Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Front Neural Circuits ; 18: 1408187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818309

RESUMEN

Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Embarazo , Animales , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Femenino , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Etanol/efectos adversos , Etanol/administración & dosificación , Etanol/farmacología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/crecimiento & desarrollo , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/crecimiento & desarrollo
2.
Neurotoxicology ; 102: 96-105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582332

RESUMEN

BACKGROUND: Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE: To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS: Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS: The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS: Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.


Asunto(s)
Manganeso , Exposición Profesional , Bulbo Olfatorio , Humanos , Adulto , Masculino , Exposición Profesional/efectos adversos , Persona de Mediana Edad , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/metabolismo , Femenino , Minería , Sudáfrica , Adulto Joven
3.
J Neurochem ; 158(5): 1186-1198, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34338310

RESUMEN

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


Asunto(s)
Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Corteza Olfatoria/citología , Corteza Olfatoria/fisiología , Factores de Edad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Odorantes , Bulbo Olfatorio/efectos de los fármacos , Corteza Olfatoria/efectos de los fármacos , Vías Olfatorias/citología , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/fisiología , Olfato/fisiología
4.
J Neurosci Res ; 99(6): 1579-1597, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33605466

RESUMEN

Spinal cord injury (SCI) is generally the consequence of physical damage, which may result in devastating consequences such as paraplegia or paralysis. Some certain candidates for SCI repair are olfactory ensheathing cells (OECs), which are unique glial cells located in the transition region of the peripheral nervous system and central nervous system and perform neuron regeneration in the olfactory system throughout life. Culture studies have clarified many properties of OECs, but their mechanisms of actions are not fully understood. Successful results achieved in animal models showcased that SCI treatment with OEC transplants is suitable for clinical trials. However, clinical trials are limited by difficulties like cell acquisition for autograft transplantation. Despite the improvements in both animal and clinical studies so far, there is still insufficient information about the mechanism of actions, adverse effects, proper application methods, effective subtypes, and sources of cells. This review summarizes pre-clinical and clinical literature focused on the cellular characterization of both OECs in vitro and post-transplantation. We highlight the roles and effects of OECs on (a) the injury-induced glial milieu, (b) neuronal growth/regeneration, and (c) functional recovery after injury. Due to the shown benefits of OECs with in vitro and animal studies and a limited number of clinical trials, where safety and effectivity were shown, it is necessary to conduct more studies on OECs to obtain effective and feasible treatment methods.


Asunto(s)
Neuroglía/efectos de los fármacos , Neuroglía/patología , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Humanos , Bulbo Olfatorio/citología , Recuperación de la Función , Medicina Regenerativa
5.
J Alzheimers Dis ; 82(s1): S19-S35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33459655

RESUMEN

BACKGROUND: Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-ß peptide (Aß), which can be prevented by reducing Aß levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aß accumulation and Aß-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE: To characterize the effects of Aß on OB and PCx excitability/coupling and on olfaction. METHODS: Aß oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS: Aß did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aß. Finally, Aß treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION: Our results show that Aß-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Trastornos del Olfato/inducido químicamente , Trastornos del Olfato/fisiopatología , Bulbo Olfatorio/fisiopatología , Vías Olfatorias/fisiopatología , Fragmentos de Péptidos/toxicidad , Corteza Piriforme/fisiopatología , Péptidos beta-Amiloides/administración & dosificación , Animales , Ratones , Microinyecciones/métodos , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fragmentos de Péptidos/administración & dosificación , Corteza Piriforme/efectos de los fármacos
6.
Elife ; 92020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32662420

RESUMEN

Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.


Asunto(s)
Anestesia , Odorantes , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Corteza Piriforme/fisiología , Animales , Ketamina/farmacología , Ratones , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Sinapsis/fisiología , Xilazina/farmacología
7.
Genes (Basel) ; 11(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316323

RESUMEN

Olfaction and satiety status influence each other: cues from the olfactory system modulate eating behavior, and satiety affects olfactory abilities. However, the neural mechanisms governing the interactions between olfaction and satiety are unknown. Here, we investigate how an animal's nutritional state modulates neural activity and odor representation in the mitral/tufted cells of the olfactory bulb, a key olfactory center that plays important roles in odor processing and representation. At the single-cell level, we found that the spontaneous firing rate of mitral/tufted cells and the number of cells showing an excitatory response both increased when mice were in a fasted state. However, the neural discrimination of odors slightly decreased. Although ongoing baseline and odor-evoked beta oscillations in the local field potential in the olfactory bulb were unchanged with fasting, the amplitude of odor-evoked gamma oscillations significantly decreased in a fasted state. These neural changes in the olfactory bulb were independent of the sniffing pattern, since both sniffing frequency and mean inhalation duration did not change with fasting. These results provide new information toward understanding the neural circuit mechanisms by which olfaction is modulated by nutritional status.


Asunto(s)
Conducta Animal/efectos de los fármacos , Discriminación en Psicología , Ayuno , Fenómenos Fisiológicos del Sistema Nervioso , Odorantes/análisis , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Potenciales de Acción , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos
8.
Cell Rep ; 28(11): 2966-2978.e5, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509755

RESUMEN

The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.


Asunto(s)
Conducta Animal/fisiología , Discriminación en Psicología/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Olfato/fisiología , Potenciales de Acción/fisiología , Animales , Discriminación en Psicología/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Odorantes , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Tiempo de Reacción/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología
9.
PLoS One ; 14(8): e0211175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31412038

RESUMEN

Olfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. While imaging studies indicate overlap in limbic and cortical somatosensory areas activated by nasal trigeminal and olfactory stimuli, there is also potential cross-talk at the level of the olfactory epithelium, the olfactory bulb and trigeminal brainstem. Here we explored the influence of olfactory and trigeminal signaling in the nasal cavity. A forced choice water consumption paradigm was used to ascertain whether trigeminal and olfactory stimuli could influence behaviour in mice. Mice avoided water sources surrounded by both volatile TRPV1 (cyclohexanone) and TRPA1 (allyl isothiocyanate) irritants and the aversion to cyclohexanone was mitigated when combined with a pure odorant (rose fragrance, phenylethyl alcohol, PEA). To determine whether olfactory-trigeminal interactions within the nose could potentially account for this behavioural effect we recorded from single trigeminal sensory axons innervating the nasal respiratory and olfactory epithelium using an isolated in vitro preparation. To circumvent non-specific effects of chemical stimuli, optical stimulation was used to excite olfactory sensory neurons in mice expressing channel-rhodopsin (ChR2) under the olfactory marker protein (OMP) promoter. Photoactivation of olfactory sensory neurons produced no modulation of axonal action potential conduction in individual trigeminal axons. Similarly, no evidence was found for collateral branching of trigeminal axon that might serve as a conduit for cross-talk between the olfactory and respiratory epithelium and olfactory dura mater. Using direct assessment of action potential activity in trigeminal axons we observed neither paracrine nor axon reflex mediated cross-talk between olfactory and trigeminal sensory systems in the rodent nasal cavity. Our current results suggest that olfactory sensory neurons exert minimal influence on trigeminal signals within the nasal cavity.


Asunto(s)
Cavidad Nasal/inervación , Odorantes/análisis , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología , Nervio Trigémino/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Receptoras Olfatorias/efectos de la radiación , Nervio Trigémino/efectos de los fármacos
10.
Neuroscience ; 409: 26-34, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31022464

RESUMEN

Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). The present study was designed to analyze how different odorant molecular features can affect the local field potential (LFP) oscillatory signals in both the aPC and the pPC in anesthetized rats. As reported in the OB, three oscillatory patterns were observed: standard pattern (gamma + beta), gamma-only and beta-only patterns. These patterns occurred with significantly different probabilities in the two PC areas. We observed that odor identity has a strong influence on the probability of occurrence of LFP beta and gamma oscillatory activity in the aPC. Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Ritmo beta/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Odorantes , Vías Olfatorias/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Ritmo beta/fisiología , Ritmo Gamma/fisiología , Masculino , Vías Olfatorias/fisiología , Percepción Olfatoria/efectos de los fármacos , Percepción Olfatoria/fisiología , Corteza Piriforme/fisiología , Ratas , Ratas Wistar
11.
Psychiatry Res Neuroimaging ; 283: 67-76, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30554128

RESUMEN

Human olfactory processing is understudied relative to other sensory modalities, despite its links to neurodevelopmental and neurodegenerative disorders. To address this limitation, we developed a fast, robust fMRI odor paradigm that is appropriate for all ages and levels of cognitive functioning. To test this approach, thirty-four typically developing children aged 7-12 underwent fMRI during brief, repeated exposure to phenylethyl alcohol, a flower-scented odor. Prior to fMRI scanning, olfactory testing (odor detection and identification) was conducted. During fMRI stimulus presentation, odorant release was synchronized to each participant's inspiratory phase to ensure participants were inhaling during the odorant exposure. Between group differences and correlations between activation and odor detection threshold scores were tested using the FMRIB Software Library. Results demonstrated that our 2-min paradigm significantly activated primary and secondary olfactory regions. In addition, a significant relationship between odor detection threshold and higher activation in the right amygdala and lower activation in the left frontal, insular, occipital, and cerebellar regions was observed, suggesting that this approach is sensitive to individual differences in olfactory processing. These findings demonstrate the feasibility of studying olfactory function in children using brain imaging techniques.


Asunto(s)
Desarrollo Infantil/fisiología , Imagen por Resonancia Magnética/métodos , Odorantes , Vías Olfatorias/diagnóstico por imagen , Vías Olfatorias/fisiología , Olfato/fisiología , Administración por Inhalación , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/efectos de los fármacos , Cerebelo/diagnóstico por imagen , Cerebelo/efectos de los fármacos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Niño , Desarrollo Infantil/efectos de los fármacos , Femenino , Humanos , Masculino , Neuroimagen/métodos , Vías Olfatorias/efectos de los fármacos , Olfato/efectos de los fármacos
12.
Elife ; 72018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30576281

RESUMEN

Habituation is the process that enables salience filtering, precipitating perceptual changes that alter the value of environmental stimuli. To discern the neuronal circuits underlying habituation to brief inconsequential stimuli, we developed a novel olfactory habituation paradigm, identifying two distinct phases of the response that engage distinct neuronal circuits. Responsiveness to the continuous odor stimulus is maintained initially, a phase we term habituation latency and requires Rutabaga Adenylyl-Cyclase-depended neurotransmission from GABAergic Antennal Lobe Interneurons and activation of excitatory Projection Neurons (PNs) and the Mushroom Bodies. In contrast, habituation depends on the inhibitory PNs of the middle Antenno-Cerebral Track, requires inner Antenno-Cerebral Track PN activation and defines a temporally distinct phase. Collectively, our data support the involvement of Lateral Horn excitatory and inhibitory stimulation in habituation. These results provide essential cellular substrates for future analyses of the molecular mechanisms that govern the duration and transition between these distinct temporal habituation phases. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Antenas de Artrópodos/fisiología , Drosophila melanogaster/efectos de los fármacos , Interneuronas/fisiología , Cuerpos Pedunculados/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Acetatos/farmacología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/efectos de los fármacos , Benzaldehídos/farmacología , Diacetil/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Expresión Génica , Hidroxiurea/toxicidad , Interneuronas/citología , Interneuronas/efectos de los fármacos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Octanoles/farmacología , Odorantes/análisis , Vías Olfatorias/citología , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Transmisión Sináptica/fisiología
13.
Elife ; 72018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575520

RESUMEN

The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , N-Metilaspartato/farmacología , Corteza Piriforme/fisiología , Animales , Calcio/metabolismo , Dendritas/efectos de los fármacos , Dendritas/fisiología , Femenino , Ácido Glutámico/metabolismo , Masculino , Modelos Neurológicos , Dinámicas no Lineales , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
14.
Neuron ; 100(3): 669-683.e5, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30318416

RESUMEN

Neuronal computations critically depend on the connectivity rules that govern the convergence of excitatory and inhibitory synaptic signals onto individual neurons. To examine the functional synaptic organization of a distributed memory network, we performed voltage clamp recordings in telencephalic area Dp of adult zebrafish, the homolog of olfactory cortex. In neurons of posterior Dp, odor stimulation evoked large, recurrent excitatory and inhibitory inputs that established a transient state of high conductance and synaptic balance. Excitation and inhibition in individual neurons were co-tuned to different odors and correlated on slow and fast timescales. This precise synaptic balance implies specific connectivity among Dp neurons, despite the absence of an obvious topography. Precise synaptic balance stabilizes activity patterns in different directions of coding space and in time while preserving high bandwidth. The coordinated connectivity of excitatory and inhibitory subnetworks in Dp therefore supports fast recurrent memory operations.


Asunto(s)
Corteza Olfatoria/fisiología , Vías Olfatorias/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Muscimol/administración & dosificación , Corteza Olfatoria/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Pez Cebra
15.
J Toxicol Sci ; 43(9): 531-536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30185693

RESUMEN

Perinatal exposure to bisphenol A (BPA) causes several alterations in brain function and behavior. In previous studies, we showed that prenatal treatment with low-level BPA impaired gender-specific behavior, enhanced depression-like behavior, and augmented behavioral responses to predator odor in rats. On this premise, we hypothesized that BPA-treated rats were more susceptible to predator odor stress. To test the potential neural mechanism underlying this effect, we conducted an electrophysiological study of neurons in the medial amygdala-a regional component of the olfactory pathway with high estrogen and androgen receptor expression, and thus a potential target of BPA-in rats exposed to BPA. Extracellular recordings were obtained during the presentation of 3 plant odors and 3 predator odorants. Odor-responsive neurons in BPA-exposed rats showed greater activity in response to fox odor than did those in control rats. This finding complements the results of our previous behavioral study in which BPA-exposed rats exhibited enhanced avoidance behavior in response to fox odor. Given the close relationship between olfactory signaling and the stress response system, we suspect that BPA modifies the olfactory pathway at the level of the medial amygdala and thus modulates the corresponding stress response.


Asunto(s)
Conducta Agonística/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Compuestos de Bencidrilo/efectos adversos , Complejo Nuclear Corticomedial/efectos de los fármacos , Complejo Nuclear Corticomedial/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Odorantes , Vías Olfatorias/efectos de los fármacos , Fenoles/efectos adversos , Conducta Predatoria/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Estrés Psicológico/etiología , Animales , Femenino , Masculino , Vías Olfatorias/metabolismo , Vías Olfatorias/fisiopatología , Embarazo , Ratas Wistar , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo
16.
J Neurosci ; 38(43): 9240-9251, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30201774

RESUMEN

Odorants are coded in the primary olfactory processing centers by spatially and temporally distributed patterns of glomerular activity. Whereas the spatial distribution of odorant-induced responses is known to be conserved across individuals, the universality of its temporal structure is still debated. Via fast two-photon calcium imaging, we analyzed the early phase of neuronal responses in the form of the activity onset latencies in the antennal lobe projection neurons of honeybee foragers. We show that each odorant evokes a stimulus-specific response latency pattern across the glomerular coding space. Moreover, we investigate these early response features for the first time across animals, revealing that the order of glomerular firing onsets is conserved across individuals and allows them to reliably predict odorant identity, but not concentration. These results suggest that the neuronal response latencies provide the first available code for fast odor identification.SIGNIFICANCE STATEMENT Here, we studied early temporal coding in the primary olfactory processing centers of the honeybee brain by fast imaging of glomerular responses to different odorants across glomeruli and across individuals. Regarding the elusive role of rapid response dynamics in olfactory coding, we were able to clarify the following aspects: (1) the rank of glomerular activation is conserved across individuals, (2) its stimulus prediction accuracy is equal to that of the response amplitude code, and (3) it contains complementary information. Our findings suggest a substantial role of response latencies in odor identification, anticipating the static response amplitude code.


Asunto(s)
Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Tiempo de Reacción/fisiología , Olfato/fisiología , Animales , Abejas , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Vías Olfatorias/química , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Olfato/efectos de los fármacos
17.
Nat Commun ; 9(1): 2735, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013078

RESUMEN

The hippocampus is essential for representing spatiotemporal context and establishing its association with the sensory details of daily life to form episodic memories. The olfactory cortex in particular shares exclusive anatomical connections with the hippocampus as a result of their common evolutionary history. Here we selectively inhibit hippocampal projections to the anterior olfactory nucleus (AON) during behavioural tests of contextually cued odour recall. We find that spatial odour memory and temporal odour memory are independently impaired following inhibition of distinct, topographically organized hippocampal-AON pathways. Our results not only reveal a longstanding unknown function for the AON but offer new mechanistic insights regarding the representation of odours in episodic memory.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Odorantes/análisis , Corteza Olfatoria/fisiología , Percepción Espacial/fisiología , Percepción del Tiempo/fisiología , Alcanos/farmacología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Señales (Psicología) , Electrodos Implantados , Genes Reporteros , Hipocampo/anatomía & histología , Hipocampo/efectos de los fármacos , Limoneno/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/fisiología , Corteza Olfatoria/anatomía & histología , Corteza Olfatoria/efectos de los fármacos , Vías Olfatorias/anatomía & histología , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/fisiología , Optogenética , Pentanoles/farmacología , Técnicas Estereotáxicas , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiología , Proteína Fluorescente Roja
18.
Proc Natl Acad Sci U S A ; 115(21): 5588-5593, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735707

RESUMEN

Nervous systems must distinguish sensory signals derived from an animal's own movements (reafference) from environmentally derived sources (exafference). To accomplish this, motor networks producing reafference transmit motor information, via a corollary discharge circuit (CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs have been described in most sensory modalities, none have been observed projecting to an olfactory pathway. In moths, two mesothoracic to deutocerebral histaminergic neurons (MDHns) project from flight sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL), where they provide the sole source of histamine (HA), but whether they represent a CDC is unknown. We demonstrate that MDHn spiking activity is positively correlated with wing-motor output and increased before bouts of motor activity, suggesting that MDHns communicate global locomotor state, rather than providing a precisely timed motor copy. Within the AL, HA application sharpened entrainment of projection neuron responses to odor stimuli embedded within simulated wing-beat-induced flows, whereas MDHn axotomy or AL HA receptor (HA-r) blockade reduced entrainment. This finding is consistent with higher-order CDCs, as the MDHns enhanced rather than filtered entrainment of AL projection neurons. Finally, HA-r blockade increased odor detection and discrimination thresholds in behavior assays. These results establish MDHns as a CDC that modulates AL temporal resolution, enhancing odor-guided behavior. MDHns thus appear to represent a higher-order CDC to an insect olfactory pathway; this CDC's unique nature highlights the importance of motor-to-sensory signaling as a context-specific mechanism that fine-tunes sensory function.


Asunto(s)
Vuelo Animal , Histamina/farmacología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Alas de Animales/fisiología , Animales , Manduca , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/fisiología , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Alas de Animales/efectos de los fármacos
19.
Chem Senses ; 43(3): 197-203, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29401258

RESUMEN

Odorants are perceived orthonasally (nostrils) or retronasally (oral cavity). Prior research indicates route of delivery impacts odorant perception, pleasantness, and directed behaviors thus suggesting differential processing of olfactory information. Adaptation is a form of neural processing resulting in decreased perceived intensity of a stimulus following prolonged and continuous exposure. The present study objective was to determine whether route of delivery differentially impacts olfactory adaptation and whether cross-adaptation occurs between orthonasal and retronasal pathways. Linalool (12%) or vanillin (25%) were delivered orthonasally [6 L/min (LPM)] and retronasally (8 LPM) in air phase through a custom-built olfactometer. Perceived odorant intensity was collected every 5 min over 10-min exposure. Immediately following the exposure period, cross-adaptation was assessed by shunting the delivery of the odorant from the nostrils to the oral cavity, or vice versa. A control study was also completed in which subjects underwent the orthonasal adaptation protocol using stimulus concentrations matched to the intensity of restronasal stimuli (e.g., 1.5% linalool and 6.25% vanillin). Following orthonasal delivery of both high and low vanillin concentrations, results showed perceived intensity decreased significantly at 5 and 10 min. High concentrations of orthonasal linalool similarly decreased significantly whereas lower concentrations decreased but did not reach statistical significance. Linalool and vanillin delivered retronasally did not adapt as perceived intensity actually increased significantly following a 10-min exposure. In addition, evidence of cross-adaptation was not obvious following extended odorant exposure from either delivery pathway. This study suggests that olfactory processing may be affected by the route of odorant delivery.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Benzaldehídos/administración & dosificación , Benzaldehídos/farmacología , Monoterpenos/administración & dosificación , Monoterpenos/farmacología , Boca/efectos de los fármacos , Cavidad Nasal/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Monoterpenos Acíclicos , Administración Intranasal , Administración Oral , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Odorantes , Estimulación Química , Adulto Joven
20.
J Neurosci ; 37(49): 12018-12030, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109236

RESUMEN

In nature, animals normally perceive sensory information on top of backgrounds. Thus, the neural substrate to perceive under background conditions is inherent in all sensory systems. Where and how sensory systems process backgrounds is not fully understood. In olfaction, just a few studies have addressed the issue of odor coding on top of continuous odorous backgrounds. Here, we tested how background odors are encoded by mitral cells (MCs) in the olfactory bulb (OB) of male mice. Using in vivo two-photon calcium imaging, we studied how MCs responded to odors in isolation versus their responses to the same odors on top of continuous backgrounds. We show that MCs adapt to continuous odor presentation and that mixture responses are different when preceded by background. In a subset of odor combinations, this history-dependent processing was useful in helping to identify target odors over background. Other odorous backgrounds were highly dominant such that target odors were completely masked by their presence. Our data are consistent in both low and high odor concentrations and in anesthetized and awake mice. Thus, odor processing in the OB is strongly influenced by the recent history of activity, which could have a powerful impact on how odors are perceived.SIGNIFICANCE STATEMENT We examined a basic feature of sensory processing in the olfactory bulb. Specifically, we measured how mitral cells adapt to continuous background odors and how target odors are encoded on top of such background. Our results show clear differences in odor coding based on the immediate history of the stimulus. Our results support the argument that odor coding in the olfactory bulb depends on the recent history of the sensory environment.


Asunto(s)
Memoria/fisiología , Odorantes , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/citología , Vías Olfatorias/efectos de los fármacos , Olfato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA