pluripotentes Inducidas , Humanos , Factor Esteroidogénico 1/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Mutación , Desarrollo Sexual/genética
7.
Biomolecules ; 13(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37189438

RESUMEN

Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Trastornos Ovotesticulares del Desarrollo Sexual , Receptores Citoplasmáticos y Nucleares , Humanos , Masculino , Trastorno del Desarrollo Sexual 46,XY/genética , Mutación , Trastornos Ovotesticulares del Desarrollo Sexual/genética , Fenotipo , Desarrollo Sexual , Testículo , Receptores Citoplasmáticos y Nucleares/genética
8.
Front Endocrinol (Lausanne) ; 14: 1059159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065748

RESUMEN

Objective: To determine the genetic etiology of a family pedigree with two patients affected by differences of sex development (DSD). Methods: Assess the clinical characteristics of the patients and achieve exome sequencing results and in vitro functional studies. Results: The 15-year-old proband, raised as female, presented with delayed puberty and short stature associated with atypical genitalia. Hormonal profile showed hypergonadotrophic hypogonadism. Imaging studies revealed the absence of a uterus and ovaries. The karyotype confirmed a 46, XY pattern. Her younger brother presented with a micropenis and hypoplastic scrotum with non-palpable testis and hypospadias. Laparoscopic exploration was performed on the younger brother. Streak gonads were found and removed due to the risk of neoplastic transformation. Post-operative histopathology showed the co-existence of Wolffian and Müllerian derivatives. Whole-exome sequencing identified a novel mutation (c.1223C>T, p. Ser408Leu) in the Asp-Glu-Ala-His-box helicase 37 gene, which was found to be deleterious by in silico analysis. Segregation analysis of the variant displayed a sex-limited, autosomal dominant, maternal inheritance pattern. In vitro experiments revealed that the substitution of 408Ser by Leu caused decreased DHX37 expression both at the mRNA and protein levels. Moreover, the ß-catenin protein was upregulated, and the p53 protein was unaltered by mutant DHX37. Conclusions: We described a novel mutation (c.1223C>T, p. Ser408Leu) of the DHX37 gene associated with a Chinese pedigree consisting of two 46, XY DSD patients. We speculated that the underlying molecular mechanism might involve upregulation of the ß-catenin protein.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Disgenesia Gonadal , Humanos , Masculino , Femenino , Adolescente , Trastorno del Desarrollo Sexual 46,XY/genética , Testículo/patología , Desarrollo Sexual , Disgenesia Gonadal/patología , Mutación
9.
Nat Rev Urol ; 20(7): 434-451, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37020056

RESUMEN

Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX , Trastorno del Desarrollo Sexual 46,XY , Trastornos del Desarrollo Sexual , Masculino , Humanos , Femenino , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Testículo , Desarrollo Sexual , Trastorno del Desarrollo Sexual 46,XY/complicaciones , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/terapia , Trastornos del Desarrollo Sexual 46, XX/complicaciones , Trastornos del Desarrollo Sexual 46, XX/genética
10.
Mol Genet Genomics ; 298(3): 693-708, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004560

RESUMEN

Disorders of sexual development (DSD) are an abnormal congenital conditions associated with atypical development of the urogenital tract and external genital structures. The steroidogenic acute regulatory (STAR) gene, associated with congenital lipoid adrenal hyperplasia (CLAH), is included in the targeted gene panel for the DSD diagnosis. Therefore, the genetic alterations of the STAR gene and their molecular effect were examined in the CLAH patients affected with DSD. Ten different Iranian families including twelve male pseudo-hermaphroditism patients with CLAH phenotype were studied using genetic linkage screening and STAR gene sequencing in the linked families to the STAR locus. Furthermore, the structural, dynamical, and functional impacts of the variants on the STAR in silico were analyzed. Sanger sequencing showed the pathogenic variant p.A218V in STAR gene, as the first report in Iranian population. Moreover, modeling and simulation analysis were performed using tools such as radius of gyration, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and molecular docking showed that p.A218V variant affects the residues interaction in cholesterol-binding site and the proper folding of STAR through increasing H-bound and the amount of α-Helix, deceasing total flexibility and changing fluctuations in some residues, resulting in reduced steroidogenic activity of the STAR protein. The study characterized the structural and functional changes of STAR caused by pathogenic variant p.A218V. It leads to limited cholesterol-binding activity of STAR, ultimately leading to the CLAH disease. Molecular dynamics simulation of STAR variants could help explain different clinical manifestations of CLAH disease.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Fosfoproteínas , Humanos , Masculino , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Irán , Simulación del Acoplamiento Molecular , Mutación , Fosfoproteínas/genética , Trastornos de los Cromosomas Sexuales/genética , Trastorno del Desarrollo Sexual 46,XY/genética
11.
BMC Pediatr ; 23(1): 182, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37072715

RESUMEN

BACKGROUND: Adolescents with 46,XY disorders of sex development (DSD) face additional medical and psychological challenges. To optimize management and minimize hazards, correct and early clinical and molecular diagnosis is necessary. CASE PRESENTATION: We report a 13-year-old Chinese adolescent with absent Müllerian derivatives and suspected testis in the inguinal area. History, examinations, and assistant examinations were available for clinical diagnosis of 46,XY DSD. The subsequent targeting specific disease-causing genes, comprising 360 endocrine disease-causing genes, was employed for molecular diagnosis. A novel variation in nuclear receptor subfamily 5 group A member 1 (NR5A1) [c.64G > T (p.G22C)] was identified in the patient. In vitro functional analyses of the novel variant suggested no impairment to NR5A1 mRNA or protein expression relative to wild-type, and immunofluorescence confirmed similar localization of NR5A1 mutant to the cell nucleus. However, we observed decreased DNA-binding affinity by the NR5A1 variant, while dual-luciferase reporter assays showed that the mutant effectively downregulated the transactivation capacity of anti-Müllerian hormone. We described a novel NR5A1 variant and demonstrated its adverse effects on the functional integrity of the NR5A1 protein resulting in serious impairment of its modulation of gonadal development. CONCLUSIONS: This study adds one novel NR5A1 variant to the pool of pathogenic variants and enriches the adolescents of information available about the mutation spectrum of this gene in Chinese population.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Factor Esteroidogénico 1 , Adolescente , Humanos , Masculino , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/patología , Pueblos del Este de Asia/genética , Mutación , Factor Esteroidogénico 1/genética
12.
J Endocrinol Invest ; 46(8): 1613-1622, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36745277

RESUMEN

PURPOSE: 46,XY disorders of sex development (DSD) is the most complicated and common type of DSD. To date, more than 30 genes have been identified associated with 46,XY DSD. However, the mutation spectrum of 46,XY DSD is incomplete owing to the high genetic and clinical heterogeneity. This study aims to provide clinical and mutational characteristics of 18 Chinese patients with 46,XY DSD. METHODS: A total of 20 unrelated individuals with 46,XY DSD were recruited. Whole-exome sequencing (WES) or custom-panel sequencing combined Sanger sequencing were performed to detect the pathogenic mutations. The pathogenicity of the variant was assessed according to the American College of Medical Genetics and Genomics (ACMG) guidance and technical standards recommended by the ACMG and the Clinical Genome Resource (ClinGen). RESULTS: Six patients harbored NR5A1 mutations; two patients harbored NR0B1 mutations; six patients harbored SRD5A2 mutations; six patients harbored AR mutations. Six novel genetic variants were identified involved in three genes (NR5A1, NR0B1, and AR). CONCLUSION: We determined the genetic etiology for all enrolled patients. Our study expanded the mutation spectrum of 46,XY DSD and provided diagnostic evidence for patients with the same mutation in the future.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Trastornos del Desarrollo Sexual , Humanos , Trastorno del Desarrollo Sexual 46,XY/genética , Pueblos del Este de Asia , Mutación , Desarrollo Sexual , Fenotipo , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Factor Esteroidogénico 1/genética , Proteínas de la Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética
13.
Sex Dev ; 17(1): 8-15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724755

RESUMEN

INTRODUCTION: Steroid 5-alpha reductase deficiency (5α-R2D) is a rare condition caused by genetic variants that reduce the activity of the enzyme that converts testosterone into dihydrotestosterone. The clinical spectrum of 5α-R2D is known to overlap with other 46,XY differences of sex development (DSD) such as androgen insensitivity or gonadal dysgenesis. However, the clinical trajectories of the aetiologies can differ, with 5α-R2D presenting its own challenges. METHODS: In this study, we have collated clinical information for five individuals with variants in SRD5A2 identified using research genetic testing in an Australian paediatric setting. RESULTS: We describe how a genetic finding resolved or confirmed a diagnosis for these individuals and how it guided clinical management and family counselling. CONCLUSION: This work highlights the importance of early genetic testing in children born with 46,XY DSD where it complements traditional first-line testing.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Pruebas Genéticas , Masculino , Humanos , Niño , Mutación , Australia , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/patología , Testosterona , Proteínas de la Membrana/genética
14.
Sex Dev ; 17(1): 26-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36689917

RESUMEN

INTRODUCTION: Disorders of sex development (DSDs) are congenital abnormalities in which chromosomal, gonadal, and anatomical sex development are atypical. One of these disorders, 46,XY DSD, is particularly difficult to diagnose and manage because its etiology and clinical phenotypes are highly heterogeneous. METHODS: We used a gene panel containing 141 genes implicated in DSDs to perform targeted next-generation sequencing (NGS) in 50 patients with 46,XY DSD. RESULTS: Gene variants were detected in 23 patients (46%). Among them, 13 patients had previously reported pathogenic or likely pathogenic variants, 9 patients had novel variants, and 1 patient had a previously reported variant of uncertain significance. Three of the novel variants were pathogenic, and the remaining were variants of uncertain significance; therefore, 16 patients had pathogenic or likely pathogenic variants according to ACMG guidelines, and the overall diagnostic rate of 46,XY DSD was 32%. The most common gene variants were SRD5A2 variants, followed by the AR variant. In addition, we analyzed the association between gene variants and clinical phenotypes. Most patients presented with multiple DSD phenotypes (i.e., two or more DSD phenotypes were observed, such as micropenis, hypospadias, and cryptorchidism), but the phenotype with the highest diagnostic rate was micropenis. CONCLUSION: Our results indicate that targeted NGS can effectively detect pathogenic gene variants in patients with 46,XY DSD.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Humanos , Masculino , Fenotipo , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Trastorno del Desarrollo Sexual 46,XY/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Desarrollo Sexual , Mutación/genética , Proteínas de la Membrana , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética
16.
Sex Dev ; 17(1): 1-7, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36626890

RESUMEN

BACKGROUND: Persistent müllerian duct syndrome (PMDS) is characterized by the persistence of müllerian duct derivatives in otherwise normally virilized 46,XY males. Biallelic mutations of the anti-müllerian hormone (AMH) and AMH receptor type 2 (AMHR2) genes lead to PMDS type 1 and 2, respectively. AIM: The aims of the study were to report the clinical, hormonal, and genetic findings in a patient with PMDS and discuss surgical strategies to achieve successful orchidopexy. RESULTS: A 4-year-old boy was evaluated after the incidental finding of müllerian derivates during laparoscopy for nonpalpable gonads. Karyotype was 46,XY and laboratory tests revealed normal serum gonadotropin and androgen levels but undetectable serum AMH levels. PMDS was suspected. Molecular analysis revealed a novel variant c.902_929del in exon 5 and a previously reported mutation (c.367C>T) in exon 1 of the AMH gene. Successful orchidopexy was performed in two sequential surgeries in which the müllerian duct structure was preserved and divided to protect the vascular supply to the gonads. Histological evaluation of the testicular biopsy showed mild signs of dysgenesis. Doppler ultrasound showed blood flow in both testes positioned in the scrotum 1.5 years after surgery. CONCLUSION: PMDS is a rare entity that requires a high index of suspicion (from surgeons) when evaluating a patient with bilateral cryptorchidism. Surgical treatment is challenging and long-term follow-up is essential. Histological evaluation of the testis deserves further investigation.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Laparoscopía , Masculino , Humanos , Preescolar , Hormona Antimülleriana/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Trastorno del Desarrollo Sexual 46,XY/cirugía , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Mutación/genética
17.
Mol Hum Reprod ; 29(2)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36617173

RESUMEN

Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Disgenesia Gonadal 46 XY , Femenino , Humanos , Trastorno del Desarrollo Sexual 46,XY/genética , Disgenesia Gonadal 46 XY/genética , Mutación , Pruebas Genéticas , Proteínas de la Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética
18.
J Steroid Biochem Mol Biol ; 227: 106235, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563763

RESUMEN

17ß-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) converts Δ4-androstene-3,17-dione (androstenedione) to testosterone. It is expressed almost exclusively in the testes and is essential for appropriate male sexual development. More than 70 mutations in the HSD17B3 gene that cause 17ß-HSD3 deficiency and result in 46,XY Disorders of Sex Development (46,XY DSD) have been reported. This study describes three novel Tunisian cases with mutations in HSD17B3. The first patient is homozygous for the previously reported mutation p.C206X. The inheritance of this mutation seemed to be independent of consanguineous marriage, which can be explained by its high frequency in the Tunisian population. The second patient has a novel splice site mutation in intron 6 at position c.490 -6 T > C. A splicing assay revealed a complete omission of exon 7 in the resulting HSD17B3 mRNA transcript. Skipping of exon 7 in HSD17B3 is predicted to cause a frame shift in exon 8 that affects the catalytic site and results in a truncation in exon 9, leading to an inactive enzyme. The third patient is homozygous for the novel missense mutation p.K202M, representing the first mutation identified in the catalytic tetrad of 17ß-HSD3. Site-directed mutagenesis and enzyme activity measurements revealed a completely abolished 17ß-HSD3 activity of the p.K202M mutant, despite unaffected protein expression, compared to the wild-type enzyme. Furthermore, the present study emphasizes the importance of genetic counselling, detabooization of 46,XY DSD, and a sensitization of the Tunisian population for the risks of consanguineous marriage.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Trastorno del Desarrollo Sexual 46,XY , Humanos , Masculino , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Trastorno del Desarrollo Sexual 46,XY/genética , Homocigoto , Mutación , Mutación Missense , Testosterona
20.
J Pediatr Endocrinol Metab ; 36(1): 4-18, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36424806

RESUMEN

OBJECTIVES: 46, XY difference/disorder of sex development (DSD) is a relatively uncommon group of heterogeneous disorders with varying degree of underandrogenization of male genitalia. Such patients should be approached systematically to reach an aetiological diagnosis. However, we lack, at present, a clinical practice guideline on diagnostic approach in 46, XY DSD from this part of the globe. Moreover, debate persists regarding the timing and cut-offs of different hormonal tests, performed in these cases. The consensus committee consisting of 34 highly experienced endocrinologists with interest and experience in managing DSD discussed and drafted a consensus statement on the diagnostic approach to 46, XY DSD focussing on relevant history, clinical examination, biochemical evaluation, imaging and genetic analysis. CONTENT: The consensus was guided by systematic reviews of existing literature followed by discussion. An initial draft was prepared and distributed among the members. The members provided their scientific inputs, and all the relevant suggestions were incorporated. The final draft was approved by the committee members. SUMMARY: The diagnostic approach in 46, XY DSD should be multidisciplinary although coordinated by an experienced endocrinologist. We recommend formal Karyotyping, even if Y chromosome material has been detected by other methods. Meticulous history taking and thorough head-to-toe examination should initially be performed with focus on external genitalia, including location of gonads. Decision regarding hormonal and other biochemical investigations should be made according to the age and interpreted according to age-appropriate norms Although LC-MS/MS is the preferred mode of steroid hormone measurements, immunoassays, which are widely available and less expensive, are acceptable alternatives. All patients with 46, XY DSD should undergo abdominopelvic ultrasonography by a trained radiologist. MRI of the abdomen and/or laparoscopy may be used to demonstrate the Mullerian structure and/or to localize the gonads. Genetic studies, which include copy number variation (CNV) or molecular testing of a candidate gene or next generation sequencing then should be ordered in a stepwise manner depending on the clinical, biochemical, hormonal, and radiological findings. OUTLOOK: The members of the committee believe that patients with 46, XY DSD need to be approached systematically. The proposed diagnostic algorithm, provided in the consensus statement, is cost effective and when supplemented with appropriate genetic studies, may help to reach an aetiological diagnosis in majority of such cases.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Trastornos del Desarrollo Sexual , Humanos , Masculino , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Cromatografía Liquida , Variaciones en el Número de Copia de ADN , Espectrometría de Masas en Tándem , Trastorno del Desarrollo Sexual 46,XY/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA