Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39334886

RESUMEN

Functional melanocortin receptor (MCR) genes have been identified in the genomes of early chordates, e.g., the cyclostomata. Whether they appear in the most ancient chordates such as cephalochordate and urochordata, however, remains unclear due to missing genetic data. Herein, we studied five putative (from NCBI database), sequence-based predicted MCR-like receptors from urochordata and cephalochordate, including Styela clava, Ciona intestinalis, Branchiostoma floridae, and Branchiostoma belcheri. The BLAST and phylogenetic analyses suggested a relationship between these specific receptors and vertebrate MCRs. However, several essential residues for MCR functions in vertebrates were missing in these putative chordata MCRs. To test receptor functionality, several experimental studies were conducted. Binding assays and functional analyses showed no specific binding and no ligand-induced cAMP or ERK1/2 signaling (with either endogenous α-MSH or synthetic ligands for MC4R), despite successfully expressing four receptors in HEK 293T cells. These four receptors showed high basal cAMP signaling, likely mediated by ligand-independent Gs coupling. In summary, our results suggest that the five predicted MCR-like receptors are, indeed, class A G protein-coupled receptors (GPCRs), which in four cases show high constitutive activity in the Gs-cAMP signaling pathway but are not MCR-like receptors in terms of ligand recognition of known MCR ligands. These receptors might be ancient G protein-coupled receptors with so far unidentified ligands.


Asunto(s)
Filogenia , Receptores de Melanocortina , Animales , Humanos , Receptores de Melanocortina/metabolismo , Receptores de Melanocortina/genética , Células HEK293 , AMP Cíclico/metabolismo , Secuencia de Aminoácidos , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Urocordados/genética , Urocordados/metabolismo
2.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39162337

RESUMEN

Sequencing the mitochondrial genome of the tunicate Oikopleura dioica is a challenging task due to the presence of long poly-A/T homopolymer stretches, which impair sequencing and assembly. Here, we report on the sequencing and annotation of the majority of the mitochondrial genome of O. dioica by means of combining several DNA and amplicon reads obtained by Illumina and MinIon Oxford Nanopore Technologies with public RNA sequences. We document extensive RNA editing, since all homopolymer stretches present in the mitochondrial DNA correspond to 6U-regions in the mitochondrial RNA. Out of the 13 canonical protein-coding genes, we were able to detect eight, plus an unassigned open reading frame that lacked sequence similarity to canonical mitochondrial protein-coding genes. We show that the nad3 gene has been transferred to the nucleus and acquired a mitochondria-targeting signal. In addition to two very short rRNAs, we could only identify a single tRNA (tRNA-Met), suggesting multiple losses of tRNA genes, supported by a corresponding loss of mitochondrial aminoacyl-tRNA synthetases in the nuclear genome. Based on the eight canonical protein-coding genes identified, we reconstructed maximum likelihood and Bayesian phylogenetic trees and inferred an extreme evolutionary rate of this mitochondrial genome. The phylogenetic position of appendicularians among tunicates, however, could not be accurately determined.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Filogenia , Edición de ARN , ARN de Transferencia , Urocordados , Animales , ARN de Transferencia/genética , Urocordados/genética , Núcleo Celular/genética
3.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39162185

RESUMEN

Oikopleura dioica is a planktonic tunicate (Appendicularia class) found extensively across the marine waters of the globe. The genome of a single male individual collected from Okinawa, Japan was sequenced using the single-molecule PacBio Hi-Fi method and assembled with NOVOLoci. The mitogenome is 39,268 bp long, featuring a large control region of around 22,000 bp. We annotated the proteins atp6, cob, cox1, cox2, cox3, nad1, nad4, and nad5, and found one more open reading frame that did not match any known gene. This study marks the first complete mitogenome assembly for an appendicularian, and reveals that A and T homopolymers cumulatively account for nearly half of its length. This reference sequence will be an asset for environmental DNA and phylogenetic studies.


Asunto(s)
Genoma Mitocondrial , Urocordados , Animales , Urocordados/genética , Masculino , Filogenia
4.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39114943

RESUMEN

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.


Asunto(s)
Regiones Promotoras Genéticas , Animales , Regiones Promotoras Genéticas/genética , Proteína MioD/metabolismo , Proteína MioD/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores Reguladores Miogénicos/genética , Urocordados/genética , Urocordados/embriología , Desarrollo de Músculos/genética
5.
Dev Biol ; 516: 207-220, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39181419

RESUMEN

Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.


Asunto(s)
Factor de Transcripción PAX3 , Factor de Transcripción PAX7 , Urocordados , Animales , Urocordados/embriología , Urocordados/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Epitelio/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/embriología , Diferenciación Celular/genética , Cresta Neural/metabolismo , Cresta Neural/embriología
6.
Genes (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927593

RESUMEN

Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.


Asunto(s)
Evolución Molecular , Urocordados , Animales , Humanos , Urocordados/genética , Urocordados/clasificación , Cadherinas/genética , Cadherinas/metabolismo , Filogenia
7.
Dev Biol ; 514: 1-11, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38878991

RESUMEN

In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.


Asunto(s)
Linaje de la Célula , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Placa Neural/embriología , Placa Neural/metabolismo , Placa Neural/citología , Ciona intestinalis/embriología , Ciona intestinalis/genética , Urocordados/embriología , Urocordados/genética , Análisis de la Célula Individual , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología
8.
Biochim Biophys Acta Bioenerg ; 1865(3): 149046, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642871

RESUMEN

The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.


Asunto(s)
Ciona intestinalis , Proteínas Mitocondriales , Fosforilación Oxidativa , Animales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/enzimología , Humanos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimología , Urocordados/genética , Urocordados/enzimología , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Filogenia , Proteínas de Plantas
9.
Genome Res ; 34(3): 426-440, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621828

RESUMEN

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Asunto(s)
Genoma , Urocordados , Animales , Urocordados/genética , Urocordados/clasificación , Evolución Molecular , Femenino , Filogenia , Masculino , Sintenía
10.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561802

RESUMEN

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Morfogénesis/genética , Epidermis , Sistema Nervioso Periférico , Larva/genética , Celulosa
11.
Genome Biol Evol ; 16(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441487

RESUMEN

Ascidian embryos have been studied since the birth of experimental embryology at the end of the 19th century. They represent textbook examples of mosaic development characterized by a fast development with very few cells and invariant cleavage patterns and lineages. Ascidians belong to tunicates, the vertebrate sister group, and their study is essential to shed light on the emergence of vertebrates. Importantly, deciphering developmental gene regulatory networks has been carried out mostly in two of the three ascidian orders, Phlebobranchia and Stolidobranchia. To infer ancestral developmental programs in ascidians, it is thus essential to carry out molecular embryology in the third ascidian order, the Aplousobranchia. Here, we present genomic resources for the colonial aplousobranch Clavelina lepadiformis: a transcriptome produced from various embryonic stages, and an annotated genome. The assembly consists of 184 contigs making a total of 233.6 Mb with a N50 of 8.5 Mb and a L50 of 11. The 32,318 predicted genes capture 96.3% of BUSCO orthologs. We further show that these resources are suitable to study developmental gene expression and regulation in a comparative framework within ascidians. Additionally, they will prove valuable for evolutionary and ecological studies.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Vertebrados/genética , Genoma , Genómica , Evolución Biológica
12.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474039

RESUMEN

Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.


Asunto(s)
Ciona , Urocordados , Animales , Cromatina , Urocordados/genética , Secuenciación de Inmunoprecipitación de Cromatina , Morfogénesis , Factores de Transcripción/genética
13.
Sci Adv ; 10(13): eadi9035, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552007

RESUMEN

The pharyngeal endoderm, an innovation of deuterostome ancestors, contributes to pharyngeal development by influencing the patterning and differentiation of pharyngeal structures in vertebrates; however, the evolutionary origin of the pharyngeal organs in vertebrates is largely unknown. The endostyle, a distinct pharyngeal organ exclusively present in basal chordates, represents a good model for understanding pharyngeal organ origins. Using Stereo-seq and single-cell RNA sequencing, we constructed aspatially resolved single-cell atlas for the endostyle of the ascidian Styela clava. We determined the cell composition of the hemolymphoid region, which illuminates a mixed ancestral structure for the blood and lymphoid system. In addition, we discovered a cluster of hair cell-like cells in zone 3, which has transcriptomic similarity with the hair cells of the vertebrate acoustico-lateralis system. These findings reshape our understanding of the pharynx of the basal chordate and provide insights into the evolutionary origin of multiplexed pharyngeal organs.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Faringe , Vertebrados , Evolución Biológica , Diferenciación Celular
14.
PLoS Biol ; 22(3): e3002555, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478577

RESUMEN

The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Urocordados/metabolismo , Adhesivos/metabolismo , Larva , Biomarcadores/metabolismo , Factores de Transcripción/metabolismo , Metamorfosis Biológica
15.
Nat Commun ; 15(1): 2395, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493164

RESUMEN

Zygotic genome activation (ZGA) is a universal process in early embryogenesis of metazoan, when the quiescent zygotic nucleus initiates global transcription. However, the mechanisms related to massive genome activation and allele-specific expression (ASE) remain not well understood. Here, we develop hybrids from two deeply diverged (120 Mya) ascidian species to symmetrically document the dynamics of ZGA. We identify two coordinated ZGA waves represent early developmental and housekeeping gene reactivation, respectively. Single-cell RNA sequencing reveals that the major expression wave exhibits spatial heterogeneity and significantly correlates with cell fate. Moreover, allele-specific expression occurs in a species- rather than parent-related manner, demonstrating the divergence of cis-regulatory elements between the two species. These findings provide insights into ZGA in chordates.


Asunto(s)
Cordados , Urocordados , Animales , Urocordados/genética , Alelos , Cigoto/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica
16.
Microbiologyopen ; 13(2): e1405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38481089

RESUMEN

Ascidians, known for their color variation, host species-specific microbial symbiont communities. Some ascidians can also transition into a nonfiltering (resting) physiological state. Recent studies suggest that the microbial symbiont communities may vary across different physiological states and color morphs of the host. The colonial ascidian, Polyclinum constellatum, which exhibits several color morphs in the Caribbean Sea, periodically ceases its filtering activity. To investigate if color variation in P. constellatum is indicative of sibling speciation, we sequenced fragments of the ribosomal 18S rRNA and the mitochondrial cytochrome oxidase subunit I genes. Additionally, we sequenced a fragment of the 16S rRNA gene to characterize the microbial communities of two common color morphs (red and green) in colonies that were either actively filtering (active) or nonfiltering (resting). Phylogenetic analyses of both ascidian genes resulted in well-supported monophyletic clades encompassing all color variants of P. constellatum. Interestingly, no significant differences were observed among the microbial communities of the green and red morphs, suggesting that color variation in this species is a result of intraspecific variation. However, the host's physiological state significantly influenced the microbial community structure. Nonfiltering (resting) colonies hosted higher relative abundances of Kiloniella (Alphaproteobacteria) and Fangia (Gammaproteobacteria), while filtering colonies hosted more Reugeria (Alphaproteobacteria) and Endozoicomonas (Gammaproteobacteria). This study demonstrates that microbial symbiont communities serve as reliable indicators of the taxonomic state of their host and are strongly influenced by the host's feeding condition.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Microbiota , Urocordados , Animales , Urocordados/genética , Urocordados/microbiología , Filogenia , ARN Ribosómico 16S/genética , Microbiota/genética , Gammaproteobacteria/genética , Alphaproteobacteria/genética
17.
Dev Biol ; 509: 28-42, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342399

RESUMEN

The early stages of regeneration after injury are similar to those of wound healing. The ascidian Botrylloides diegensis can regenerate an entire adult from a small fragment of vascular tunic following the removal of all zooids in an injury-induced regeneration model. We investigated the molecular and cellular changes following injury to determine the differences between the healing process and the initiation of whole-body regeneration (WBR). We conducted transcriptome analysis at specific time points during regeneration and wound healing to identify differentially expressed genes (DEGs) and the unique biological processes associated with each state. Our findings revealed 296 DEGs at 10 h post-injury (hpi), with 71 highly expressed in healed tissue and 225 expressed during the WBR process. These DEGs were predicted to play roles in tissue reorganization, integrin signaling, extracellular matrix organization, and the innate immune system. Pathway analysis of the upregulated genes in the healed tunic indicated functional enrichment related to tissue repair, as has been observed in other species. Additionally, we examined the cell types in the tunic and ampullae in both tissue states using histology and in situ hybridization for six genes identified by transcriptome analysis. We observed strong mRNA expression in cells within the WBR tunic, and in small RNA-positive granules near the tunic edge. We hypothesized that many of these genes function in the compaction of the ampullae tunic, which is a pivotal process for WBR and dormancy in B. diegensis, and in an immune response. These findings establish surprising similarities between ascidian regeneration and human wound healing, emphasizing the potential for future investigations into human regenerative and repair mechanisms. This study provides valuable insights into the gene sets specifically activated during regeneration compared to wound healing, shedding light on the divergent activities of these processes.


Asunto(s)
Urocordados , Animales , Humanos , Urocordados/genética , Perfilación de la Expresión Génica , Transducción de Señal , Cicatrización de Heridas/genética
18.
PeerJ ; 12: e16969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410796

RESUMEN

Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.


Asunto(s)
Briozoos , Urocordados , Animales , Reacción en Cadena de la Polimerasa/métodos , Monitoreo Biológico , Agua de Mar , Urocordados/genética
19.
Cells Dev ; 177: 203885, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38007002

RESUMEN

Epithelial outpocketing, tunic softening, mesenchymal cell death, dedifferentiation/transdifferentiation, and resistance to environmental stress are major events that occur during asexual reproduction by budding in the tunicate, Polyandrocarpa misakiensis. To identify the molecules underlying these events and compare them with those operating in regeneration, differential gene expression profiles were developed in buds and zooids. Among approximately 40,000 contigs, 21 genes were identified as potentially being involved in asexual reproduction. Genes related to tunic softening, phagocytosis-stimulating opsonin, and stress resistance were activated in the very early stage of budding. At the later stage of budding when buds separated from the parent and entered the developmental stage, genes for cell adhesion, cell death, and differentiation were activated. The transcription factor AP2 was spatio-temporally expressed in a similar pattern to the tunic-softening gene endoglucanase (EndoG). AP2 mRNA activated EndoG when introduced into zooids by electroporation. Eight out of 21 budding-related genes were significantly activated by AP2 mRNA. Polyandrocarpa zooids possess regenerative potential other than budding. Zooidal regeneration accompanied cell death/phagocytosis, cell-cell adhesion/communication, and dedifferentiation/redifferentiation. Consistent with morphological features, eight related genes including SP8 transcription factor were activated during zooidal regeneration. Most of these genes were identical to those induced by AP2 mRNA, indicating that asexual reproduction in P. misakiensis shares AP2-regulated downstream genes with zooidal regeneration. The present results suggest that SP8 may be indispensable for both budding and regeneration and that the potential dedifferentiation-related gene SOXB1 plays a minor role in zooidal regeneration.


Asunto(s)
Factor de Transcripción AP-2 , Urocordados , Animales , Factor de Transcripción AP-2/metabolismo , Urocordados/genética , Urocordados/metabolismo , Reproducción Asexuada/genética , Diferenciación Celular , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA