Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Vet Microbiol ; 288: 109954, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104440

RESUMEN

Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-ß and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-ß and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Coinfección , Enfermedades de los Porcinos , Porcinos , Animales , Circovirus/fisiología , Coinfección/microbiología , Coinfección/veterinaria , Ocludina , Serogrupo , Uniones Intercelulares/patología , Factor de Crecimiento Transformador beta , Epitelio/patología , Infecciones por Circoviridae/veterinaria
2.
Bioconjug Chem ; 34(8): 1498-1507, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37498932

RESUMEN

Cell communication and signal transduction rely heavily on the charge on the cell surface. The cell surface is negatively charged, with glycoproteins on the cell membrane providing a large percentage of the charge. Sialic acid is found on the outermost side of glycan chains and contributes to glycoprotein's negative charge. Sialic acid is highly expressed in tumor cells and plays an important role in tumor metastasis and immune escape by interacting with extracellular ligands. However, the specific effect of negative charge changes on glycoproteins is still poorly understood. In this study, we used 9-azido sialic acid (9Az-Sia) to create artificial epitopes on glycoproteins via metabolic glycan labeling, and we attached charged groups such as amino and carboxyl to 9Az-Sia via a click reaction with dibenzocyclooctyne (DBCO). The charge of glycoproteins was changed by metabolic glycan labeling and click modification. The results showed that the migration and invasion ability of the MDA-MB-231 cell labeled with 9Az-Sia was significantly reduced after the modification with amino groups rather than carboxyl groups. Epithelial-mesenchymal transition (EMT) is the biological process of metastatic tumor cells, with an increasing ability of tumor cells to migrate and invade. In particular, the expression of adhesion molecules increased in the amine-linked group, whereas the expression of matrix metalloproteinases (MMPs) increased significantly, which is not identical to EMT characteristics. In vivo experiments have demonstrated that the loss of negative charge on glycoproteins has an inhibitory effect on tumors. In conclusion, modifying the positive charge on the surface of glycoproteins can inhibit tumor cell metastasis and has great potential for tumor therapy.


Asunto(s)
Glicoproteínas de Membrana , Neoplasias , Humanos , Ácido N-Acetilneuramínico/farmacología , Transición Epitelial-Mesenquimal , Movimiento Celular , Neoplasias/patología , Glicoproteínas , Metaloproteinasas de la Matriz , Uniones Intercelulares/patología , Línea Celular Tumoral , Metástasis de la Neoplasia/patología
3.
Theranostics ; 11(15): 7262-7275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158849

RESUMEN

Rationale: Congenital biliary atresia (BA) is a destructive obliterative cholangiopathy of neonates that affects both intrahepatic and extrahepatic bile ducts. However, the cause of BA is largely unknown. Methods: We explored the cell junctions and polarity complexes in early biopsy BA livers by immunofluorescence staining and western blot. Cdc42, as a key cell junction and polarity regulator, was found dramatically decreased in BA livers. Therefore, in order to investigate the role of Cdc42 in BA development, we constructed liver-specific and tamoxifen induced cholangiocyte-specific Cdc42 deleted transgenic mice. We further evaluated the role of bile acid in aggravating biliary damage in Cdc42 insufficient mouse liver. Results: We found a dramatic defect in the assembly of cell junctions and polarity complexes in both cholangiocytes and hepatocytes in BA livers. This defect was characterized by the disordered location of cell junction proteins, including ZO1, ß-catenin, E-cadherin and claudin-3. Cdc42 and its active form, Cdc42-GTP, which serves as a small Rho GTPase to orchestrate the assembly of polarity complexes with Par6/Par3/αPKC, were substantially reduced in BA livers. Selective Cdc42 deficiency in fetal mouse cholangiocytes resulted in histological changes similar to those found in human BA livers, including obstruction in both the intra- and extrahepatic bile ducts, epithelial atrophy, and the disruption of cell junction and polarity complexes. A reduction in bile acids notably improved the histology and serological indices in Cdc42-mutant mice. Conclusion: Our results illustrate that BA is closely correlated with the impaired assembly of cell junction and polarity complexes in liver cells, which is likely caused by Cdc42 insufficiency and aggravated by bile acid corrosion.


Asunto(s)
Atresia Biliar , Enfermedades Genéticas Congénitas , Uniones Intercelulares , Hígado/metabolismo , Proteína de Unión al GTP cdc42/deficiencia , Animales , Atresia Biliar/genética , Atresia Biliar/metabolismo , Atresia Biliar/patología , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Lactante , Uniones Intercelulares/genética , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Proteína de Unión al GTP cdc42/metabolismo
4.
Forensic Sci Int ; 324: 110850, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082395

RESUMEN

Thanatochemistry also known as chemistry of death and is used to determine post mortem interval (PMI). It is arguably one of the critical steps in forensic investigation. Recent addition of analyzing biochemical changes along with the traditional methods have gained importance, as they help us to record very early changes in the tissue specimens. In this view, our study aimed to correlate both histological changes and enzymatic changes in gingival tissue samples at intervals of immediate, 1 h, 5 h, 24 h and 48 h after death. Histologic changes noted were loss of epithelial architecture, chromatin clumping, nuclear vacuolation, karryopyknosis, eosinophilia and wide intercellular junctions. Two enzymes which differentiate between the autolytic phase (acid phosphatase) and putrefactive phase (ammonia) of decomposition were evaluated using UV spectrometer. Results in our study demonstrated there were variations as in gradual increase in ammonia levels (1.13±0.24-26.6±2.09) and gradual decrease in acid phosphatase levels (5.61±0.67-1.25±0.53) at different time intervals till 48 h. The cellular changes in gingival tissue could also be related to time. The result of our study helps us to identify potential of enzymatic changes which when correlated with histological reports helps us to predict the time of death accurately. Replicating this experiment in various known taphonomic conditions and other enzymes could highlight the usefulness of gingival tissue samples in determining time of death.


Asunto(s)
Encía/enzimología , Encía/patología , Cambios Post Mortem , Fosfatasa Ácida/metabolismo , Adulto , Amoníaco/metabolismo , Apoptosis , Núcleo Celular/patología , Cromatina/patología , Eosinofilia/patología , Células Epiteliales/patología , Femenino , Patologia Forense/métodos , Humanos , Uniones Intercelulares/patología , Masculino , Necrosis , Espectrofotometría Ultravioleta , Vacuolas , Adulto Joven
5.
Nat Cell Biol ; 23(5): 476-484, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958758

RESUMEN

Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.


Asunto(s)
Células Epidérmicas/citología , Epidermis/metabolismo , Piel/citología , Linfocitos T/inmunología , Animales , Células Epidérmicas/inmunología , Epidermis/inmunología , Homeostasis/inmunología , Homeostasis/fisiología , Uniones Intercelulares/patología , Ratones Transgénicos , Piel/inmunología
6.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669068

RESUMEN

Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Desarrollo de Medicamentos/métodos , Uniones Intercelulares/metabolismo , Neoplasias/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/genética , Transporte Biológico Activo/fisiología , Comunicación Celular/genética , Humanos , Infecciones/tratamiento farmacológico , Infecciones/metabolismo , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/patología , Uniones Intercelulares/ultraestructura , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
7.
Viruses ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499234

RESUMEN

Respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a constant threat to public health given their ability to cause global pandemics. Infection with either virus may lead to aberrant host responses, such as excessive immune cell recruitment and activation, dysregulated inflammation, and coagulopathy. These may contribute to the development of lung edema and respiratory failure. An increasing amount of evidence suggests that lung endothelial cells play a critical role in the pathogenesis of both viruses. In this review, we discuss how infection with influenza or SARS-CoV-2 may induce endothelial dysfunction. We compare the effects of infection of these two viruses, how they may contribute to pathogenesis, and discuss the implications for potential treatment. Understanding the differences between the effects of these two viruses on lung endothelial cells will provide important insight to guide the development of therapeutics.


Asunto(s)
Alphainfluenzavirus/patogenicidad , Endotelio/virología , Lesión Pulmonar/patología , Lesión Pulmonar/virología , SARS-CoV-2/patogenicidad , Plaquetas/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/metabolismo , Endotelio/patología , Trampas Extracelulares/inmunología , Humanos , Uniones Intercelulares/patología , Lesión Pulmonar/terapia
8.
Dig Dis Sci ; 66(12): 4237-4250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33471252

RESUMEN

BACKGROUND: An immature intestine is a high-risk factor for necrotizing enterocolitis (NEC), which is a serious intestinal disease in newborns. The regulation of developmentally regulated GTP-binding protein 1 (DRG1) during organ development suggests a potential role of DRG1 in the maturation process of the intestine. AIM: To illustrate the function of DRG1 during the pathogenesis of NEC. METHODS: DRG1 expression in the intestine was measured using immunohistochemistry and q-PCR. Immunoprecipitation coupled with mass spectrometry was used to identify the interacting proteins of DRG1. The biological functions of the potential interactors were annotated with the Database for Annotation, Visualization and Integrated Discovery. Caco2 and FHs74Int cells with stable DRG1 silencing or overexpression were used to investigate the influence of DRG1 on cell junctions and intestinal barrier permeability and to elucidate the downstream mechanism. RESULTS: DRG1 was constitutively expressed during the intestinal maturation process but significantly decreased in the ileum in the context of NEC. Protein interaction analysis revealed that DRG1 was closely correlated with cell junctions. DRG1 deficiency destabilized the E-cadherin and occludin proteins near the cell membrane and increased the permeability of the epithelial cell monolayer, while DRG1 overexpression prevented lipopolysaccharide-induced disruption of E-cadherin and occludin expression and cell monolayer integrity. Further investigation suggested that DRG1 maintained cell junctions, especially adherens junctions, by regulating RAC1 activity, and RAC1 inhibition with NSC23766 attenuated intestinal injury and led to improved barrier integrity in experimental NEC. CONCLUSIONS: Our findings illustrate the mechanism underlying the effect of DRG1 deficiency on epithelial cell permeability regulation and provide evidence supporting the application of RAC1 inhibitors for protection against NEC.


Asunto(s)
Enterocolitis Necrotizante/enzimología , Células Epiteliales/enzimología , Proteínas de Unión al GTP/metabolismo , Uniones Intercelulares/enzimología , Mucosa Intestinal/enzimología , Proteína de Unión al GTP rac1/metabolismo , Aminoquinolinas/farmacología , Animales , Antígenos CD/metabolismo , Células CACO-2 , Cadherinas/metabolismo , Impedancia Eléctrica , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/patología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/genética , Uniones Intercelulares/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones , Ocludina/metabolismo , Permeabilidad , Pirimidinas/farmacología , Proteína de Unión al GTP rac1/análisis
9.
J Clin Lab Anal ; 35(2): e23627, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33070380

RESUMEN

Epithelial cells are typically connected through different types of cell junctions that are localized from the apical membrane to the basal surface. In this way, epithelium cells form the first barrier against pathogenic microorganisms and prevent their entry into internal organs and the circulatory system. Recent studies demonstrate that bacterial pathogens disrupt epithelial cell junctions through targeting junctional proteins by secreted virulence factors. In this review, we discuss the diverse strategies used by common bacterial pathogens, including Pseudomonas aeruginosa, Helicobacter pylori, and enteropathogenic Escherichia coli, to disrupt epithelial cell junctions during infection. We also discuss the potential of targeting the pathogenic mechanisms in the treatment of pathogen-associated diseases.


Asunto(s)
Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Interacciones Huésped-Patógeno , Uniones Intercelulares/microbiología , Factores de Virulencia/fisiología , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/patogenicidad , Humanos , Uniones Intercelulares/patología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad
10.
Cell Mol Gastroenterol Hepatol ; 11(2): 573-595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32961356

RESUMEN

BACKGROUND AND AIMS: As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS: To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS: Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS: We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.


Asunto(s)
Lipoproteínas LDL/metabolismo , Hígado/patología , Vasos Linfáticos/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Uniones Intercelulares/patología , Hígado/inmunología , Vasos Linfáticos/citología , Vasos Linfáticos/inmunología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Permeabilidad , Proteostasis/genética , Proteostasis/inmunología , RNA-Seq , Análisis de la Célula Individual , Proteínas Supresoras de Tumor/metabolismo
11.
Cell ; 183(2): 395-410.e19, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007268

RESUMEN

Collective metastasis is defined as the cohesive migration and metastasis of multicellular tumor cell clusters. Disrupting various cell adhesion genes markedly reduces cluster formation and colonization efficiency, yet the downstream signals transmitted by clustering remain largely unknown. Here, we use mouse and human breast cancer models to identify a collective signal generated by tumor cell clusters supporting metastatic colonization. We show that tumor cell clusters produce the growth factor epigen and concentrate it within nanolumina-intercellular compartments sealed by cell-cell junctions and lined with microvilli-like protrusions. Epigen knockdown profoundly reduces metastatic outgrowth and switches clusters from a proliferative to a collective migratory state. Tumor cell clusters from basal-like 2, but not mesenchymal-like, triple-negative breast cancer cell lines have increased epigen expression, sealed nanolumina, and impaired outgrowth upon nanolumenal junction disruption. We propose that nanolumenal signaling could offer a therapeutic target for aggressive metastatic breast cancers.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Uniones Intercelulares/patología , Metástasis de la Neoplasia/fisiopatología , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Epigen/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones , Células Neoplásicas Circulantes/patología , Transducción de Señal/fisiología , Neoplasias de la Mama Triple Negativas/patología
12.
Nat Cell Biol ; 22(9): 1103-1115, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839548

RESUMEN

Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.


Asunto(s)
Neoplasias de la Mama/patología , Adhesión Celular/fisiología , Invasividad Neoplásica/patología , Uniones Adherentes/patología , Animales , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HEK293 , Humanos , Uniones Intercelulares/patología , Células MCF-7 , Ratones Endogámicos BALB C
13.
Sci Rep ; 10(1): 13320, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770112

RESUMEN

This study explored the impact of gold nanoparticles on the metabolic activity and morphology of human pulmonary endothelial cell monolayers. We developed a gold nanoparticle library of three different sizes and two surface chemistries that include anionic citrate and the cationic polyelectrolyte poly(allylamine hydrochloride). The nanoparticles were characterized in cell culture medium to assess how their physical properties are altered after exposure to biological fluids. A bovine serum albumin pretreatment protocol was developed to stabilize the nanoparticles in cell culture medium. Results of this study show that an 18 h exposure of human pulmonary artery endothelial cells to the different nanoparticles modestly affects cellular metabolic activity. However, nanoparticle exposure perturbs the cortical actin networks and induces the formation of intercellular gaps. In particular, exposure to the poly(allylamine hydrochloride)-coated particles reduces the area of cell-cell junctions-a change that correlates with increased leakiness of endothelial barriers. The presence of excess polyelectrolyte capping agents in the supernatant of poly(allylamine hydrochloride)-coated nanoparticles significantly impacts endothelial morphology. Pretreatment of the particle supernatant with bovine serum albumin mitigates the negative effects of free or bound polyelectrolytes on endothelial cell monolayers.


Asunto(s)
Actinas/metabolismo , Barrera Alveolocapilar/metabolismo , Células Endoteliales/metabolismo , Oro , Uniones Intercelulares/metabolismo , Nanopartículas del Metal , Barrera Alveolocapilar/patología , Células Cultivadas , Células Endoteliales/patología , Oro/efectos adversos , Oro/química , Oro/farmacología , Humanos , Uniones Intercelulares/patología , Nanopartículas del Metal/efectos adversos , Nanopartículas del Metal/química
14.
J Appl Toxicol ; 40(12): 1592-1601, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648282

RESUMEN

An understanding of polychlorinated biphenyl (PCB) congener-specific effects on cell membrane and intercellular communication is important within the studies of PCB absorption, organ-related PCB accumulation and exertion of toxic responses. Toxic potential of PCBs is linked to various deleterious effects on human health, including neurotoxicity, immunotoxicity, reproductive toxicity and genotoxicity and, recently in 2016 International Agency for Research on Cancer (IARC) has upgraded the classification of PCBs to Group 1 "Carcinogenic to humans." Proposed mechanisms of aforementioned PCBs adverse effects at cellular membrane level are: (i) downregulation of gap junction intercellular communication and/or connexins; (ii) compromised membrane integrity; and (iii) altered tight junction barrier function. This study, based on an extensive literature survey, shows the progress in scientific research of each of these three levels with the aim of pointing out the earliest toxic events of PCBs, which can result in serious cell/tissue/organ damage.


Asunto(s)
Carcinógenos/toxicidad , Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Uniones Intercelulares/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Animales , Membrana Celular/metabolismo , Membrana Celular/patología , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Proteínas de la Membrana/metabolismo , Medición de Riesgo , Transducción de Señal
15.
Clin Epigenetics ; 12(1): 98, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616016

RESUMEN

BACKGROUND: Ten-eleven translocation (Tet) methyl-cytosine dioxygenases (including Tet1/2/3)-mediated 5mC oxidation and DNA demethylation play important roles in embryonic development and adult tissue homeostasis. The expression of Tet2 and Tet3 genes are relatively abundant in the adult murine kidneys while Tet1 gene is expressed at a low level. Although Tet3 has been shown to suppress kidney fibrosis, the role of Tet2 in kidney physiology as well as renal ischemia-reperfusion (IR) injury is still largely unknown. RESULTS: Tet2-/- mice displayed normal kidney morphology and renal function as WT mice while the expression of genes associated with tight junction and adherens junction was impaired. At 24 h post-renal IR, Tet2-/- mice showed higher SCr and BUN levels, more severe tubular damage, and elevated expression of Kim1 and Ngal genes in the kidney in comparison with WT mice. Moreover, the transcriptomic analysis revealed augmented inflammatory response in the kidneys of Tet2-/- mice. CONCLUSIONS: Tet2 is dispensable for kidney development and function at baseline condition while protects against renal IR injury possibly through repressing inflammatory response. Our findings suggest that Tet2 may be a potential target for the intervention of IR-induced acute kidney injury (AKI).


Asunto(s)
Citosina/metabolismo , Dioxigenasas/genética , Uniones Intercelulares/genética , Riñón/metabolismo , Daño por Reperfusión/genética , Animales , Desmetilación del ADN , Dioxigenasas/deficiencia , Expresión Génica/genética , Receptor Celular 1 del Virus de la Hepatitis A/genética , Humanos , Inflamación/genética , Inflamación/prevención & control , Uniones Intercelulares/patología , Riñón/irrigación sanguínea , Riñón/patología , Lipocalina 2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología
16.
Acta Derm Venereol ; 100(8): adv00122, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32266413

RESUMEN

Although it is known that psoriatic dermal-derived mesenchymal stem cells (DMSCs) dysregulate keratinocyte proliferation, the biological activity profile of keratinocytes influenced by psoriatic DMSCs remain unknown. In the present study, we assessed the impact of psoriatic DMSCs on keratinocyte proliferation, differentiation, and glucose metabolism in normal human epidermal keratinocytes co-cultured with or without psoriatic DMSCs. Co-culture of normal human epidermal keratinocytes with psoriatic DMSCs downregulated expression levels of proteins associated with cell junction assembly (alpha-actinin-1, catenin beta-1, poliovirus receptor-related protein 4 and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2), while upregulating proteins associated with keratinocyte proliferation and differentiation (involucrin, isoform 2 of Histone-binding protein, isoform 3 of Telomeric repeat-binding factor 2 and keratin 13). Moreover, co-culture of normal human epidermal keratinocytes with psoriatic DMSCs stimulated keratinocyte proliferation and glycolysis, but reduced keratinocyte junctions. Taken together, these results demonstrate that psoriatic DMSCs increase keratinocyte proliferation and glycolysis, and reduce cell junctions, suggesting a pathogenic role of psoriatic DMSCs in epidermal hyperplasia, aberrant differentiation, and reduction in turnover time of keratinocytes in psoriasis.


Asunto(s)
Glucólisis , Uniones Intercelulares/metabolismo , Queratinocitos/fisiología , Células Madre Mesenquimatosas , Psoriasis/patología , Actinina/metabolismo , Adulto , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Técnicas de Cocultivo , Femenino , Humanos , Uniones Intercelulares/patología , Masculino , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , beta Catenina/metabolismo
17.
Am J Physiol Cell Physiol ; 318(6): C1046-C1054, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32130070

RESUMEN

Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Comunicación Celular , Microambiente Celular , Matriz Extracelular/metabolismo , Uniones Intercelulares/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Proteínas CCN de Señalización Intercelular/genética , Matriz Extracelular/genética , Matriz Extracelular/patología , Fibrosis , Regulación Neoplásica de la Expresión Génica , Humanos , Uniones Intercelulares/genética , Uniones Intercelulares/patología , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral
18.
Thorac Cancer ; 11(3): 519-525, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017415

RESUMEN

Cell junctions serve as a protective barrier for cells and provide an important channel for information transmission between cells and the surrounding environment. Viruses are parasites that invade and commandeer components of host cells in order to survive and replicate, and they have evolved various mechanisms to alter cell junctions to facilitate viral infection. In this review, we examined the current state of knowledge on the action of viruses on host cell junctions. The existing evidence suggests that targeting the molecules involved in the virus-cell junction interaction can prevent the spread of viral diseases.


Asunto(s)
Uniones Intercelulares/patología , Virosis/virología , Virus/patogenicidad , Animales , Humanos , Uniones Intercelulares/virología
19.
J Immunol ; 204(4): 980-989, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31889022

RESUMEN

Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a "double-hit" neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdh1 (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.


Asunto(s)
Cadherinas/genética , Colon/inmunología , Epigénesis Genética/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , MicroARNs/metabolismo , Acetilación , Adulto , Animales , Cadherinas/inmunología , Cadherinas/metabolismo , Línea Celular , Colon/citología , Colon/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/patología , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Recién Nacido , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Uniones Intercelulares/patología , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Masculino , MicroARNs/antagonistas & inhibidores , Permeabilidad/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Ratas
20.
Hepatology ; 71(5): 1732-1749, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31489648

RESUMEN

BACKGROUND AND AIMS: The Wnt/ß-catenin signaling pathway has a well-described role in liver pathobiology. Its suppression was recently shown to decrease bile acid (BA) synthesis, thus preventing the development of cholestatic liver injury and fibrosis after bile duct ligation (BDL). APPROACH AND RESULTS: To generalize these observations, we suppressed ß-catenin in Mdr2 knockout (KO) mice, which develop sclerosing cholangitis due to regurgitation of BA from leaky ducts. When ß-catenin was knocked down (KD) in KO for 2 weeks, hepatic and biliary injury were exacerbated in comparison to KO given placebo, as shown by serum biochemistry, ductular reaction, inflammation, and fibrosis. Simultaneously, KO/KD livers displayed increased oxidative stress and senescence and an impaired regenerative response. Although the total liver BA levels were similar between KO/KD and KO, there was significant dysregulation of BA transporters and BA detoxification/synthesis enzymes in KO/KD compared with KO alone. Multiphoton intravital microscopy revealed a mixing of blood and bile in the sinusoids, and validated the presence of increased serum BA in KO/KD mice. Although hepatocyte junctions were intact, KO/KD livers had significant canalicular defects, which resulted from loss of hepatocyte polarity. Thus, in contrast to the protective effect of ß-catenin KD in BDL model, ß-catenin KD in Mdr2 KO aggravated rather than alleviated injury by interfering with expression of BA transporters, hepatocyte polarity, canalicular structure, and the regenerative response. CONCLUSIONS: The resulting imbalance between ongoing injury and restitution led to worsening of the Mdr2 KO phenotype, suggesting caution in targeting ß-catenin globally for all cholestatic conditions.


Asunto(s)
Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/genética , Colestasis/etiología , Colestasis/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/patología , Colestasis/genética , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Ratones Noqueados , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA