Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Glycobiology ; 34(11)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39360848

RESUMEN

SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells. We sought to identify N-glycoproteomic and proteomic signatures specific to SRD5A3-CDG, potentially aiding in biomarker discovery and advancing our understanding of disease mechanisms. Using tandem mass tag (TMT)-based relative quantitation, we analyzed fibroblasts derived from five patients along with control fibroblasts. N-glycoproteomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 3,047 glycopeptides with 544 unique N-glycosylation sites from 276 glycoproteins. Of these, 418 glycopeptides showed statistically significant changes with 379 glycopeptides decreased (P < 0.05) in SRD5A3-CDG patient-derived samples. These included high mannose, complex and hybrid glycan-bearing glycopeptides. High mannose glycopeptides from protocadherin Fat 4 and integrin alpha-11 and complex glycopeptides from CD55 were among the most significantly decreased glycopeptides. Proteomics analysis led to the identification of 5,933 proteins, of which 873 proteins showed statistically significant changes. Decreased proteins included cell surface glycoproteins, various mitochondrial protein populations and proteins involved in the N-glycosylation pathway. Lysosomal proteins such as N-acetylglucosamine-6-sulfatase and procathepsin-L also showed reduced levels of phosphorylated mannose-containing glycopeptides. Our findings point to disruptions in glycosylation pathways as well as energy metabolism and lysosomal functions in SRD5A3-CDG, providing clues to improved understanding and management of patients with this disorder.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Trastornos Congénitos de Glicosilación , Fibroblastos , Proteínas de la Membrana , Proteómica , Humanos , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/deficiencia , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/genética , Espectrometría de Masas en Tándem
2.
PLoS Genet ; 20(9): e1011406, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39259723

RESUMEN

Mutations in glycosylation pathways, such as N-linked glycosylation, O-linked glycosylation, and GPI anchor synthesis, lead to Congenital Disorders of Glycosylation (CDG). CDG typically present with seizures, hypotonia, and developmental delay but display large clinical variability with symptoms affecting every system in the body. This variability suggests modifier genes might influence the phenotypes. Because of the similar physiology and clinical symptoms, there are likely common genetic modifiers between CDG. Here, we use evolution as a tool to identify common modifiers between CDG and glycosylation genes. Protein glycosylation is evolutionarily conserved from yeast to mammals. Evolutionary rate covariation (ERC) identifies proteins with similar evolutionary rates that indicate shared biological functions and pathways. Using ERC, we identified strong evolutionary rate signatures between proteins in the same and different glycosylation pathways. Genome-wide analysis of proteins showing significant ERC with GPI anchor synthesis proteins revealed strong signatures with ncRNA modification proteins and DNA repair proteins. We also identified strong patterns of ERC based on cellular sub-localization of the GPI anchor synthesis enzymes. Functional testing of the highest scoring candidates validated genetic interactions and identified novel genetic modifiers of CDG genes. ERC analysis of disease genes and biological pathways allows for rapid prioritization of potential genetic modifiers, which can provide a better understanding of disease pathophysiology and novel therapeutic targets.


Asunto(s)
Trastornos Congénitos de Glicosilación , Evolución Molecular , Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Animales , Mutación , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/genética , Fenotipo
3.
J Biol Chem ; 300(9): 107599, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059494

RESUMEN

O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.


Asunto(s)
Trastornos Congénitos de Glicosilación , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Animales , Mutación , Glicosilación , Procesamiento Proteico-Postraduccional
4.
J Biol Chem ; 300(8): 107567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002685

RESUMEN

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in the medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. Impaired glycosylation of TMEM165-CDG arises from a lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.


Asunto(s)
Antiportadores , Aparato de Golgi , Manganeso , Humanos , Manganeso/metabolismo , Aparato de Golgi/metabolismo , Animales , Antiportadores/metabolismo , Antiportadores/genética , Glicosilación , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología
5.
J Biol Chem ; 300(8): 107584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025454

RESUMEN

The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multistep pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 congenital disorders of glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multispanning membrane protein located in the ER, with its N and C termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.


Asunto(s)
Trastornos Congénitos de Glicosilación , Retículo Endoplásmico , Proteínas de la Membrana , Saccharomyces cerevisiae , Humanos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Glicosilación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Glicoproteínas de Membrana
6.
Mol Genet Metab ; 143(1-2): 108531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39053125

RESUMEN

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Liposomas , Manosafosfatos , Fosfotransferasas (Fosfomutasas) , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Glicosilación/efectos de los fármacos , Manosafosfatos/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Mutación , Células Cultivadas , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo
7.
PLoS Biol ; 22(7): e3002720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991033

RESUMEN

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutación , Complejo de la Endopetidasa Proteasomal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Glicosilación , Nucleótidos/metabolismo , Nucleótidos/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
8.
Biochemistry ; 63(11): 1423-1433, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38743592

RESUMEN

PGM1-linked congenital disorder of glycosylation (PGM1-CDG) is an autosomal recessive disease characterized by several phenotypes, some of which are life-threatening. Research focusing on the disease-related variants of the α-D-phosphoglucomutase 1 (PGM1) protein has shown that several are insoluble in vitro and expressed at low levels in patient fibroblasts. Due to these observations, we hypothesized that some disease-linked PGM1 protein variants are structurally destabilized and subject to protein quality control (PQC) and rapid intracellular degradation. Employing yeast-based assays, we show that a disease-associated human variant, PGM1 L516P, is insoluble, inactive, and highly susceptible to ubiquitylation and rapid degradation by the proteasome. In addition, we show that PGM1 L516P forms aggregates in S. cerevisiae and that both the aggregation pattern and the abundance of PGM1 L516P are chaperone-dependent. Finally, using computational methods, we perform saturation mutagenesis to assess the impact of all possible single residue substitutions in the PGM1 protein. These analyses identify numerous missense variants with predicted detrimental effects on protein function and stability. We suggest that many disease-linked PGM1 variants are subject to PQC-linked degradation and that our in silico site-saturated data set may assist in the mechanistic interpretation of PGM1 variants.


Asunto(s)
Fosfoglucomutasa , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Mutación Missense , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Estabilidad Proteica , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
9.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821050

RESUMEN

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Asunto(s)
Dolicoles , Dolicoles/metabolismo , Dolicoles/biosíntesis , Humanos , Glicosilación , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Masculino , Mutación Missense , Femenino
10.
Nat Rev Genet ; 25(10): 715-729, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724711

RESUMEN

Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.


Asunto(s)
Polisacáridos , Humanos , Glicosilación , Animales , Polisacáridos/metabolismo , Polisacáridos/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Mamíferos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo
11.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735264

RESUMEN

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Manosa , Humanos , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Manosa/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Masculino , Fucosa/metabolismo , Glicosilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteómica
12.
Mol Genet Metab ; 142(2): 108492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759397

RESUMEN

Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , N-Acetilglucosaminiltransferasas , Placa Neural , Fenotipo , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Placa Neural/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Sistemas CRISPR-Cas , Glicosilación , Edición Génica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología
13.
Adv Clin Chem ; 120: 1-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762238

RESUMEN

Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.


Asunto(s)
Biomarcadores , Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Glicosilación , Biomarcadores/metabolismo
14.
Mol Genet Genomic Med ; 12(5): e2445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722107

RESUMEN

BACKGROUND: FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS: In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS: Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION: This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.


Asunto(s)
Sistemas CRISPR-Cas , Trastornos Congénitos de Glicosilación , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Humanos , Fucosa/metabolismo , Glicosilación , Receptores Notch/metabolismo , Receptores Notch/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)
15.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733638

RESUMEN

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Liposomas , Manosafosfatos , Fosfotransferasas (Fosfomutasas) , Humanos , Glicosilación/efectos de los fármacos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Manosafosfatos/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Fosfotransferasas (Fosfomutasas)/deficiencia , Proteómica , Manosa/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167163, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599261

RESUMEN

PMM2-CDG (MIM # 212065), the most common congenital disorder of glycosylation, is caused by the deficiency of phosphomannomutase 2 (PMM2). It is a multisystemic disease of variable severity that particularly affects the nervous system; however, its molecular pathophysiology remains poorly understood. Currently, there is no effective treatment. We performed an RNA-seq based transcriptomic study using patient-derived fibroblasts to gain insight into the mechanisms underlying the clinical symptomatology and to identify druggable targets. Systems biology methods were used to identify cellular pathways potentially affected by PMM2 deficiency, including Senescence, Bone regulation, Cell adhesion and Extracellular Matrix (ECM) and Response to cytokines. Functional validation assays using patients' fibroblasts revealed defects related to cell proliferation, cell cycle, the composition of the ECM and cell migration, and showed a potential role of the inflammatory response in the pathophysiology of the disease. Furthermore, treatment with a previously described pharmacological chaperone reverted the differential expression of some of the dysregulated genes. The results presented from transcriptomic data might serve as a platform for identifying therapeutic targets for PMM2-CDG, as well as for monitoring the effectiveness of therapeutic strategies, including pharmacological candidates and mannose-1-P, drug repurposing.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Fosfotransferasas (Fosfomutasas) , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Fosfotransferasas (Fosfomutasas)/deficiencia , Fibroblastos/metabolismo , Fibroblastos/patología , Transcriptoma , Perfilación de la Expresión Génica , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Femenino , Masculino , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos
17.
J Inherit Metab Dis ; 47(4): 766-777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597022

RESUMEN

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Estrés del Retículo Endoplásmico , Fibroblastos , Manosiltransferasas , Polisacáridos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Humanos , Polisacáridos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Fibroblastos/metabolismo , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Glicosilación , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico
18.
Mol Genet Metab ; 142(1): 108476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653092

RESUMEN

We have identified 200 congenital disorders of glycosylation (CDG) caused by 189 different gene defects and have proposed a classification system for CDG based on the mode of action. This classification includes 8 categories: 1. Disorders of monosaccharide synthesis and interconversion, 2. Disorders of nucleotide sugar synthesis and transport, 3. Disorders of N-linked protein glycosylation, 4. Disorders of O-linked protein glycosylation, 5. Disorders of lipid glycosylation, 6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation pathways and 8. Disorders of glycoprotein/glycan degradation. Additionally, using information from IEMbase, we have described the clinical involvement of 19 organs and systems, as well as essential laboratory investigations for each type of CDG. Neurological, dysmorphic, skeletal, and ocular manifestations were the most prevalent, occurring in 81%, 56%, 53%, and 46% of CDG, respectively. This was followed by digestive, cardiovascular, dermatological, endocrine, and hematological symptoms (17-34%). Immunological, genitourinary, respiratory, psychiatric, and renal symptoms were less frequently reported (8-12%), with hair and dental abnormalities present in only 4-7% of CDG. The information provided in this study, including our proposed classification system for CDG, may be beneficial for healthcare providers caring for individuals with metabolic conditions associated with CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/clasificación , Trastornos Congénitos de Glicosilación/patología , Glicosilación
19.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587076

RESUMEN

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Asunto(s)
Trastornos Congénitos de Glicosilación , Fosfotransferasas (Fosfomutasas)/deficiencia , Humanos , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Complemento C4 , Glicopéptidos , Biomarcadores , Polisacáridos
20.
Proteomics ; 24(15): e2400012, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38470198

RESUMEN

Asparagine-linked glycosylation 1 protein is a ß-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2) trisaccharides (Hex-HexNAc2) and novel tetrasaccharides (NeuAc-Hex-HexNAc2) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.


Asunto(s)
Fibroblastos , Manosiltransferasas , Proteoma , Proteómica , Humanos , Fibroblastos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Glicosilación , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteómica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA