Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.629
Filtrar
1.
J Neuroinflammation ; 21(1): 193, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095832

RESUMEN

Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.


Asunto(s)
Histonas , Ácido Láctico , Microglía , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Histonas/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Ácido Láctico/metabolismo , Ratas , Lisina/metabolismo , Lisina/análogos & derivados , Lisina/farmacología , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Femenino , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Masculino , Locomoción/efectos de los fármacos , Locomoción/fisiología
2.
J Transl Med ; 22(1): 723, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103875

RESUMEN

BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diferenciación Celular , Proliferación Celular , Ferroptosis , Metformina , Células-Madre Neurales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Metformina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/efectos de los fármacos
3.
J Transl Med ; 22(1): 724, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103885

RESUMEN

BACKGROUND: The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS: To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS: With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS: These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.


Asunto(s)
Ratones Endogámicos C57BL , MicroARNs , Microglía , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Ratones
4.
CNS Neurosci Ther ; 30(8): e14903, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139089

RESUMEN

INTRODUCTION: Excessive neuroinflammation, apoptosis, glial scar, and demyelination triggered by spinal cord injury (SCI) are major obstacles to SCI repair. Fucoidan, a natural marine plant extract, possesses broad-spectrum anti-inflammatory and immunomodulatory effects and is regarded as a potential therapeutic for various diseases, including neurological disorders. However, its role in SCI has not been investigated. METHODS: In this study, we established an SCI model in mice and intervened in injury repair by daily intraperitoneal injections of different doses of fucoidan (10 and 20 mg/kg). Concurrently, primary oligodendrocyte precursor cells (OPCs) were treated in vitro to validate the differentiation-promoting effect of fucoidan on OPCs. Basso Mouse Scale (BMS), Louisville Swim Scale (LSS), and Rotarod test were carried out to measure the functional recovery. Immunofluorescence staining, and transmission electron microscopy (TEM) were performed to assess the neuroinflammation, apoptosis, glial scar, and remyelination. Western blot analysis was conducted to clarify the underlying mechanism of remyelination. RESULTS: Our results indicate that in the SCI model, fucoidan exhibits significant anti-inflammatory effects and promotes the transformation of pro-inflammatory M1-type microglia/macrophages into anti-inflammatory M2-type ones. Fucoidan enhances the survival of neurons and axons in the injury area and improves remyelination. Additionally, fucoidan promotes OPCs differentiation into mature oligodendrocytes by activating the PI3K/AKT/mTOR pathway. CONCLUSION: Fucoidan improves SCI repair by modulating the microenvironment and promoting remyelination.


Asunto(s)
Ratones Endogámicos C57BL , Polisacáridos , Recuperación de la Función , Remielinización , Traumatismos de la Médula Espinal , Animales , Polisacáridos/farmacología , Ratones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Remielinización/efectos de los fármacos , Remielinización/fisiología , Recuperación de la Función/efectos de los fármacos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Femenino , Microambiente Celular/efectos de los fármacos
5.
CNS Neurosci Ther ; 30(7): e14826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973179

RESUMEN

AIM: We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS: We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFß, and the influence of nicotinamide on TGFß-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS: Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFß/SMADs pathway. CONCLUSION: Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFß/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.


Asunto(s)
Cicatriz , Fibrosis , Ratones Endogámicos C57BL , Niacinamida , Traumatismos de la Médula Espinal , Animales , Niacinamida/farmacología , Niacinamida/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Cicatriz/metabolismo , Cicatriz/prevención & control , Ratones , Fibrosis/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Metabolómica , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino
6.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995011

RESUMEN

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Asunto(s)
Axones , Factor Neurotrófico Derivado de la Línea Celular Glial , Regeneración Nerviosa , Células de Schwann , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células de Schwann/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Axones/metabolismo , Ratas , Ratas Sprague-Dawley , Femenino , Astrocitos/metabolismo
7.
Neuroreport ; 35(12): 753-762, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38980926

RESUMEN

We aimed to study the reparative effects of orientin against spinal cord injury (SCI) in rats and explore its potential mechanisms. Sprague-Dawley rats were divided into Sham, SCI, Orientin, and SB203580 [an inhibitor of p38 mitogen-activated protein kinase (p38MAPK)] groups. In the SCI group, rats underwent Allen's beat. SCI animals in Orientin and SB203580 groups were respectively treated with 40 mg kg-1 orientin and 3 mg kg-1 SB203580 once daily. Functional recovery was evaluated based on Basso, Beattie, and Bresnahan scoring. Histopathological analysis was performed using hematoxylin-eosin and Nissl staining. Cell apoptosis was examined by TUNEL staining. The relative quantity of apoptosis-related proteins, glial fibrillary acidic protein (GFAP), neurofilament 200 (NF200), and brain derived neurotrophic factor (BDNF) was detected via western blotting. The indices related to inflammation and oxidation were measured using agent kits. The p38MAPK/inducible nitric oxide synthase (iNOS) signaling activity was detected using real-time quantitative PCR, western blotting, and immunohistochemical staining. Orientin was revealed to effectively mitigate cell apoptosis, neuroinflammation, and oxidative stress in impaired tissues. Meanwhile, orientin exerted great neuroprotective effects by abating GFAP expression, and up-regulating the expression of NF200 and BDNF, and significantly suppressed the p38MAPK/iNOS signaling. Orientin application could promote the repair of secondary SCI through attenuating oxidative stress and inflammatory response, reducing cell apoptosis and suppressing p38MAPK/iNOS signaling.


Asunto(s)
Apoptosis , Flavonoides , Glucósidos , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Fármacos Neuroprotectores/farmacología , Flavonoides/farmacología , Ratas , Apoptosis/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Masculino , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Imidazoles/farmacología , Piridinas
8.
Stem Cell Res Ther ; 15(1): 204, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978125

RESUMEN

Spinal cord injury (SCI) is a complex tissue injury that results in a wide range of physical deficits, including permanent or progressive disabilities of sensory, motor and autonomic functions. To date, limitations in current clinical treatment options can leave SCI patients with lifelong disabilities. There is an urgent need to develop new therapies for reconstructing the damaged spinal cord neuron-glia network and restoring connectivity with the supraspinal pathways. Neural stem cells (NSCs) possess the ability to self-renew and differentiate into neurons and neuroglia, including oligodendrocytes, which are cells responsible for the formation and maintenance of the myelin sheath and the regeneration of demyelinated axons. For these properties, NSCs are considered to be a promising cell source for rebuilding damaged neural circuits and promoting myelin regeneration. Over the past decade, transplantation of NSCs has been extensively tested in a variety of preclinical models of SCI. This review aims to highlight the pathophysiology of SCI and promote the understanding of the role of NSCs in SCI repair therapy and the current advances in pathological mechanism, pre-clinical studies, as well as clinical trials of SCI via NSC transplantation therapeutic strategy. Understanding and mastering these frontier updates will pave the way for establishing novel therapeutic strategies to improve the quality of recovery from SCI.


Asunto(s)
Vaina de Mielina , Células-Madre Neurales , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Humanos , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Vaina de Mielina/metabolismo , Animales , Regeneración Nerviosa/fisiología , Trasplante de Células Madre/métodos
9.
Cell Mol Life Sci ; 81(1): 318, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073571

RESUMEN

Nerve regeneration and circuit reconstruction remain a challenge following spinal cord injury (SCI). Corticospinal pyramidal neurons possess strong axon projection ability. In this study, human induced pluripotent stem cells (iPSCs) were differentiated into pyramidal neuronal precursors (PNPs) by addition of small molecule dorsomorphin into the culture. iPSC-derived PNPs were transplanted acutely into a rat contusion SCI model on the same day of injury. Following engraftment, the SCI rats showed significantly improved motor functions compared with vehicle control group as revealed by behavioral tests. Eight weeks following engraftment, the PNPs matured into corticospinal pyramidal neurons and extended axons into distant host spinal cord tissues, mostly in a caudal direction. Host neurons rostral to the lesion site also grew axons into the graft. Possible synaptic connections as a bridging relay may have been formed between host and graft-derived neurons, as indicated by pre- and post-synaptic marker staining and the regulation of chemogenetic regulatory systems. PNP graft showed an anti-inflammatory effect at the injury site and could bias microglia/macrophages towards a M2 phenotype. In addition, PNP graft was safe and no tumor formation was detected after transplantation into immunodeficient mice and SCI rats. The potential to reconstruct a neuronal relay circuitry across the lesion site and to modulate the microenvironment in SCI makes PNPs a promising cellular candidate for treatment of SCI.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Ratas , Ratas Sprague-Dawley , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Regeneración Nerviosa , Axones/metabolismo
10.
Nat Commun ; 15(1): 6321, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060269

RESUMEN

Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI. Crabp2 + /Emb+ fibroblasts (CE-F) derived from meninges primarily localize in the central region of fibrotic scars, demonstrating enhanced cholesterol synthesis and secretion of type I collagen and fibronectin. In contrast, perivascular/pial Lama1 + /Lama2+ fibroblasts (LA-F) are predominantly found at the periphery of the lesion, expressing laminin and type IV collagen and functionally involved in angiogenesis and lipid transport. These findings may provide a comprehensive understanding for remodeling heterogeneous fibrotic scars after SCI.


Asunto(s)
Cicatriz , Fibroblastos , Fibrosis , Laminina , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Cicatriz/patología , Cicatriz/metabolismo , Ratones , Femenino , Laminina/metabolismo , Meninges/patología , Meninges/metabolismo , Fibronectinas/metabolismo , Modelos Animales de Enfermedad , Colágeno Tipo I/metabolismo , Ratones Endogámicos C57BL , Pericitos/metabolismo , Pericitos/patología , Colágeno Tipo IV/metabolismo , Colesterol/metabolismo
11.
Exp Neurol ; 379: 114886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996862

RESUMEN

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.


Asunto(s)
Fármacos Neuroprotectores , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Axones/efectos de los fármacos , Pericitos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Femenino , Médula Espinal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Cultivadas
12.
Exp Neurol ; 379: 114889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019303

RESUMEN

Neuroscience dogma avers that astrocytic "scars" inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form "borders" around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons into reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI re-orient reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.


Asunto(s)
Astrocitos , Axones , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Astrocitos/fisiología , Animales , Regeneración Nerviosa/fisiología , Axones/fisiología , Ratas , Femenino , Células-Madre Neurales/trasplante , Células-Madre Neurales/fisiología , Modelos Animales de Enfermedad , Enfermedad Crónica , Ratas Sprague-Dawley
13.
Sci Adv ; 10(27): eado9120, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959311

RESUMEN

A bioinspired hydrogel composed of hyaluronic acid-graft-dopamine (HADA) and a designer peptide HGF-(RADA)4-DGDRGDS (HRR) was presented to enhance tissue integration following spinal cord injury (SCI). The HADA/HRR hydrogel manipulated the infiltration of PDGFRß+ cells in a parallel pattern, transforming dense scars into an aligned fibrous substrate that guided axonal regrowth. Further incorporation of NT3 and curcumin promoted axonal regrowth and survival of interneurons at lesion borders, which served as relays for establishing heterogeneous axon connections in a target-specific manner. Notable improvements in motor, sensory, and bladder functions resulted in rats with complete spinal cord transection. The HADA/HRR + NT3/Cur hydrogel promoted V2a neuron accumulation in ventral spinal cord, facilitating the recovery of locomotor function. Meanwhile, the establishment of heterogeneous neural connections across the hemisected lesion of canines was documented in a target-specific manner via neuronal relays, significantly improving motor functions. Therefore, biomaterials can inspire beneficial biological activities for SCI repair.


Asunto(s)
Matriz Extracelular , Hidrogeles , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Hidrogeles/química , Ratas , Matriz Extracelular/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Perros , Axones/metabolismo , Axones/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Recuperación de la Función/efectos de los fármacos , Dopamina/metabolismo , Femenino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Médula Espinal/metabolismo
14.
Spinal Cord Ser Cases ; 10(1): 44, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977671

RESUMEN

STUDY DESIGN: prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES: to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING: University laboratory setting. METHODS: Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS: In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS: Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.


Asunto(s)
Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Traumatismos de la Médula Espinal , Porcinos Enanos , Animales , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Porcinos , Imagen por Resonancia Magnética/métodos , Humanos , Femenino , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Masculino , Conducta Animal/fisiología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Médula Espinal/fisiopatología , Recuperación de la Función/fisiología , Estudios Prospectivos , Locomoción/fisiología
15.
CNS Neurosci Ther ; 30(7): e14835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004783

RESUMEN

AIMS: Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS: The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS: EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION: Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.


Asunto(s)
Autofagia , Exenatida , Necroptosis , Neuronas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Autofagia/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Ratas , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Exenatida/farmacología , Exenatida/uso terapéutico , Necroptosis/efectos de los fármacos , Humanos , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología , Masculino
16.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010173

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Gotas Lipídicas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Traumatismos de la Médula Espinal , Regulación hacia Arriba , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Gotas Lipídicas/metabolismo , Ratones , Línea Celular , Masculino , Metabolismo de los Lípidos/genética
17.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032797

RESUMEN

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Asunto(s)
Axones , Recuperación de la Función , Miembro 2 de la Familia de Transportadores de Soluto 12 , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Axones/efectos de los fármacos , Axones/patología , Femenino , Vaina de Mielina/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Ratones , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/farmacología
18.
CNS Neurosci Ther ; 30(6): e14806, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887182

RESUMEN

AIM: Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS: Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS: GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION: GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.


Asunto(s)
Polipéptido Inhibidor Gástrico , Transportador de Glucosa de Tipo 3 , Glucosa , Neuronas , Estrés Oxidativo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Traumatismos de la Médula Espinal , Animales , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/metabolismo , Glucosa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Masculino , Células Cultivadas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
19.
CNS Neurosci Ther ; 30(6): e14810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887969

RESUMEN

AIMS: To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS: Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS: Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS: These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Femenino , Masculino , Niño , Adolescente , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Tamaño de los Órganos
20.
Nat Neurosci ; 27(7): 1285-1298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849523

RESUMEN

Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.


Asunto(s)
Cicatriz , Fibroblastos , Fibrosis , Pericitos , Traumatismos de la Médula Espinal , Animales , Fibroblastos/patología , Fibroblastos/metabolismo , Fibrosis/patología , Traumatismos de la Médula Espinal/patología , Ratones , Pericitos/patología , Pericitos/metabolismo , Masculino , Femenino , Cicatriz/patología , Ratones Endogámicos C57BL , Células del Estroma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA