Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Arch Biochem Biophys ; 753: 109926, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346547

RESUMEN

Of the more than 100 families of glycosyltransferases, family 1 glycosyltransferases catalyze glycosylation using uridine diphosphate (UDP)-sugar as a sugar donor and are thus referred to as UDP-sugar:glycosyl transferases. The blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin, flavone, and metal ions. Flavone 7-O-ß-glucoside-4'-O-ß-glucoside in the plant is sequentially biosynthesized from flavons by UDP-glucose:flavone 4'-O-glucosyltransferase (NmF4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (NmF4'G7GT). To identify the molecular mechanisms of glucosylation of flavone, the crystal structures of NmF4'G7GT in its apo form and in complex with UDP-glucose or luteolin were determined, and molecular structure prediction using AlphaFold2 was conducted for NmF4'GT. The crystal structures revealed that the size of the ligand-binding pocket and interaction environment for the glucose moiety at the pocket entrance plays a critical role in the substrate preference in NmF4'G7GT. The substrate specificity of NmF4'GT was examined by comparing its model structure with that of NmF4'G7GT. The structure of NmF4'GT may have a smaller acceptor pocket, leading to a substrate preference for non-glucosylated flavones (or flavone aglycones).


Asunto(s)
Flavonas , Glucosiltransferasas , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Ligandos , Uridina Difosfato Glucosa/química , Glucosa , Glicosiltransferasas , Glucósidos , Especificidad por Sustrato
2.
J Agric Food Chem ; 71(33): 12549-12557, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552844

RESUMEN

Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.


Asunto(s)
Uridina Difosfato Glucosa , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo , Sacarosa/química , Sacarosa/metabolismo , Mutación , Cinética , Modelos Moleculares , Manosa/química , Manosa/metabolismo , Estructura Terciaria de Proteína
3.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 537-547, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35607964

RESUMEN

Glucosylsucroses are potentially useful as additives in cosmetic and pharmaceutical formulations. Although enzymatic synthesis of glucosylsucroses is the most efficient method for their production, the key enzyme that produces them has remained unknown. Here, we report that glucosylsucrose synthase from (TeGSS) catalyzes the synthesis of glucosylsucrose using sucrose and UDP-glucose as substrates. These saccharides are homologous to glucosylsucroses produced by sp. PCC 7120 (referred to as protein alr1000). When the ratio of UDP-glucose to sucrose is relatively high, TeGSS from cyanobacteria can hydrolyze excess UDP-glucose to UDP and glucose, indicating that sucrose provides a feedback mechanism for the control of glucosylsucrose synthesis. In the present study, we solved the crystal structure of TeGSS bound to UDP and sucrose. Our structure shows that the catalytic site contains a circular region that may allow glucosylsucroses with a right-hand helical structure to enter the catalytic site. Because active site residues Tyr18 and Arg179 are proximal to UDP and sucrose, we mutate these residues (., Y18F and R179A) and show that they exhibit very low activity, supporting their role as catalytic groups. Overall, our study provides insight into the catalytic mechanism of TeGSS.


Asunto(s)
Glucosiltransferasas , Uridina Difosfato Glucosa , Glucosa , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Modelos Moleculares , Sacarosa/metabolismo , Trisacáridos , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
4.
Plant J ; 110(5): 1493-1497, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35362151

RESUMEN

Biosynthesis of plant cell walls requires UDP-glucose as the substrate for cellulose biosynthesis, and as an intermediate for the synthesis of other matrix polysaccharides. The sucrose cleaving enzyme sucrose synthase (SUS) is thought to have a central role in UDP-glucose biosynthesis, and a long-held and much debated hypothesis postulates that SUS is required to supply UDP-glucose to cellulose biosynthesis. To investigate the role of SUS in cellulose biosynthesis of Arabidopsis thaliana we characterized mutants in which four or all six Arabidopsis SUS genes were disrupted. These sus mutants showed no growth phenotypes, vascular tissue cell wall defects, or changes in cellulose content. Moreover, the UDP-glucose content of rosette leaves of the sextuple sus mutants was increased by approximately 20% compared with wild type. It can thus be concluded that cellulose biosynthesis is able to employ alternative UDP-glucose biosynthesis pathway(s), and thereby the model of SUS requirements for cellulose biosynthesis in Arabidopsis can be refuted.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sacarosa/metabolismo , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
5.
Nat Commun ; 12(1): 7030, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857750

RESUMEN

Steviol glycosides are the intensely sweet components of extracts from Stevia rebaudiana. These molecules comprise an invariant steviol aglycone decorated with variable glycans and could widely serve as a low-calorie sweetener. However, the most desirable steviol glycosides Reb D and Reb M, devoid of unpleasant aftertaste, are naturally produced only in trace amounts due to low levels of specific ß (1-2) glucosylation in Stevia. Here, we report the biochemical and structural characterization of OsUGT91C1, a glycosyltransferase from Oryza sativa, which is efficient at catalyzing ß (1-2) glucosylation. The enzyme's ability to bind steviol glycoside substrate in three modes underlies its flexibility to catalyze ß (1-2) glucosylation in two distinct orientations as well as ß (1-6) glucosylation. Guided by the structural insights, we engineer this enzyme to enhance the desirable ß (1-2) glucosylation, eliminate ß (1-6) glucosylation, and obtain a promising catalyst for the industrial production of naturally rare but palatable steviol glycosides.


Asunto(s)
Diterpenos de Tipo Kaurano/síntesis química , Glucósidos/síntesis química , Glicosiltransferasas/química , Oryza/enzimología , Proteínas de Plantas/química , Edulcorantes/síntesis química , Secuencia de Carbohidratos , Dominio Catalítico , Diterpenos de Tipo Kaurano/metabolismo , Expresión Génica , Glucosa/química , Glucosa/metabolismo , Glucósidos/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Cinética , Modelos Moleculares , Oryza/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Stevia/química , Stevia/enzimología , Especificidad por Sustrato , Edulcorantes/metabolismo , Gusto/fisiología , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
6.
Protein Sci ; 30(9): 1882-1894, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076307

RESUMEN

Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4-amino-4,6-dideoxy-d-glucose, also known as d-viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide-linked sugar, which in the Mimivirus is thought to be UDP-d-glucose. The enzyme required for the installment of the amino group at the C-4' position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5'-phosphate-dependent enzyme, referred to as L136. For this analysis, three high-resolution X-ray structures were determined: the wildtype enzyme/pyridoxamine 5'-phosphate/dTDP complex and the site-directed mutant variant K185A in the presence of either UDP-4-amino-4,6-dideoxy-d-glucose or dTDP-4-amino-4,6-dideoxy-d-glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP-d-glucose or dTDP-d-glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three-dimensional architecture was previously reported by this laboratory. As determined in this investigation, DesI shows a profound preference in its catalytic efficiency for the dTDP-linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three-dimensional model for a virally encoded PLP-dependent enzyme and thus provides new information on sugar aminotransferases in general.


Asunto(s)
Acanthamoeba/virología , Coenzimas/química , Mimiviridae/enzimología , Fosfato de Piridoxal/química , Transaminasas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Mimiviridae/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Transaminasas/genética , Transaminasas/metabolismo , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805949

RESUMEN

Here, we report a biochemical characterization of recombinant maize indole-3-acetyl-ß-d-glucose (IAGlc) synthase which glucosylates indole-3-acetic acid (IAA) and thus abolishes its auxinic activity affecting plant hormonal homeostasis. Substrate specificity analysis revealed that IAA is a preferred substrate of IAGlc synthase; however, the enzyme can also glucosylate indole-3-butyric acid and indole-3-propionic acid with the relative activity of 66% and 49.7%, respectively. KM values determined for IAA and UDP glucose are 0.8 and 0.7 mM, respectively. 2,4-Dichlorophenoxyacetic acid is a competitive inhibitor of the synthase and causes a 1.5-fold decrease in the enzyme affinity towards IAA, with the Ki value determined as 117 µM, while IAA-Asp acts as an activator of the synthase. Two sugar-phosphate compounds, ATP and glucose-1-phosphate, have a unique effect on the enzyme by acting as activators at low concentrations and showing inhibitory effect at higher concentrations (above 0.6 and 4 mM for ATP and glucose-1-phosphate, respectively). Results of molecular docking revealed that both compounds can bind to the PSPG (plant secondary product glycosyltransferase) motif of IAGlc synthase; however, there are also different potential binding sites present in the enzyme. We postulate that IAGlc synthase may contain more than one binding site for ATP and glucose-1-phosphate as reflected in its activity modulation.


Asunto(s)
Glucosiltransferasas/química , Uridina Difosfato Glucosa/química , Zea mays/enzimología , Ácido 2,4-Diclorofenoxiacético/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sitios de Unión , Cationes , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Glucosa/química , Glucofosfatos/química , Glucosiltransferasas/antagonistas & inhibidores , Homeostasis , Concentración de Iones de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Recombinantes/química , Especificidad por Sustrato , Zea mays/efectos de los fármacos
8.
NMR Biomed ; 34(7): e4511, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772915

RESUMEN

Nucleotide sugars are required for the synthesis of glycoproteins and glycolipids, which play crucial roles in many cellular functions such as cell communication and immune responses. Uridine diphosphate-glucose (UDP-Glc) was previously believed to be the only nucleotide sugar detectable in brain by 31 P-MRS. Using spectra of high SNR and high resolution acquired at 7 T, we showed that multiple nucleotide sugars are coexistent in brain and can be measured simultaneously. In addition to UDP-Glc, these also include UDP-galactose (UDP-Gal), -N-acetyl-glucosamine (UDP-GlcNAc) and -N-acetyl-galactosamine (UDP-GalNAc), collectively denoted as UDP(G). Coexistence of these UDP(G) species is evident from a quartet-like multiplet at -9.8 ppm (M-9.8 ), which is a common feature seen across a wide age range (24-64 years). Lineshape fitting of M-9.8 allows an evaluation of all four UDP(G) components, which further aids in analysis of a mixed signal at -8.2 ppm (M-8.2 ) for deconvolution of NAD+ and NADH. For a group of seven young healthy volunteers, the concentrations of UDP(G) species were 0.04 ± 0.01 mM for UDP-Gal, 0.07 ± 0.03 mM for UDP-Glc, 0.06 ± 0.02 mM for UDP-GalNAc and 0.08 ± 0.03 mM for UDP-GlcNA, in reference to ATP (2.8 mM). The combined concentration of all UDP(G) species (average 0.26 ± 0.06 mM) was similar to the pooled concentration of NAD+ and NADH (average 0.27 ± 0.06 mM, with a NAD+ /NADH ratio of 6.7 ± 2.1), but slightly lower than previously found in an older cohort (0.31 mM). The in vivo NMR analysis of UDP-sugar composition is consistent with those from tissue extracts by other modalities in the literature. Given that glycosylation is dependent on the availability of nucleotide sugars, assaying multiple nucleotide sugars may provide valuable insights into potential aberrant glycosylation, which has been implicated in certain diseases such as cancer and Alzheimer's disease.


Asunto(s)
Encéfalo/diagnóstico por imagen , Hexosas/metabolismo , Espectroscopía de Resonancia Magnética , Uridina Difosfato Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Femenino , Humanos , Masculino , NAD/metabolismo , Fósforo , Procesamiento de Señales Asistido por Computador , Uridina Difosfato Glucosa/síntesis química , Uridina Difosfato Glucosa/química , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33729990

RESUMEN

Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Celulosa/metabolismo , Glucosiltransferasas/química , Uridina Difosfato Glucosa/química , Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Manganeso/química , Manganeso/metabolismo , Mutación , Multimerización de Proteína , Uridina Difosfato Glucosa/metabolismo
10.
Mol Biol Rep ; 48(2): 1697-1706, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33528727

RESUMEN

Plant sucrose-phosphate synthase (SPS) contains a glycosyltransferase domain, which specifically catalyzes reactions with the nucleotide sugar uridine diphosphate glucose (UDP-G) as a donor substrate. Unlike plant SPS, bacterial SPS is predicted to bind other nucleotide sugars, such as adenosine diphosphate glucose (ADP-G). This study aimed to identify the UDP-G binding site of sugarcane (Saccharum officinarum) SPS (SoSPS1) and to improve its affinity for ADP-G by site-directed mutagenesis. To achieve targeted mutagenesis, amino acid distribution and comparative modeling studies were performed, followed by site-directed mutagenesis of SoSPS1 in the putative UDP-G binding motif. The N-terminal deletion of SoSPS1 (∆N-SoSPS1) was used for enzymatic analysis. The results showed that mutations in the R-X4-K, E-X7-E, and H-X5-V motifs significantly affect UDP-G and ADP-G binding. Mutations at R496 and K501 severely attenuate the affinity for UDP-G. Additionally, alanine substitutions at E591 and V570 decreased the UDP-G affinity but remarkably increased its ADP-G affinity. The R-X4-K motif plays a crucial role in the UDP-G binding site and catalytic activity of plant SPS; thus, its alteration to other amino acids was not viable. The E-X7-E and H-X5-V motifs may bind to the nucleotide glucose substrate, indicating that these motifs are involved in substrate specificity. These results agree with substrate docking simulations at the mutated residue positions, supporting the experimental results. These results demonstrate that mutation of E591 and V570 severely attenuated the UDP-G affinity, while retaining its activity against ADP-G, offering strategic insights into increasing sucrose synthesis and plant growth.


Asunto(s)
Adenosina Difosfato Glucosa/química , Glucosiltransferasas/química , Saccharum/enzimología , Saccharum/genética , Uridina Difosfato Glucosa/química , Adenosina Difosfato Glucosa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/metabolismo , Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , N-Glicosil Hidrolasas/metabolismo , Proteínas Recombinantes , Saccharum/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Uridina Difosfato Glucosa/metabolismo
11.
J Plant Physiol ; 252: 153245, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32750644

RESUMEN

Volatile benzenoids/phenylpropanoids are characteristic scent compounds in petunia flowers and are reported to be stored as glycosides in the vacuoles of petal cells. Here, we used transcriptomics and co-expression approaches with volatile benzenoid/phenylpropanoid biosynthetic genes to identify three petunia genes (UGT85A96, UGT85A97, and UGT85A98) encoding UDP-glycosyltransferase. The analyses of spatiotemporal gene expression revealed that all UGT85 genes were highly expressed in floral tissues such as petals and pistils. Functional characterization of recombinant UGT85A96 and UGT85A98 proteins expressed in Escherichia coli showed that UGT85A98 could transfer a glucosyl moiety from UDP-glucose to the hydroxyl group of various substrates including volatile benzenoids/phenylpropanoids, terpene alcohol, flavonoids, and C6 alcohol, whereas UGT85A96 specifically catalyzes the glucosylation of 2-phenylethanol and benzyl alcohol. This report describes the first experimental evidence to identify UGT enzymes that catalyze the glycosylation of volatile benzenoids/phenylpropanoids in petunia flowers.


Asunto(s)
Glucosiltransferasas/metabolismo , Petunia/enzimología , Uridina Difosfato Glucosa/química , Clonación Molecular , Flores/enzimología
12.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 7): 314-319, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627747

RESUMEN

Mycobacterium tuberculosis possesses the ability to undergo physiological adaptations in order to persist during the prolonged course of infection despite the active immune response of the host and in order to overcome multiple environmental changes. Previous studies have proposed that M. tuberculosis CuvA (Rv1422; MtCuvA) might play a critical role in the adaptation of the bacterium to environmental changes, such as nutrient utilization and alteration of the growth rate. However, the detailed function of MtCuvA still remains unclear owing to a lack of structural information. To better understand its role in host adaptation, MtCuvA was purified to homogeneity and was crystallized for the first time using the hanging-drop vapor-diffusion method. The crystal of MtCuvA diffracted to a resolution of 2.1 Šand belonged to the orthorhombic space group P212121, with unit-cell parameters a = 47.27, b = 170.93, c = 178.10 Å. The calculated Matthews coefficient (VM) was 2.4 Å3 Da-1, with a solvent content of 48.02%, and thus four molecules appeared to be present in the asymmetric unit. Moreover, it is reported that MtCuvA can bind to the cell-wall precursor components uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/química , Secuencia de Aminoácidos , Escherichia coli , Ligandos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Unión Proteica , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Virulencia/genética , Difracción de Rayos X
13.
Int J Biol Macromol ; 157: 510-521, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32344088

RESUMEN

Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-ß-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.


Asunto(s)
Enzimas Inmovilizadas , Glucósidos/química , Glucosiltransferasas/química , Glicosiltransferasas/química , Uridina Difosfato Glucosa/química , Biocatálisis , Cromatografía Líquida de Alta Presión , Estabilidad de Enzimas , Glucosiltransferasas/aislamiento & purificación , Glicosilación , Glicosiltransferasas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Propiedades de Superficie , Termodinámica
14.
Biochem J ; 476(21): 3227-3240, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31455720

RESUMEN

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (ß3-ß4 loop to α0 helix) and movement of a 'shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a 'closed' state compared with its 'open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Asunto(s)
Proteínas Fúngicas/química , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Magnaporthe/enzimología , Biocatálisis , Dimerización , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosiltransferasas/genética , Magnaporthe/química , Magnaporthe/genética , Dominios Proteicos , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
15.
Biochem Biophys Res Commun ; 510(2): 315-321, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30709586

RESUMEN

Lotus (Nelumbo nucifera Gaertn.), one of the earliest plants in angiosperms, is a perennial aquatic herb widely distributed throughout Eastern Asia. Quercetin and its glycosides are the most abundant phenolic compounds in lotus with multiple pharmacological activities. Although many flavonoid O-glycosyltransferases involved in the biosynthesis of quercetin glycosides have been identified from terrestrial plants, no glycosyltransferase has been identified in aquatic plants. In this study, a new glycosyltransferase (NpUGT6) was identified from the embryo of Nelumbo nucifera (Nelumbinis Plumula). Function characterization demonstrated that NpUGT6 exhibited a robust capability to regio- and stereo-specific O-glycosylation at the 3-hydroxy group of quercetin scaffolds with UDP-glucose. Moreover, the O-glycosylation catalyzed by NpUGT6 was reversible. NpUGT6 is the first identified flavonoid O-glycosyltransferase from aquatic plants. Its sequence will provide useful guidance for the discovery of additional flavonoid glycosyltransferses in Nymphaeaceae and other aquatic plants.


Asunto(s)
Flavonoides/química , Glicosiltransferasas/química , Nelumbo/enzimología , Proteínas de Plantas/química , Catálisis , Clonación Molecular , Escherichia coli/metabolismo , Glicósidos/química , Glicosilación , Concentración de Iones de Hidrógeno , Cinética , Filogenia , Quercetina/análogos & derivados , Quercetina/química , Proteínas Recombinantes/química , Semillas/enzimología , Especificidad por Sustrato , Uridina Difosfato Glucosa/química
16.
J Struct Biol ; 204(3): 371-379, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30395931

RESUMEN

Sterol glycosyltransferases catalyze the formation of a variety of glycosylated sterol derivatives and are involved in producing a plethora of bioactive natural products. To understand the molecular mechanism of sterol glycosyltransferases, we determined crystal structures of a sterol glycosyltransferase UGT51 from Saccharomyces cerevisiae. The structures of the UGT51 and its complex with uridine diphosphate glucose (UDPG) were solved at resolutions of 2.77 Šand 1.9 Å, respectively. The structural analysis revealed that a long hydrophobic cavity, 9.2 Šin width and 17.6 Šin length located at the N-terminal domain of UGT51, is suitable for the accommodation of sterol acceptor substrates. Furthermore, a short, conserved sequence of S847-M851 was identified at the bottom of the hydrophobic cavity, which might be the steroid binding site and play an important role for the UGT51 catalytic specificity towards sterols. Molecular docking simulations indicated that changed unique interaction network in mutant M7_1 (S801A/L802A/V804A/K812A/E816K/S849A/N892D), with an 1800-fold activity improvement toward an unnatural substrate protopanaxadiol (PPD), might influence its substrate preference. This study reported the first sterol glycosyltransferase structure, providing a molecular blueprint for generating tailored sterol glycosyltransferases as potential catalytic elements in synthetic biology.


Asunto(s)
Proteínas Relacionadas con la Autofagia/química , Dominio Catalítico , Glucosiltransferasas/química , Simulación del Acoplamiento Molecular , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión/genética , Biocatálisis , Cristalografía por Rayos X , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Mutación , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Esteroles/química , Esteroles/metabolismo , Especificidad por Sustrato , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
17.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1348-1357, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844747

RESUMEN

Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.


Asunto(s)
Proteínas Bacterianas/química , Erwinia amylovora/enzimología , Glucofosfatos/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Uridina Difosfato Glucosa/química , Uridina Trifosfato/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Erwinia amylovora/química , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosamina/análogos & derivados , Galactosamina/química , Galactosamina/metabolismo , Galactosafosfatos/química , Galactosafosfatos/metabolismo , Expresión Génica , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosafosfatos/química , Manosafosfatos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Trifosfato/metabolismo
18.
Biochem Biophys Res Commun ; 491(2): 265-270, 2017 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-28739255

RESUMEN

WP1066 is a well-known inhibitor of the JAK/STAT3 signaling pathway. By a screen of known small molecule inhibitors of various enzymes and protein factors, we identified WP1066 as a ceramide glucosyltransferase inhibitor. Ceramide glucosyltransferase catalyzes the first glycosylation step during glycosphingolipid synthesis. We found that WP1066 inhibited the activity of ceramide glucosyltransferase with an IC50 of 7.2 µM, and that its action was independent of JAK/STAT3 pathway blockade. Moreover, the modes of inhibition of ceramide glucosyltransferase were uncompetitive with respect to both C6-NBD-cermide and UDP-glucose.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Tirfostinos/farmacología , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animales , Línea Celular , Ceramidas/química , Ceramidas/metabolismo , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/metabolismo , Cinética , Melanocitos/citología , Melanocitos/enzimología , Piridinas/química , Ratas , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Tirfostinos/química , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
19.
Protein Pept Lett ; 24(8): 735-741, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741460

RESUMEN

BACKGROUND: The biocatalytic oxidation of UDP-glucose in the presence of NAD+ is catalyzed by UDP-glucose dehydrogenases. OBJECTIVES: The main objective of this study was the characterization of a UDP-glucose dehydrogenase (AmUGD) from Akkermansia muciniphila, a bacterium originally isolated from human faeces in an anaerobic medium containing gastric mucin as the sole carbon source. METHODS: The biochemical analysis of AmUGD was performed using a plate reader-based assay measuring the reaction by-product NADH. Furthermore, HPLC- and MALDI-ToF-MS- based methods were used for the enzyme characterization. RESULTS: The recombinant form of the protein was expressed in E. coli and the purified enzyme exhibited optimum levels of activity at 37°C and pH 9.0. While the enzyme is active in the absence of metal ions, the presence of Zn2+ ions results in markedly enhanced levels of catalysis. CONCLUSION: This study describes the first characterization of a nucleotide-processing enzyme from A. muciniphila. The ease of expression and purification of this enzyme make it ideal for biotechnological applications such as the enzymatic synthesis of nucleotide sugars, which may in turn be used for the synthesis of complex carbohydrates or glycoconjugates.


Asunto(s)
Proteínas Bacterianas/metabolismo , NAD/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Verrucomicrobia/química , Proteínas Bacterianas/genética , Cationes Bivalentes , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Calor , Concentración de Iones de Hidrógeno , Cinética , NAD/química , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa Deshidrogenasa/genética , Verrucomicrobia/enzimología , Zinc/química , Zinc/metabolismo
20.
Protein Pept Lett ; 24(8): 729-734, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741459

RESUMEN

BACKGROUND: The biosynthesis of NDP-glucoses is based on the nucleotide transfer from NTP donor substrates to glucose-1-phosphates catalyzed by glucose-1-phosphate nucleotidyltransferases. OBJECTIVES: The cloning and biochemical characterization of a glucose-1-phosphate nucleotidyltransferase (TiGPNT) from the deep sea bacterium Thermodesulfatator indicus. METHODS: The biochemical parameters of recombinant TiGPNT were determined using a plate reader-based coupled enzymatic assay, in which the reaction product UDP-glucose is oxidized in the presence of NAD+ forming UDP-Glucuronic acid and NADH. The substrate promiscuity of the enzyme was determined using thin-layer chromatography and MALDI-ToF mass spectrometry. RESULTS: TiGPNT was recombinantly expressed under the control of the T7 promoter in Escherichia coli and could be successfully enriched by heat treatment at 80°C for 30 min. The obtained enzyme worked best at pH 7.5 and the optimum reaction temperature was determined to be 50°C. Interestingly, TiGPNT could fully retain its activity even after extended incubation periods at temperatures of up to 80°C. The enzyme was strongly inhibited in the presence of Cu2+ and Fe2+ ions and EDTA. Among the tested glycosyl donor substrates, TiGPNT showed strict specificity towards glucose-1-phosphate. At the same time, TiGPNT was highly promiscuous towards all tested nucleotide donor substrates. CONCLUSION: TiGPNT shows comparable biochemical features in regards to pH optima, temperature optima and the substrate specificity to characterized glucose-1-phosphate nucleotidyltransferase from other species. The enzyme was capable of utilizing glucose-1-phosphate and all tested nucleoside triphosphate donors as substrates. The high activity of the enzyme and the simple purification protocol make TiGPNT an interesting new biocatalyst for the synthesis of glucose-diphospho nucleosides.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/metabolismo , Glucofosfatos/química , NAD/química , Uridina Difosfato Glucosa/química , Organismos Acuáticos , Bacterias/enzimología , Proteínas Bacterianas/genética , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glucofosfatos/metabolismo , Calor , Concentración de Iones de Hidrógeno , Cinética , NAD/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Uridina Difosfato Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA