Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
BMC Genomics ; 25(1): 864, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285286

RESUMEN

BACKGROUND: Greater yam is a key staple crop grown in tropical and subtropical regions, while its asexual propagation mode had led to non-flowering mutations. How transposable elements contribute to its genetic variations is rarely analyzed. We used transcriptome and whole genome sequencing data to identify active transposable elements (TEs) and genetic variation caused by these active TEs. Our aim was to shed light on which TEs would lead to its intraspecies variation. RESULTS: Annotation of de novo assembly transcripts indicated that 0.8 - 0.9% of transcripts were TE related, with LTR retrotransposons (LTR-RTs) accounted for 65% TE transcripts. A large portion of these transcripts were non-autonomous TEs, which had incomplete functional domains. The majority of mapped transcripts were distributed in genic deficient regions, with 9% of TEs overlapping with genic regions. Moreover, over 90% TE transcripts exhibited low expression levels and insufficient reads coverage to support full-length structure assembly. Subfamily analysis of Copia and Gypsy, the two LTR-RTs revealed that a small number of subfamilies contained a significantly larger number of members, which play a key role in generating TE transcript. Based on resequencing data, 15,002 L-RT insertion loci were detected for active LTR-RT members. The insertion loci of LTR-RTs were highly divergent among greater yam accessions. CONCLUSIONS: This study showed the ongoing transcription and transpositions of TEs in greater yam, despite low transcription levels and incomplete proteins insufficient for autonomous transposition. While our research did not directly link these TEs to specific yam traits such as tuber yield and propagation mode, it lays a crucial foundation for further research on how these TE insertion polymorphisms (TIPs) might be related to variations in greater yam traits and its tuber propagation mode. Future research may explore the potential roles of TEs in trait variations, such as tuber yield and stress resistance, in greater yam.


Asunto(s)
Elementos Transponibles de ADN , Dioscorea , Dioscorea/genética , Dioscorea/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Retroelementos , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Genoma de Planta , Transcriptoma , Variación Genética , Secuencias Repetidas Terminales/genética
2.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107692

RESUMEN

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Asunto(s)
Riego Agrícola , Hojas de la Planta , Ácido Salicílico , Solanum tuberosum , Aguas Residuales , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , Ácido Salicílico/farmacología , Hojas de la Planta/efectos de los fármacos , Riego Agrícola/métodos , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/anatomía & histología , Antioxidantes/metabolismo
3.
Planta ; 260(3): 74, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153022

RESUMEN

MAIN CONCLUSION: Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log2 fold change) and down-regulated (< -2 Log2 fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Tubérculos de la Planta , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Ontología de Genes , Análisis de Secuencia de ARN , Genes de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Marcadores Genéticos/genética
4.
Methods Mol Biol ; 2827: 189-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985271

RESUMEN

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Asunto(s)
Tubérculos de la Planta , Técnicas de Cultivo de Tejidos , Tubérculos de la Planta/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Semillas/crecimiento & desarrollo , Aclimatación
5.
Plant Physiol Biochem ; 214: 108927, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067104

RESUMEN

Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.


Asunto(s)
Tubérculos de la Planta , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
6.
Food Chem ; 459: 140393, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39018623

RESUMEN

Sweet potato tuberous roots are susceptible to chilling injury (CI) when stored below 10 °C. In this study, we investigated the mitigating effects of hot air (HA) treatment on CI. Results showed that HA45°C-3h treatment delayed the CI and internal browning during cold storage. After HA45°C-3h treatment, the cells' structural integrity was maintained, malondialdehyde accumulation and ion leakage were inhibited. Additionally, the osmoregulatory substances, such as total soluble solids, proline were maintained, and soluble protein was enhanced. Higher activity of antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the antioxidant substances including ascorbic acid, glutathione, total phenols, and flavonoids were observed in sweet potato tuberous roots treated by HA45°C-3h than untreated group. Our study suggested that HA45°C-3h treatment could reduce CI and maintain a better quality of sweet potato tuberous roots following cold storage.


Asunto(s)
Antioxidantes , Frío , Calor , Ipomoea batatas , Raíces de Plantas , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Antioxidantes/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Osmorregulación , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Almacenamiento de Alimentos , Ascorbato Peroxidasas/metabolismo , Proteínas de Plantas/metabolismo , Glutatión Reductasa/metabolismo , Malondialdehído/metabolismo
7.
Microbiol Res ; 287: 127855, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079269

RESUMEN

Potato is an important crop due to its high contents of starch, protein, and various vitamins and minerals. Biofertilizers are composed of plant growth promoting microbes (PGPMs) which are essential for improving the growth and resistance of potato. However, little information has focused on the modes of inoculation of biofertilizers on plant growth and microecology. This study aims to reveal the response mechanism of the potato to three modes of inoculation of biofertilizers all containing PGPM Bacillus amyloliquefaciens EZ99, i.e. scattered mode of 5 kg/ha biofertilizer (M5), soaking seed tubers with dissolved 5 kg/ha biofertilizer (MZG), and scattered mode of 3 kg/ha biofertilizer + 2 kg/ha sucrose (MY34) in alkaline loess field through multi-omics analysis of transcriptome, metabolome and microbiome. The physiological result revealed that two application modes of equal amount of biofertilizer M5 and MZG significantly improved the growth and yield of potatoes. Furthermore, the transcriptome of potato exhibited sets of differentially expressed genes enriched in photosynthesis, sugar metabolism, and phenylpropanoid biosynthesis among the three modes, with the M5 mode exhibiting overall up-regulation of 828 genes. Based on the untargeted metabolomic analysis of potato tuber, M5 mode significantly accumulated sucrose, while MZG and MY34 mode significantly accumulated the stress metabolites euchrenone b6 and mannobiose, respectively. Besides, the microbial structure of potato rhizosphere showed that the diversity of bacteria and fungi was similar in all soils, but their abundances varied significantly. Specifically, beneficial Penicillium was enriched in M5 and MZG soils, whereas MY34 soil accumulated potential pathogens Plectosphaerella and saccharophilic Mortierella. Collectively, these e findings highlight that MZG is the most effective mode to promote potato growth and stimulate rhizosphere effect. The present study not only encourages sustainable agriculture through agroecological practices, but also provides broad prospects for the application of PGPM biofertilizer in staple foods.


Asunto(s)
Fertilizantes , Microbiología del Suelo , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/crecimiento & desarrollo , Fertilizantes/análisis , Bacillus amyloliquefaciens/crecimiento & desarrollo , Transcriptoma , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/crecimiento & desarrollo , Microbiota , Suelo/química , Metaboloma , Rizosfera , Sacarosa/metabolismo , Desarrollo de la Planta , Metabolómica/métodos , Multiómica
8.
PLoS One ; 19(7): e0307260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046970

RESUMEN

BACKGROUND: Bletilla striata (Thunb.) Reichb.f. (B. striata) is a traditional Chinese medicinal herb. B. striata polysaccharides (BSP), stilbenes and 2-isobutyl malic acid glucosoxy-benzyl ester compounds are the main active ingredients in B. striata. However, there is limited report on the changes of medicinal components and their biosynthesis regulation mechanisms in the tubers of B. striata at different stages. METHOD: The tubers of B. striata were collected during the flowering period, fruiting period, and harvest period to determine the total polysaccharide content using the phenol sulfuric acid method. The changes in secondary metabolites in the tubers at these stages were analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and transcriptomics was conducted for further exploration of their biosynthetic pathways. RESULT: The BSP content gradually increases from the flowering period to the fruiting period as the tubers develop, reaching its peak, but subsequently decreases at harvest time, which may be associated with the germination of B. striata buds in later stage. A total of 294 compounds were identified in this study. Among them, a majority of the compounds, such as 2-isobutyl malate gluconoxy-benzyl ester, exhibited high content during the fruit stage, while stilbenes like coelonin, 3'-O-methylbatatasin III, and blestriarene A accumulated during the harvesting period. The transcriptome data also revealed a substantial number of differentially expressed genes at various stages, providing a partial explanation for the complex changes in metabolites. We observed a correspondence between the expression pattern of GDP-Man biosynthesis-related enzyme genes and cumulative changes in BSP. And identified a positive correlation between 9 transcription factors and genes associated with polysaccharide biosynthesis, while 5 transcription factors were positively correlated with accumulation of 2-isobutyl malate gluconoxy-benzyl ester compounds and 5 transcription factors exhibited negative correlated with stilbene accumulation. CONCLUSION: It is imperative to determine the appropriate harvesting period based on the specific requirements of different active ingredients and the accumulation patterns of their metabolites. Considering the involvement of multiple transcription factors in the biosynthesis and accumulation of its active ingredients, a comprehensive investigation into the specific regulatory mechanisms that facilitate high-quality cultivation of B. striata is imperative.


Asunto(s)
Metabolómica , Orchidaceae , Orchidaceae/metabolismo , Orchidaceae/crecimiento & desarrollo , Orchidaceae/genética , Metabolómica/métodos , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Polisacáridos/metabolismo , Perfilación de la Expresión Génica , Metabolismo Secundario/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/genética
9.
Int J Food Microbiol ; 423: 110843, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39068861

RESUMEN

Black dot and silver scurf caused by Colletotrichum coccodes and Helminthosporium solani, respectively, are tuber blemish diseases affecting quality in the fresh and pre-pack potato industry. In the last 20 years, the importance of high-quality tuber appearance has increased considerably due to the growing demand for washed and pre-packed potatoes in the UK. Changing climate characterised by rising temperatures and wetter summers is a threat as this will favour the development of pathogens such as C. coccodes in the soil increasing the risk of food spoilage. Moreover, both diseases can develop not only in the field but also after harvest, with postharvest storage temperatures being a crucial factor in controlling fungal growth. Furthermore, anecdotal evidence showed differences on the aggressiveness of black dot depending on its origin (i.e. England and Scotland) on potato tubers. Silver scurf and black dot are difficult to differentiate as they present similar phenotypes characterised by silvery lesions making it challenging for managers to take the necessary corrective action during storage. Hence, the aim of this study was to give a general insight into the ecological conditions affecting the establishment of the causal agent of potato black dot in the field, and black dot and silver scurf during the supply chain. Therefore, invitro experiments were designed to study the growth rate and lag times simulating both scenarios respectively: on soil extract agar (SEA) media at different temperatures (4, 11, 15 °C) and matric potentials (control [unmodified] and - 1.4 MPa [modified]); and on natural potato dextrose agar (NPDA) for different temperatures (4, 11, 15 and 20 °C) at 99 % relative humidity (RH) for 25 days. When simulating the field environment, drier conditions (matric potential = -1.4 MPa) reduced fungal growth for both isolates by 0.1 cm day-1 at the temperature of 15 °C, suggesting temperature as the main limiting factor for the growth of C. coccodes in the soil. The causal agent of black dot exhibited a faster growth rate under retailer-like conditions (i.e., 15 °C) compared to H. solani. Understanding the environmental influence on both the pathogen and the crop is vital for proper disease management to help reduce food loss and waste.


Asunto(s)
Colletotrichum , Tubérculos de la Planta , Solanum tuberosum , Temperatura , Solanum tuberosum/microbiología , Colletotrichum/crecimiento & desarrollo , Colletotrichum/aislamiento & purificación , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/crecimiento & desarrollo , Reino Unido , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Microbiología de Alimentos , Microbiología del Suelo
10.
Plant Cell ; 36(9): 3498-3520, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38819320

RESUMEN

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.


Asunto(s)
Brasinoesteroides , Membrana Celular , Proteínas de Plantas , Tubérculos de la Planta , ATPasas de Translocación de Protón , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Solanum tuberosum/enzimología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Brasinoesteroides/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Fosforilación , Transducción de Señal
11.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759482

RESUMEN

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Asunto(s)
Tubérculos de la Planta , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomía & histología
12.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791120

RESUMEN

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Asunto(s)
Latencia en las Plantas , Reguladores del Crecimiento de las Plantas , Tubérculos de la Planta , Solanum tuberosum , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Solanum tuberosum/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo de los Hidratos de Carbono
13.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791140

RESUMEN

The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.


Asunto(s)
Cyperus , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta , RNA-Seq , Cyperus/genética , Cyperus/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , Transcriptoma , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791426

RESUMEN

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Asunto(s)
Apoptosis , Helianthus , Tubérculos de la Planta , Poliaminas , Helianthus/metabolismo , Helianthus/crecimiento & desarrollo , Poliaminas/metabolismo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo
15.
Physiol Plant ; 176(3): e14322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818614

RESUMEN

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.


Asunto(s)
Imagen por Resonancia Magnética , Tubérculos de la Planta , Solanum tuberosum , Agua , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/fisiología , Imagen por Resonancia Magnética/métodos , Agua/metabolismo , Deshidratación , Sequías , Cinética , Estrés Fisiológico , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo
17.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38488068

RESUMEN

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tubérculos de la Planta , Solanum tuberosum , Factores de Transcripción , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Solanum tuberosum/crecimiento & desarrollo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
18.
J Sci Food Agric ; 104(9): 5207-5218, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38314862

RESUMEN

BACKGROUND: Seasonal late-season water deficits negatively affect the yield and quality of sweet potatoes in northern China. However, the amount of late-season irrigation to achieve high yield and consistent quality storage root remains undetermined. We assessed the yield and some qualitative traits of sweet potatoes such as size, shape, skin/flesh colour and nutritional content, as influenced by five irrigation levels (T0: unirrigated control; T1: 33% ETc; T2: 75% ETc; T3: 100% ETc; and T4: 125% ETc). RESULTS: Late-season irrigation significantly increased yield and marketable yield. Yields for T2 and T3 were significantly higher than other treatments, whereas T2 had the highest Grade A rating in a 2-year test. The vertical length of storage roots gradually increased with an increase in irrigation level, whereas the maximum width remained unchanged. The proportion of long elliptic and elliptic storage roots also increased, whereas the proportion of ovate, obovate and round storage roots gradually decreased. The skin and flesh colours became more vivid as the level of irrigation increased, with the skin colour becoming redder and the flesh colour becoming more orange-yellow. The levels of carotenoids, vitamin C and soluble sugar were significantly higher in irrigated crops, with the highest vitamin C and soluble sugar levels in T2 and the highest carotenoid levels in T3 treatment. CONCLUSION: Taken together, these results demonstrate the potential of moderate irrigation in the late-season to improve both yield production and quality potential. The results are of great importance for improving the market value of sweet potatoes and increasing grower profits. © 2024 Society of Chemical Industry.


Asunto(s)
Riego Agrícola , Ipomoea batatas , Estaciones del Año , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Riego Agrícola/métodos , China , Tubérculos de la Planta/química , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Agua/análisis , Agua/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Valor Nutritivo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Producción de Cultivos/métodos , Color
19.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38197194

RESUMEN

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Senescencia de la Planta , Solanum tuberosum , Factores de Transcripción , Transporte Biológico , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Senescencia de la Planta/genética , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/fisiología , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Azúcares/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164131

RESUMEN

Starch is a natural polysaccharide for which the technological quality depends on the genetic basis of the plant and the environmental conditions of the cultivation. Growing plants under cover without soil has many advantages for controlling the above-mentioned conditions. The present research focuses on determining the effect of under cover hydroponic potato cultivation on the physicochemical properties of accumulated potato starch (PS). The plants were grown in the hydroponic system, with (greenhouse, GH) and without recirculation nutrient solution (foil tunnel, FT). The reference sample was PS isolated from plants grown in a tunnel in containers filled with mineral soil (SO). The influence of the cultivation method on the elemental composition of the starch molecules was noted. The cultivation method also influenced the protein and amylose content of the PS. Considering the chromatic parameters, PS-GH and PS-FT were brighter and whiter, with a tinge of blue, than PS-SO. PS-SO was also characterized by the largest average diameters of granules, while PS-GH had the lowest crystallinity. PS-SO showed a better resistance to the combined action of elevated temperature and shear force. There was a slight variation in the gelatinization temperature values. Additionally, significant differences for enthalpy and the retrogradation ratio were observed. The cultivation method did not influence the glass transition and melting.


Asunto(s)
Amilosa , Hidroponía , Tubérculos de la Planta/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Amilosa/química , Amilosa/aislamiento & purificación , Amilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA