Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Cell Mol Life Sci ; 81(1): 302, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008111

RESUMEN

DNAX-activating protein of 12 kDa (DAP12) is a transmembrane adapter protein expressed in lymphoid and myeloid lineage cells. It interacts with several immunoreceptors forming functional complexes that trigger intracellular signaling pathways. One of the DAP12 associated receptors is the triggering receptor expressed on myeloid cells 2 (TREM2). Mutations in both DAP12 and TREM2 have been linked to neurodegenerative diseases. However, mechanisms involved in the regulation of subcellular trafficking and turnover of these proteins are not well understood. Here, we demonstrate that proteasomal degradation of DAP12 is increased in the absence of TREM2. Interestingly, unassembled DAP12 is also retained in early secretory compartments, including the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC), thereby preventing its transport to the plasma membrane. We also show that unassembled DAP12 interacts with the retention in ER sorting receptor 1 (RER1). The deletion of endogenous RER1 decreases expression of functional TREM2-DAP12 complexes and membrane proximal signaling, and resulted in almost complete inhibition of phagocytic activity in THP-1 differentiated macrophage-like cells. These results indicate that RER1 acts as an important regulator of DAP12 containing immunoreceptor complexes and immune cell function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Retículo Endoplásmico , Glicoproteínas de Membrana , Receptores Inmunológicos , Vías Secretoras , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Retículo Endoplásmico/metabolismo , Vías Secretoras/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HEK293 , Transducción de Señal , Fagocitosis/genética , Macrófagos/metabolismo , Transporte de Proteínas , Unión Proteica , Animales , Aparato de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000067

RESUMEN

Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Sistemas CRISPR-Cas , alfa-Amilasas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Secretoras/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Regulación Bacteriana de la Expresión Génica , Lipoproteínas , Proteínas de la Membrana
3.
Appl Microbiol Biotechnol ; 108(1): 89, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194145

RESUMEN

The industrial bacterium Bacillus licheniformis has long been used as a microbial factory for the production of enzymes due to its ability to secrete copious amounts of native extracellular proteins and its generally regarded as safe (GRAS) status. However, most attempts to use B. licheniformis to produce heterologous and cytoplasmic enzymes primarily via the general secretory (Sec) pathway have had limited success. The twin-arginine transport (Tat) pathway offers a promising alternative for the extracellular export of Sec-incompatible proteins because it transports full, correctly folded proteins. However, compared to the Sec pathway, the yields of the Tat pathway have historically been too low for commercial use. To improve the export efficiency of the Tat pathway, we identified the optimal Tat-dependent signal peptides and increased the abundance of the Tat translocases, the signal peptidase (SPase), and the intracellular chaperones. These strategic modifications significantly improved the Tat-dependent secretion of the cytoplasmic enzyme arginase into the culture medium using B. licheniformis. The extracellular enzymatic activity of arginase showed a 5.2-fold increase after these modifications. Moreover, compared to the start strain B. licheniformis 0F3, the production of extracellular GFP was improved by 3.8 times using the strategic modified strain B. licheniformis 0F13, and the extracellular enzymatic activity of SOX had a 1.3-fold increase using the strain B. licheniformis 0F14. This Tat-based production chassis has the potential for enhanced production of Sec-incompatible enzymes, therefore expanding the capability of B. licheniformis as an efficient cellular factory for the production of high-value proteins. KEY POINTS: • Systematic genetic modification of Tat-pathway in B. licheniformis. • Significant enhancement of the secretion capacity of Tat pathway for delivery the cytoplasmic enzyme arginase. • A new platform for efficient extracellular production of Sec-incompatible enzymes.


Asunto(s)
Arginasa , Bacillus licheniformis , Vías Secretoras/genética , Bacillus licheniformis/genética , Citoplasma , Citosol
4.
Metab Eng ; 74: 36-48, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36057427

RESUMEN

Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.


Asunto(s)
Pichia , Vías Secretoras , Pichia/genética , Pichia/metabolismo , Vías Secretoras/genética , Proteínas Recombinantes , Transporte de Proteínas/genética , Ingeniería Metabólica
5.
Microb Cell Fact ; 21(1): 134, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35786380

RESUMEN

BACKGROUND: Eukaryotic cells are often preferred for the production of complex enzymes and biopharmaceuticals due to their ability to form post-translational modifications and inherent quality control system within the endoplasmic reticulum (ER). A non-conventional yeast species, Yarrowia lipolytica, has attracted attention due to its high protein secretion capacity and advanced secretory pathway. Common means of improving protein secretion in Y. lipolytica include codon optimization, increased gene copy number, inducible expression, and secretory tag engineering. In this study, we develop effective strategies to enhance protein secretion using the model heterologous enzyme T4 lysozyme. RESULTS: By engineering the commonly used native lip2prepro secretion signal, we have successfully improved secreted T4 lysozyme titer by 17-fold. Similar improvements were measured for other heterologous proteins, including hrGFP and [Formula: see text]-amylase. In addition to secretion tag engineering, we engineered the secretory pathway by expanding the ER and co-expressing heterologous enzymes in the secretion tag processing pathway, resulting in combined 50-fold improvement in T4 lysozyme secretion. CONCLUSIONS: Overall, our combined strategies not only proved effective in improving the protein production in Yarrowia lipolytica, but also hint the possible existence of a different mechanism of secretion regulation in ER and Golgi body in this non-conventional yeast.


Asunto(s)
Yarrowia , Retículo Endoplásmico/metabolismo , Muramidasa/genética , Muramidasa/metabolismo , Transporte de Proteínas/genética , Vías Secretoras/genética , Yarrowia/genética , Yarrowia/metabolismo
6.
Sci Rep ; 12(1): 3280, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228567

RESUMEN

Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.


Asunto(s)
Proteómica , Vías Secretoras , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas de la Membrana/metabolismo , Vías Secretoras/genética
7.
Cell Mol Life Sci ; 79(4): 199, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35312866

RESUMEN

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.


Asunto(s)
Glicosaminoglicanos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/fisiología , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Aparato de Golgi/patología , Proteínas de la Matriz de Golgi/genética , Células HeLa , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Vías Secretoras/genética , Sulfatos/metabolismo
8.
Metab Eng ; 72: 171-187, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35301123

RESUMEN

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Asunto(s)
Vías Secretoras , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Vías Secretoras/genética
9.
Commun Biol ; 5(1): 173, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217767

RESUMEN

Malfunction of autophagy contributes to the progression of many chronic age-associated diseases. As such, improving normal proteostatic mechanisms is an active target for biomedical research and a key focal area for aging research. Endoplasmic reticulum (ER)-based acetylation has emerged as a mechanism that ensures proteostasis within the ER by regulating the induction of ER specific autophagy. ER acetylation is ensured by two ER-membrane bound acetyltransferases, ATase1 and ATase2. Here, we show that ATase inhibitors can rescue ongoing disease manifestations associated with the segmental progeria-like phenotype of AT-1 sTg mice. We also describe a pipeline to reliably identify ATase inhibitors with promising druggability properties. Finally, we show that successful ATase inhibitors can rescue the proteopathy of a mouse model of Alzheimer's disease. In conclusion, our study proposes that ATase-targeting approaches might offer a translational pathway for many age-associated proteopathies affecting the ER/secretory pathway.


Asunto(s)
Retículo Endoplásmico , Vías Secretoras , Acetilación , Acetiltransferasas/metabolismo , Animales , Autofagia/genética , Retículo Endoplásmico/metabolismo , Ratones , Vías Secretoras/genética
10.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164011

RESUMEN

Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 ∘C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Bacillus subtilis/metabolismo , Pichia/enzimología , Proteínas Recombinantes/metabolismo , Acetaldehído/metabolismo , Aldehído Oxidorreductasas/genética , Bacillus subtilis/genética , Clonación Molecular/métodos , Ingeniería Metabólica/métodos , Organismos Modificados Genéticamente , Pichia/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Vías Secretoras/genética
11.
Cells ; 10(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34943782

RESUMEN

The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Trastornos Congénitos de Glicosilación/genética , Aparato de Golgi/genética , Vías Secretoras/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Glicosilación , Aparato de Golgi/metabolismo , Homeostasis/genética , Humanos , Mutación/genética , Proteínas SNARE/genética , Azúcares/efectos adversos , Azúcares/metabolismo
12.
J Endocrinol ; 252(1): 1-13, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34643545

RESUMEN

Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues' levels. This study's goal was to determine whether ALDO's biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO's biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG's MR (thereby activating the ultrashort feedback loop) reduced CYP11B2's activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO's biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO's circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.


Asunto(s)
Aldosterona/metabolismo , Caracteres Sexuales , Zona Glomerular/metabolismo , Angiotensina II/farmacología , Animales , Células Cultivadas , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Vías Secretoras/efectos de los fármacos , Vías Secretoras/genética , Vías Secretoras/fisiología , Zona Glomerular/citología , Zona Glomerular/efectos de los fármacos
13.
J Microbiol Biotechnol ; 31(7): 1035-1043, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34226403

RESUMEN

Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular ß-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular ß-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.


Asunto(s)
Celobiosa/metabolismo , Celulosa/análogos & derivados , Dextrinas/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa/metabolismo , Biocombustibles , Celulosa/metabolismo , Etanol/metabolismo , Fermentación , Glicosilación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ingeniería Metabólica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras/genética , beta-Glucosidasa/genética
14.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34241635

RESUMEN

Here we introduce zapalog-mediated endoplasmic reticulum trap (zapERtrap), which allows one to use light to precisely trigger forward trafficking of diverse integral membrane proteins from internal secretory organelles to the cell surface with single cell and subcellular spatial resolution. To demonstrate its utility, we use zapERtrap in neurons to dissect where synaptic proteins emerge at the cell surface when processed through central (cell body) or remote (dendrites) secretory pathways. We reveal rapid and direct long-range trafficking of centrally processed proteins deep into the dendritic arbor to synaptic sites. Select proteins were also trafficked to the plasma membrane of the axon initial segment, revealing a novel surface trafficking hotspot. Proteins locally processed through dendritic secretory networks were widely dispersed before surface insertion, challenging assumptions for precise trafficking at remote sites. These experiments provide new insights into compartmentalized secretory trafficking and showcase the tunability and spatiotemporal control of zapERtrap, which will have broad applications for regulating cell signaling and function.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Vías Secretoras/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Femenino , Colorantes Fluorescentes/química , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Luz , Masculino , Imagen Molecular/métodos , Neuronas/citología , Cultivo Primario de Células , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/ultraestructura , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
15.
Cell Syst ; 12(9): 873-884.e4, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171228

RESUMEN

Amyloid disorders such as Alzheimer's disease (AD) involve the aggregation of secreted proteins. However, it is largely unclear how secretory-pathway proteins contribute to amyloid formation. We developed a systems biology framework integrating expression data with protein-protein interaction networks to estimate a tissue's fitness for producing specific secreted proteins and analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the AD-associated amyloid precursor protein (APP). While key amyloidogenic pathway components were not differentially expressed in AD brains, we found Aß deposition correlates with systemic down- and upregulation of the secretory-pathway components proximal to APP and amyloidogenic secretases, respectively, in AD. Our analyses suggest that perturbations from three AD risk loci cascade through the APP secretory-support network and into the endocytosis pathway, connecting amyloidogenesis to dysregulation of secretory-pathway components supporting APP and suggesting novel therapeutic targets for AD. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Vías Secretoras/genética
16.
Cancer Sci ; 112(9): 3491-3506, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34036683

RESUMEN

Temozolomide (TMZ) resistance is the main challenge in the management of glioma patients. Heparanase can mediate the secretion and function of exosomes, which are considered to be a promising molecular delivery system for cancer therapy. Therefore, this study aimed to investigate whether heparanase-mediated delivery of exosomes was related to TMZ resistance of glioma. Heparanase was upregulated in TMZ-resistant glioma cells, and overexpression of heparanase led to increased resistance of U87 cells to TMZ. Knockdown of heparanase led to increased sensitivity of TMZ-resistant U251 cells (U251R) cells to TMZ. Heparanase promoted the secretion of exosomes from glioma cells, and coculture with exosomes derived from heparanase knockdown U251R cells partly restored the sensitivity of U251 cells to TMZ compared with exosomes derived from si-control transfected U251R cells. It was identified by circular RNA microarrays that hsa_circ_0042003 was upregulated in exosomes derived from U251R, which could be positively regulated by heparanase. U251R cell-derived exosomal hsa_circ_0042003 conferred the resistance of U251 cells to TMZ. In vivo studies also showed that U251R cell-derived exosomes induced resistance of U251 cells to TMZ, and the combination of tail-injected exosomal si-heparanase or exosomal si-hsa_circ_0042003 and intraperitoneal TMZ applied to nude mice abolished TMZ resistance. Heparanase mediated the transfer of exosomal hsa_circ_0042003 from TMZ-resistant glioma cells to drug-sensitive cells, which contributed to the chemoresistance of glioma to TMZ.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , Glioma/tratamiento farmacológico , Glucuronidasa/metabolismo , ARN Circular/metabolismo , Vías Secretoras/genética , Temozolomida/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Glioma/sangre , Glioma/patología , Glucuronidasa/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Circular/genética , Transfección , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Biosci Bioeng ; 131(6): 589-598, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33827772

RESUMEN

Koji molds, such as Aspergillus oryzae and Aspergillus sojae, are used in the food industry in East Asia and have been explored for the large-scale production of extracellular hydrolases. We previously found that the deletion of a gene encoding a putative GT2 glycosyltransferase increased production of extracellular hydrolases in A. sojae. The gene was named rseA (regulator of the secretory enzyme A). We predicted that intracellular signaling pathways were involved in the increased production of hydrolases in the ΔrseA mutant of A. sojae. However, little has been reported on molecular biological knowledge about A. sojae. Hence, Aspergillus nidulans, a typical model organism used in molecular biology, was employed for the functional characterization of rseA in this study. Deletion of the rseA ortholog in A. nidulans induced increased extracellular production of hydrolases under the solid-state cultivation condition, similar to that in A. sojae. The involvement of the cell wall integrity pathway and the high osmolarity glycerol pathway in ΔrseA was further investigated. The results indicated that the HOG pathway played an important role in the increased extracellular production of hydrolases caused by the deletion of the rseA gene. rseA ortholog in A. nidulans was identical to cpsA, which was reported to function as a regulator of mycotoxin production, morphogenesis, and cell wall biosynthesis. However, this is the first study reporting that rseA/cpsA regulates extracellular hydrolase production in A. nidulans.


Asunto(s)
Aspergillus nidulans/genética , Glicerol/metabolismo , Glicosiltransferasas/genética , Hidrolasas/metabolismo , Aspergillus/enzimología , Aspergillus/genética , Aspergillus nidulans/metabolismo , Pared Celular/metabolismo , Medios de Cultivo/química , Espacio Extracelular/enzimología , Espacio Extracelular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Glicosiltransferasas/metabolismo , Hidrolasas/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Técnicas Microbiológicas , Organismos Modificados Genéticamente , Concentración Osmolar , Vías Secretoras/genética
18.
Sci Rep ; 11(1): 5290, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674702

RESUMEN

Signal peptides and secretory carrier proteins are commonly used to secrete heterologous recombinant protein in Gram-negative bacteria. The Escherichia coli osmotically-inducible protein Y (OsmY) is a carrier protein that secretes a target protein extracellularly, and we have previously applied it in the Bacterial Extracellular Protein Secretion System (BENNY) to accelerate directed evolution. In this study, we reported the first application of random and combinatorial mutagenesis on a carrier protein to enhance total secretory target protein production. After one round of random mutagenesis followed by combining the mutations found, OsmY(M3) (L6P, V43A, S154R, V191E) was identified as the best carrier protein. OsmY(M3) produced 3.1 ± 0.3 fold and 2.9 ± 0.8 fold more secretory Tfu0937 ß-glucosidase than its wildtype counterpart in E. coli strains BL21(DE3) and C41(DE3), respectively. OsmY(M3) also produced more secretory Tfu0937 at different cultivation temperatures (37 °C, 30 °C and 25 °C) compared to the wildtype. Subcellular fractionation of the expressed protein confirmed the essential role of OsmY in protein secretion. Up to 80.8 ± 12.2% of total soluble protein was secreted after 15 h of cultivation. When fused to a red fluorescent protein or a lipase from Bacillus subtillis, OsmY(M3) also produced more secretory protein compared to the wildtype. In this study, OsmY(M3) variant improved the extracellular production of three proteins originating from diverse organisms and with diverse properties, clearly demonstrating its wide-ranging applications. The use of random and combinatorial mutagenesis on the carrier protein demonstrated in this work can also be further extended to evolve other signal peptides or carrier proteins for secretory protein production in E. coli.


Asunto(s)
Sistemas de Secreción Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , Proteínas de Unión Periplasmáticas/metabolismo , Vías Secretoras/genética , Bacillus subtilis/enzimología , Proteínas de Escherichia coli/genética , Lipasa/genética , Lipasa/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microorganismos Modificados Genéticamente , Tasa de Mutación , Proteínas de Unión Periplasmáticas/genética , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/metabolismo , Temperatura , Thermobifida/enzimología , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Proteína Fluorescente Roja
19.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727363

RESUMEN

Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium Synechococcus elongatus uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism. This protein, which is annotated as "hypothetical," is denoted EbsA (essential for biofilm self-suppression A) here. EbsA homologs are highly conserved and widespread in diverse cyanobacteria but are not found outside this clade. We revealed a tripartite complex of EbsA, Hfq, and the ATPase homolog PilB (formerly called T2SE) and demonstrated that each of these components is required for the assembly of the hairlike type IV pili (T4P) appendages, for DNA competence, and affects the exoproteome in addition to its role in biofilm self-suppression. These data are consistent with bioinformatics analyses that reveal only a single set of genes in S. elongatus to serve pilus assembly or protein secretion; we suggest that a single complex is involved in both processes. A phenotype resulting from the impairment of the EbsA homolog in the cyanobacterium Synechocystis sp. strain PCC 6803 implies that this feature is a general cyanobacterial trait. Moreover, comparative exoproteome analyses of wild-type and mutant strains of S. elongatus suggest that EbsA and Hfq affect the exoproteome via a process that is independent of PilB, in addition to their involvement in a T4P/secretion machinery.IMPORTANCE Cyanobacteria, environmentally prevalent photosynthetic prokaryotes, contribute ∼25% of global primary production. Cyanobacterial biofilms elicit biofouling, thus leading to substantial economic losses; however, these microbial assemblages can also be beneficial, e.g., in wastewater purification processes and for biofuel production. Mechanistic aspects of cyanobacterial biofilm development were long overlooked, and genetic and molecular information emerged only in recent years. The importance of this study is 2-fold. First, it identifies novel components of cyanobacterial biofilm regulation, thus contributing to the knowledge of these processes and paving the way for inhibiting detrimental biofilms or promoting beneficial ones. Second, the data suggest that cyanobacteria may employ the same complex for the assembly of the motility appendages, type 4 pili, and protein secretion. A shared pathway was previously shown in only a few cases of heterotrophic bacteria, whereas numerous studies demonstrated distinct systems for these functions. Thus, our study broadens the understanding of pilus assembly/secretion in diverse bacteria and furthers the aim of controlling the formation of cyanobacterial biofilms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/fisiología , Proteoma , Synechococcus/química , Synechococcus/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Biogénesis de Organelos , Transporte de Proteínas , Vías Secretoras/genética , Vías Secretoras/fisiología , Synechococcus/genética
20.
Sci Rep ; 11(1): 2013, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479349

RESUMEN

Nε-lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT-1/SLC33A1, which translocates cytosolic acetyl-CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT-1, as caused by gene mutation or duplication events, results in severe disease phenotypes. Here, we used two models of AT-1 dysregulation to investigate dynamics of the secretory pathway: AT-1 sTg, a model of systemic AT-1 overexpression, and AT-1S113R/+, a model of AT-1 haploinsufficiency. The animals displayed reorganization of the ER, ERGIC, and Golgi apparatus. In particular, AT-1 sTg animals displayed a marked delay in Golgi-to-plasma membrane protein trafficking, significant alterations in Golgi-based N-glycan modification, and a marked expansion of the lysosomal network. Collectively our results indicate that AT-1 is essential to maintain proper organization and engagement of the secretory pathway.


Asunto(s)
Acetilcoenzima A/genética , Acetiltransferasas/genética , Retículo Endoplásmico/genética , Proteínas de Transporte de Membrana/genética , Acetilcoenzima A/metabolismo , Acetilación , Autofagia/genética , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/genética , Aparato de Golgi/genética , Aparato de Golgi/patología , Haploinsuficiencia/genética , Humanos , Lisosomas/genética , Mutación/genética , Procesamiento Proteico-Postraduccional/genética , Transporte de Proteínas/genética , Vías Secretoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA