Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
1.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275069

RESUMEN

Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.


Asunto(s)
Ferritinas , Nanopartículas , Vacunas , Ferritinas/química , Nanopartículas/química , Humanos , Vacunas/química , Antígenos/química , Antígenos/inmunología , Animales , Desarrollo de Vacunas , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química
2.
J Med Chem ; 67(16): 13703-13722, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39115891

RESUMEN

Extracellular vesicles (EVs) can transfer antigens and immunomodulatory molecules, and such EVs released by antigen-presenting cells equipped with immunostimulatory functions have been utilized for vaccine formulations. A prior high-throughput screening campaign led to the identification of compound 634 (1), which enhanced EV release and increased intracellular Ca2+ influx. Here, we performed systematic structure-activity relationship (SAR) studies to investigate the scaffold for its potency as a vaccine adjuvant. Synthesized compounds were analyzed in vitro for CD63 reporter activity (a marker for EV biogenesis) in human THP-1 cells, induction of Ca2+ influx, IL-12 production, and cell viability in murine bone-marrow-derived dendritic cells. The SAR studies indicated that the ester functional group was requisite, and the sulfur atom of the benzothiadiazole ring replaced with a higher selenium atom (9f) or a bioisosteric ethenyl group (9h) retained potency. Proof-of-concept vaccination studies validated the potency of the selected compounds as novel vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos , Tiadiazoles , Relación Estructura-Actividad , Humanos , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/síntesis química , Animales , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Ratones , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células THP-1 , Vacunas/inmunología , Vacunas/química , Ratones Endogámicos C57BL , Femenino , Vesículas Extracelulares/química , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo
3.
J Pharm Pharm Sci ; 27: 12921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114808

RESUMEN

Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.


Asunto(s)
Quitosano , Sistemas de Liberación de Medicamentos , Vacunas , Quitosano/química , Humanos , Vacunas/administración & dosificación , Vacunas/química , Animales , Hidrogeles/química , Hidrogeles/administración & dosificación , Portadores de Fármacos/química
4.
Bioconjug Chem ; 35(8): 1218-1232, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39081220

RESUMEN

Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains ("arms") radiating from a central dendrimer unit ("core") were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20-50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.


Asunto(s)
Dendrímeros , Animales , Dendrímeros/química , Ratones , Polímeros/química , Portadores de Fármacos/química , Vacunas/inmunología , Vacunas/química , Vacunas/administración & dosificación , Humanos , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/química , Vacunas contra el SIDA/administración & dosificación , Poliaminas
5.
J Mater Chem B ; 12(27): 6577-6586, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38872501

RESUMEN

Vaccines aim to efficiently and specifically activate the immune system via a cascade of antigen uptake, processing, and presentation by antigen-presenting cells (APCs) to CD4 and CD8 T cells, which in turn drive humoral and cellular immune responses. The specific formulation of vaccine carriers can not only shield the antigens from premature sequestering before reaching APCs but also favorably promote intracellular antigen presentation and processing. This study compares two different acid-degradable polymeric nanoparticles that are capable of encapsulating a moderately immunogenic antigen, GFP, at nearly full efficacy via electrostatic interactions or molecular affinity between His tag and Ni-NTA-conjugated monomners. This resulted in GFP-encapsulating NPs composed of ketal monomers and crosslinkers (KMX/GFP NPs) and NTA-conjugated ketal monomers and crosslinkers (NKMX/GFP NPs), respectively. Encapsulated GFP was found to be released more rapidly from NKMX/GFP NPs (electrostatic encapsulation) than from KMX/GFP NPs (affinity-driven encapsulation). In vivo vaccination studies demonstrated that while repeated injections of either NP formulation resulted in poorer generation of anti-GFP antibodies than injections of the GFP antigen itself, sequential injections of NPs and GFP as prime and booster vaccines, respectively, restored the humoral response. We proposed that NPs primarily assist APCs in antigen presentation by T cells, and B cells need to be further stimulated by free protein antigens to produce antibodies. The findings of this study suggest that the immune response can be modulated by varying the chemistry of vaccine carriers and the sequences of vaccination with free antigens and antigen-encapsulating NPs.


Asunto(s)
Antígenos , Nanopartículas , Polímeros , Nanopartículas/química , Animales , Polímeros/química , Ratones , Antígenos/inmunología , Antígenos/química , Vacunación , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/inmunología , Femenino , Ratones Endogámicos C57BL , Tamaño de la Partícula , Vacunas/inmunología , Vacunas/química , Vacunas/administración & dosificación
6.
ACS Nano ; 18(26): 16878-16894, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38899978

RESUMEN

Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.


Asunto(s)
Adyuvantes Inmunológicos , Hidróxido de Aluminio , Calcio , Antígenos de Superficie de la Hepatitis B , Silicio , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Silicio/química , Ratones , Antígenos de Superficie de la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/química , Calcio/química , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Ratones Endogámicos C57BL , Femenino , Vacunas/inmunología , Vacunas/química , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Nanopartículas/química , Humanos , Óxido de Aluminio
7.
Adv Healthc Mater ; 13(18): e2304109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849130

RESUMEN

Lipid vesicles are widely used for drug and gene delivery, but their structural instability reduces in vivo efficacy and requires specialized handling. To address these limitations, strategies like lipid cross-linking and polymer-lipid conjugation are suggested to enhance stability and biological efficacy. However, the in vivo metabolism of these altered lipids remains unclear, necessitating further studies. A new stabilization technique without chemical modification is urgently needed. Here, a bio-mimetic approach for fabricating robust multilamellar lipid vesicles to enhance in vivo delivery and stabilization of protein antigens is presented. This method leverages 1-O-acylceramide, a natural skin lipid, to facilitate the self-assembly of lipid nanovesicles. Incorporating 1-O-acylceramide, anchoring lipid bilayers akin to its role in the stratum corneum, provides excellent stability under environmental stresses, including freeze-thaw cycles. Encapsulating ovalbumin as a model antigen and the adjuvant monophosphoryl lipid A demonstrates the vesicle's potential as a nanovaccine platform. In vitro studies show enhanced immune responses with both unilamellar and multilamellar vesicles, but in vivo analyses highlight the superior efficiency of multilamellar vesicles in inducing higher antibody and cytokine levels. This work suggests ceramide-induced multilamellar lipid vesicles as an effective nanovaccine platform for enhanced antigen delivery and stability.


Asunto(s)
Ovalbúmina , Animales , Ratones , Ovalbúmina/química , Ovalbúmina/inmunología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Vacunación/métodos , Lípido A/química , Lípido A/análogos & derivados , Vacunas/química , Vacunas/inmunología , Ceramidas/química , Lípidos/química , Nanopartículas/química , Femenino , Ratones Endogámicos C57BL
8.
Adv Protein Chem Struct Biol ; 140: 59-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762280

RESUMEN

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.


Asunto(s)
Adyuvantes Inmunológicos , Liposomas , Adyuvantes Inmunológicos/química , Humanos , Liposomas/química , Animales , Péptidos/química , Péptidos/inmunología , Vacunas/química , Vacunas/inmunología
9.
STAR Protoc ; 5(2): 103087, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795353

RESUMEN

Here, we present a protocol for the development of mRNA-loaded lipid nanoparticle (LNP) vaccines for target antigen sequences of interest. We describe key steps required to design and synthesize mRNA constructs, their LNP encapsulation, and mouse immunization. We then detail quality control assays to determine RNA purity, guidelines to measure RNA immunogenicity using in vitro reporter systems, and a technique to evaluate antigen-specific T cell responses following immunization.


Asunto(s)
Inmunización , Lípidos , Nanopartículas , ARN Mensajero , Animales , Ratones , Nanopartículas/química , ARN Mensajero/genética , Lípidos/química , Inmunización/métodos , Vacunas/inmunología , Vacunas/química , Vacunas/administración & dosificación , Vacunas de ARNm/inmunología , Nanovacunas , Liposomas
10.
J Chromatogr A ; 1722: 464830, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608366

RESUMEN

Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.


Asunto(s)
Programas Informáticos , Cromatografía Liquida/métodos , Algoritmos , Péptidos/análisis , Péptidos/química , Proteínas/análisis , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Inteligencia Artificial , Vacunas/química , Vacunas/análisis , Retroalimentación
11.
Pharm Res ; 41(5): 1021-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649535

RESUMEN

PURPOSE: A comparative assessment was performed to evaluate the potential of particle sizing by an ensemble based conventional dynamic light scattering (DLS) technique and an emerging technology based on tunable resistive pulse sensing (TRPS) using particle by particle approach by evaluating three different types of vaccine formulations representing three case studies and showing the limitation of each technique, instrument variability, sensitivity, and the resolution in mixed population. METHODS: Three types of in-house vaccine formulations- a protein antigen, an outer membrane vesicle and viral particles were simultaneously evaluated by TRPS based Exoid and two DLS instruments-Zetatrac and Zetasizer for particle size distribution, aggregates, and resolution of polydisperse species. RESULTS: The data from first case study show the risk of possible size overestimation and size averaging in polydisperse samples in DLS measurements which can be addressed by the TRPS analysis. It also shows how TRPS may be utilized only to large size antigens due to its limited size range. The second case study highlights the difference in the sensitivities of two DLS instruments working on the same principle. The third case study show that how TRPS can better resolve the large aggregate species compare to DLS in polydisperse samples. CONCLUSION: This analysis shows that TRPS can be used as an orthogonal technique in addition to conventional DLS based methods for more precise and in-depth characterization. Both techniques are efficient in size characterization and produce comparable results, however the choice will depend on the type of formulation and size range to be evaluated.


Asunto(s)
Dispersión Dinámica de Luz , Tamaño de la Partícula , Vacunas , Dispersión Dinámica de Luz/métodos , Vacunas/química , Composición de Medicamentos/métodos
12.
Angew Chem Int Ed Engl ; 63(24): e202402853, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598262

RESUMEN

In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.


Asunto(s)
Adyuvantes Inmunológicos , Células Dendríticas , Polimerizacion , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/síntesis química , Vacunas/química , Vacunas/inmunología , Tamaño de la Partícula , Ratones , Animales , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química
13.
Int J Pharm ; 659: 124168, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663644

RESUMEN

In this study, we present the lyophilization process development efforts for a vaccine formulation aimed at optimizing the primary drying time (hence, the total cycle length) through comprehensive evaluation of its thermal characteristics, temperature profile, and critical quality attributes (CQAs). Differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM) were used to experimentally determine the product-critical temperatures, viz., the glass transition temperature (Tg') and the collapse temperature (Tc). Initial lyophilization studies indicated that the conventional approach of targeting product temperature (Tp) below the Tc (determined from FDM) resulted in long and sub-optimal drying times. Interestingly, aggressive drying conditions where the product temperature reached the total collapse temperature did not result in macroscopic collapse but, instead, reduced the drying time by âˆ¼ 45 % while maintaining product quality requirements. This observation suggests the need for a more reliable measurement of the macroscopic collapse temperature for product in vials. The temperature profiles from different lyophilization runs showed a drop in product temperature following the primary drying ramp, of which the magnitude was correlated to the degree of macroscopic collapse. The batch-average product resistance, Rp, determined using the manometric temperature measurement (MTM), decreased with increasing dried layer thickness for aggressive primary drying conditions. A quantitative analysis of the product temperature and resistance profiles combined with qualitative assessment of cake appearance attributes was used to determine a more representative macro-collapse temperature, Tcm, for this vaccine product. A primary drying design space was generated using first principles modeling of heat and mass transfer to enable selection of optimum process parameters and reduce the number of exploratory lyophilization runs. Overall, the study highlights the importance of accurate determination of macroscopic collapse in vials, pursuing aggressive drying based on individual product characteristics, and leveraging experimental and modeling techniques for process optimization.


Asunto(s)
Rastreo Diferencial de Calorimetría , Liofilización , Vacunas , Liofilización/métodos , Vacunas/química , Temperatura de Transición , Temperatura , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
14.
Biotechnol Bioeng ; 121(5): 1626-1641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372650

RESUMEN

Suspensions of protein antigens adsorbed to aluminum-salt adjuvants are used in many vaccines and require mixing during vial filling operations to prevent sedimentation. However, the mixing of vaccine formulations may generate undesirable particles that are difficult to detect against the background of suspended adjuvant particles. We simulated the mixing of a suspension containing a protein antigen adsorbed to an aluminum-salt adjuvant using a recirculating peristaltic pump and used flow imaging microscopy to record images of particles within the pumped suspensions. Supervised convolutional neural networks (CNNs) were used to analyze the images and create "fingerprints" of particle morphology distributions, allowing detection of new particles generated during pumping. These results were compared to those obtained from an unsupervised machine learning algorithm relying on variational autoencoders (VAEs) that were also used to detect new particles generated during pumping. Analyses of images conducted by applying both supervised CNNs and VAEs found that rates of generation of new particles were higher in aluminum-salt adjuvant suspensions containing protein antigen than placebo suspensions containing only adjuvant. Finally, front-face fluorescence measurements of the vaccine suspensions indicated changes in solvent exposure of tryptophan residues in the protein that occurred concomitantly with new particle generation during pumping.


Asunto(s)
Aluminio , Vacunas , Aprendizaje Automático no Supervisado , Adyuvantes Inmunológicos/química , Vacunas/química , Antígenos/química
15.
Biomacromolecules ; 25(3): 1749-1758, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38236997

RESUMEN

The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.


Asunto(s)
Nanovacunas , Vacunas , Animales , Ratones , Especies Reactivas de Oxígeno , Linfocitos T CD8-positivos , Células Dendríticas , Antígenos/química , Adyuvantes Inmunológicos/farmacología , Vacunas/química , Ovalbúmina , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL
16.
J Pharm Sci ; 113(6): 1478-1487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246363

RESUMEN

Vaccine manufacturing is one of the most challenging and complex processes in pharmaceutical industry, and the process control strategy is critical for the safety, effectiveness, and consistency of a vaccine. The efficacy of aluminum salt adjuvant on vaccines strongly depends on its physicochemical properties, such as size, structure, surface charge, etc. However, stresses during the vaccine manufacturing may affect the stability of adjuvant. In this study, the impacts of cold/thermal stress, autoclaving, pumping, mixing, and filling shear stress on the physicochemical properties of aluminum hydroxide (AH) adjuvant were evaluated as part of the manufacturing process development. The results showed that the autoclaving process would slightly influence the structure and properties of the investigated AH adjuvant, but thermal incubation at 2-8 °C, 25 °C and 40 °C for 4 weeks did not. However, -20 °C freezing AH adjuvant led to the adjuvant agglomeration and rapid sedimentation. For the high shear stress study with mixing at 500 rpm in a 1-L mixing bag and pumping at 220 rpm for up to 24 h, the average particle dimension of the bulk AH adjuvant decreased, along with decreasing protein adsorption ratio. The studies indicate that various stresses during manufacturing process could affect the structure and physicochemical properties of AH adjuvant, which calls for more attention on the control of adjuvant process parameters during manufacturing.


Asunto(s)
Adyuvantes Inmunológicos , Hidróxido de Aluminio , Vacunas , Hidróxido de Aluminio/química , Vacunas/química , Adyuvantes Inmunológicos/química , Tamaño de la Partícula , Estabilidad de Medicamentos
17.
Nanomedicine (Lond) ; 18(18): 1175-1194, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37712604

RESUMEN

Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas contra la COVID-19/uso terapéutico , Emulsiones/química , COVID-19/prevención & control , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes Inmunológicos/química , Vacunas/química
18.
Biomater Adv ; 149: 213400, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018915

RESUMEN

Oral vaccine is a non-invasive, ideal way to protect communities from infectious diseases. Effective vaccine delivery systems are required to enhance vaccine absorption in the small intestine and its cellular uptake by immune cells. Here, we constructed alginate/chitosan-coated cellulose nanocrystal (Alg-Chi-CNC) and nanofibril (Alg-Chi-CNF) nanocomposites to enhance ovalbumin (OVA) delivery in the intestine. In vitro mucosal permeation and diffusion and cellular uptake demonstrated that Chi-CNC exhibited better cellular uptake in epithelial and antigen-presenting cells (APCs). In vivo results revealed that alginate/chitosan-coated nanocellulose nanocomposites generated strong systemic and mucosal immune responses. Though the features of functional nano-cellulose composites affected mucus permeation and APC uptakes, in vivo specific-OVA immune responses have not shown significant differences due to the complexity of the small intestine.


Asunto(s)
Quitosano , Vacunas , Celulosa , Quitosano/química , Inmunidad Mucosa , Vacunas/química , Alginatos , Vacunación
19.
J Liposome Res ; 33(3): 214-233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36856671

RESUMEN

Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.


Asunto(s)
Nanopartículas , Vacunas , Liposomas/química , Vacunas/química , Nanopartículas/química , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Tamaño de la Partícula , Lípidos/química
20.
Nat Commun ; 14(1): 1130, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854666

RESUMEN

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , COVID-19/prevención & control , Papio , SARS-CoV-2/genética , Vacunas/química , Vacunas/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA